GeoTrackNet-A Maritime Anomaly Detector using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection
Résumé
Representing maritime traffic patterns and detecting anomalies from them are key to vessel monitoring and maritime situational awareness. We propose a novel approach---referred to as GeoTrackNet---for maritime anomaly detection from AIS data streams. Our model exploits state-of-the-art neural network schemes to learn a probabilistic representation of AIS tracks and a contrario detection to detect abnormal events. The neural network provides a new means to capture complex and heterogeneous patterns in vessels' behaviours, while the \textit{a contrario} detector takes into account the fact that the learnt distribution may be location-dependent. Experiments on a real AIS dataset comprising more than 4.2 million AIS messages demonstrate the relevance of the proposed method compared with state-of-the-art schemes.
Origine | Fichiers produits par l'(les) auteur(s) |
---|