GeoTrackNet-A Maritime Anomaly Detector using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

GeoTrackNet-A Maritime Anomaly Detector using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection

Résumé

Representing maritime traffic patterns and detecting anomalies from them are key to vessel monitoring and maritime situational awareness. We propose a novel approach-referred to as GeoTrackNet-for maritime anomaly detection from AIS data streams. Our model exploits state-of-the-art neural network schemes to learn a probabilistic representation of AIS tracks, then uses a contrario detection to detect abnormal events. The neural network helps us capture complex and heterogeneous patterns in vessels' behaviors, while the a contrario detector takes into account the fact that the learned distribution may be location-dependent. Experiments on a real AIS dataset comprising more than 4.2 million AIS messages demonstrate the relevance of the proposed method.
Fichier principal
Vignette du fichier
ITS_GeoTrackNet.pdf (16.41 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02388260 , version 1 (01-12-2019)
hal-02388260 , version 2 (02-12-2019)
hal-02388260 , version 3 (04-01-2021)
hal-02388260 , version 4 (08-02-2021)

Identifiants

  • HAL Id : hal-02388260 , version 3

Citer

Duong Nguyen, Rodolphe Vadaine, Guillaume Hajduch, René Garello, Ronan Fablet. GeoTrackNet-A Maritime Anomaly Detector using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection. 2021. ⟨hal-02388260v3⟩
359 Consultations
135 Téléchargements

Partager

More