GeoTrackNet-A Maritime Anomaly Detector using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Intelligent Transportation Systems Année : 2021

GeoTrackNet-A Maritime Anomaly Detector using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection

Résumé

Representing maritime traffic patterns and detecting anomalies from them are key to vessel monitoring and maritime situational awareness. We propose a novel approach---referred to as GeoTrackNet---for maritime anomaly detection from AIS data streams. Our model exploits state-of-the-art neural network schemes to learn a probabilistic representation of AIS tracks and a contrario detection to detect abnormal events. The neural network provides a new means to capture complex and heterogeneous patterns in vessels' behaviours, while the \textit{a contrario} detector takes into account the fact that the learnt distribution may be location-dependent. Experiments on a real AIS dataset comprising more than 4.2 million AIS messages demonstrate the relevance of the proposed method compared with state-of-the-art schemes.
Fichier principal
Vignette du fichier
T_ITS_19_12_1491.pdf (16.51 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02388260 , version 1 (01-12-2019)
hal-02388260 , version 2 (02-12-2019)
hal-02388260 , version 3 (04-01-2021)
hal-02388260 , version 4 (08-02-2021)

Identifiants

Citer

Duong Nguyen, Rodolphe Vadaine, Guillaume Hajduch, René Garello, Ronan Fablet. GeoTrackNet-A Maritime Anomaly Detector using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection. IEEE Transactions on Intelligent Transportation Systems, 2021, ⟨10.1109/TITS.2021.3055614⟩. ⟨hal-02388260v4⟩
354 Consultations
121 Téléchargements

Altmetric

Partager

More