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GeoTrackNet—A Maritime Anomaly Detector using
Probabilistic Neural Network Representation of

AIS Tracks and A Contrario Detection
Duong Nguyen, Member, IEEE,, Rodolphe Vadaine, Guillaume Hajduch,
René Garello, Fellow, IEEE, and Ronan Fablet, Senior Member, IEEE

Abstract—Representing maritime traffic patterns and detecting
anomalies from them are key to vessel monitoring and maritime
situational awareness. We propose a novel approach—referred
to as GeoTrackNet—for maritime anomaly detection from AIS
data streams. Our model exploits state-of-the-art neural network
schemes to learn a probabilistic representation of AIS tracks
and a contrario detection to detect abnormal events. The neural
network provides a new means to capture complex and hetero-
geneous patterns in vessels’ behaviours, while the a contrario
detector takes into account the fact that the learnt distribution
may be location-dependent. Experiments on a real AIS dataset
comprising more than 4.2 million AIS messages demonstrate the
relevance of the proposed method compared with state-of-the-art
schemes.

Index Terms—AIS, maritime surveillance, deep learning,
anomaly detection, variational recurrent neural networks, a
contrario detection.

I. INTRODUCTION

Nowadays, about 90% of the world trade is carried by
maritime traffic, and it is growing consistently [2]. Maritime
surveillance and Maritime Situational Awareness (MSA) are
vital demands. In this context, anomaly detection is one of
the most important tasks, because anomalies may involve
accidents (loss of navigation, damages in engine, etc.) or il-
legal activities (smuggling, illegal transhipment, etc.). Initially
designed for collision avoidance, the Automatic Identification
System (AIS) has quickly become the main source of infor-
mation for maritime surveillance, thanks to its information
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richness. Roughly speaking, AIS messages contain the identity
(the MMSI number), the GPS coordinates (latitude, longitude),
the current speed (Speed Over Ground–SOG) and course
(Course Over Ground–COG), as well as other information
about the vessel and the voyage. A series of AIS messages
gives the trajectory of the vessel. The potential of AIS is
enormous, however, it is not fully utilised. AIS data are awash
in noise, besides that, the massive amount of data quickly
overwhelms human processing capacity. This emphasises the
need for a system that can automatically analyse and arise an
alarm whenever there is an abnormal event. However, since
AIS was originally created for collision avoidance only, no
metadata (quality, reliability, uncertainty, etc.) are available,
making the detection of anomalies from AIS a very difficult
task. Morever, AIS data in particular, and trajectory data in
general, have some specific characteristics that other types
of data do not: geographical features, temporal correlations,
geographical-temporal features. For these reasons, anomaly
detection methods used in other domains such as network
traffic analysis or cybersecurity [3], [4] do not apply. We may
also emphasise there are no representative groundtruth datasets
for this task, hence, supervised learning strategies for anomaly
detection as in [5]–[7] do not apply either.

Here, we present GeoTrackNet—a new approach for mari-
time trajectory-based anomaly detection1 using a probabilistic
RNN-based (Recurrent Neural Network) representation of AIS
tracks and a contrario detection. This paper is an extended ver-
sion of our previous work in [1]. The first step in GeoTrackNet
is to build a normalcy model that represents the characteristics
of AIS tracks. At sea, either being enforced by law or for
optimisation issues (e.g. optimal fuel consumption, safety
purposes, optimal patterns for fishing, etc.), vessels follow
some specific patterns, and we expect to learn these patterns
from data [1], [8]–[12]. In this work, we exploit variational
sequential latent models, specifically the Variational Recurrent
Neural Network (VRNN) [13] to create a probabilistic re-
presentation of vessels’ movement patterns. RNNs have been
famous for their ability to capture long-term correlations in
time series (here AIS tracks), VRNNs are an extension of
RNNs where stochastic factors are added to improve the net-
works’ capacity of modelling data variations and uncertainties.
This architecture is one of the state-of-the-art methods for

1The detection presented here is trajectory-based, i.e. we focus on the
behaviours of vessels. Point-based methods, where the detection is focused
on AIS signal, are out of scope of this paper.



text, speech and music analysis and generation [13]–[15].
Besides the quality of AIS signals, which may depend on
the metocean conditions as well as interferences in dense
traffic areas, vessel trajectory data may also reflect sea surface
and wind conditions. These different sources of variations
beyond the behavioural patterns of the vessels make anomaly
detection in AIS data streams a particularly challenging task.
In this context, VRNNs emerge as a promising candidate
for AIS series modelling. In the proposed scheme, given the
learnt representation of the movement patterns of vessels,
a “geospatial a contrario” detector evaluates how likely an
AIS track segment is to state the detection of abnormal
patterns. This detector exploits a geospatial prior depending
on the location-dependent complexity of the patterns observed
in the considered dataset. This prior also accounts for the
strong geographical variabilities of vessels’ occurrences and
movement patterns.

Our contributions are as follows:
• We propose a new representation of AIS messages for

deep neural networks. This representation aims to high-
light the specific route-related characteristic of trajectory
data.

• We propose a new method to build a normalcy model
for AIS trajectories. This method relies on VRNNs,
which can capture variations and uncertainties in AIS
tracks to create a probabilistic representation of vessels’
trajectories.

• We highlight the fact that vessels’ behaviours are
geospatially-dependent, hence the model representing
AIS trajectories shall also be geospatially-dependent. We
propose a new anomaly detection method based on this
argument.

• We demonstrate the relevance of the proposed scheme
with respect to state-of-the-art approaches on a real
dataset comprising more than 4.2 million AIS messages.

The paper is organised as follows. In Section II, we give
an overview of related work, and analyse the drawbacks
of those models. The details of the proposed approach are
presented in Section III. Section IV demonstrates the relevance
of GeoTrackNet by experiments on real-life data. Conclusions,
remaining challenges and future lines of work are discussed
in Section V.

II. RELATED WORK

Recently, there has been a large number of publications re-
lated to maritime anomaly detection using AIS. Among them,
we can cite [9], [10], [16]–[23] and references in [24], [25].
Those methods can be categorized into two groups: rule-based
anomaly detection and learning-based anomaly detection.

The former group defines the abnormal behaviours explicitly
and uses a set of rules to state the detection. A large list
of such rules can be found in [26]. The advantage of this
approach is its interpretability. However, it is difficult to
define an exhaustive list of abnormal behaviours, and some
terminologies such as fast/slow are relative and are hard to
implement in operational systems, which may lower their
usefulness.

The latter group uses historical data to learn the im-
plicit detection rules. Since no representative groundtruth
data are available for maritime anomaly detection, learning-
based anomaly detection schemes cannot apply supervised
methods like in [5]–[7]. Unsupervised learning methods are
then preferred [9]–[11], [16], [22], [23], [27]. Learning frame-
works provide a means to overcome the limitations associated
with the definition of an exhaustive list of normal/abnormal
behaviours. Given the lack of labelled data for the anomalous
class, unsupervised schemes naturally arise as the relevant
learning strategies. Due to its flexibility and its ability to
apply on a large scale, this second category of approaches has
become the dominant approach in maritime anomaly detection
[10], [17], [22], [23].

Learning-based methods consist of two main stages: i)
learning a normalcy model, ii) detecting deviations from the
normalcy. In the first stage, density-based spatial clustering
techniques, especially DBSCAN [28], have been very popular
[10], [23], [29], [30]. Typically, DBSCAN is applied to cluster
the critical points of AIS tracks into so-called Waypoints
(WPs): ENs—where vessels enter the Region of Interest
(ROI), EXs—where vessels exit the ROI, and POs—where
vessels stop. From these WPs, these approaches build a graph
whose nodes are the WPs and edges are the maritime routes.
Using a probabilistic setting, e.g., Kernel Density Estimation
(KDE) [10], Gaussian Mixture Models (GMM) [17], multiple
Ornstein-Uhlenbeck (OU) processes [22], a normalcy model
is fitted for each edge. The next stage evaluates how likely
a new AIS track is in order to state the detection. This is
typically achieved by applying a threshold on the distance to
the centroid feature vector representing the route [23] or on
the probability of the AIS track given the normalcy model
[10], or through an adaptive hybrid Bernoulli filter [22].

In all of the above mentioned methods, the extraction of
WPs is critical. However, the considered clustering techniques,
such as DBSCAN, may be sensitive to hyper-parameters. Dif-
ferent settings may lead to very different outcomes. Moreover,
it is not always possible to link a track to an edge of the
normalcy graph, i.e. we can not assign the beginning point
and the end point of a track to any WP. This is a common
problem of any method based on clustering. Another important
limitation of the above mentioned approaches is that they
apply to cargo and tanker vessels, and may not apply to
other vessel types, for instance, fishing vessels whose AIS
patterns do not involve route-like patterns. As AIS metadata
may not be reliable, dealing with all vessel types in operational
systems would require additional preprocessing steps to filter
out vessels’ types.

Although over the last decade, deep learning has achieved
very impressive results in many complicated tasks and has
become the state-of-the-art approach in many domains [31],
AIS-based maritime surveillance is not one of them. Popular
network architectures for time series modelling and analysis
such as Recurrent Neural Network (RNN), Long-Short Term
Memory (LSTM), etc. may hardly model the dynamics of AIS
trajectories because the data are noisy and may be effected by
external factors (e.g. metocean conditions). Another issue is
that those methods assume that the performance of the learnt



Fig. 1. “Four-hot” vector.

Fig. 2. Geometric feature obtained by concatenating the one-hot vectors of
the latitude and the longitude coordinates of AIS messages.

model is geospatially-homogeneous. However, in some areas,
there are a lot of vessels and their behaviours are similar,
the maneuvering patterns in these areas can be learnt easily.
By contrast, other areas may involve much less training data
and/or highly-complex and multi-modal patterns, which result
in poor performance of the learnt normalcy model and of the
associated anomaly detection schemes. The application of the
same anomaly detection policy (threshold, filter) in these two
types of areas does not seem relevant.

In this paper, we present a new method, referred to as
GeoTrackNet that tackles those problems by exploiting ad-
vances in probabilistic neural network representations for
time series analysis and an a contrario detection framework
for maritime anomaly detection from AIS data streams. Our
method provides a new means to address key issues of
state-of-the-art approaches, both in terms of the extraction
and representation of the normalcy and of the detection of
deviations from the normalcy for all types of vessels.

III. PROPOSED APPROACH

In this section, we present the details of the proposed
approach. GeoTrackNet relies on the architecture of the Em-
bedding layer we introduced for the MultitaskAIS network
presented in [1]. We first introduce this architecture, then detail
the formulation of the proposed anomaly detection method.

A. Data representation

The most common way to represent an AIS message is using
a 4-D real-valued vector (two dimensions for the position and
the other two for the velocity, e.g. [lat, lon, SOG,COG]

T )
[10], [20], [22], [32]. We argue that this representation is
not suitable for neural-network-based methods, because it is
difficult for a neural network to disentangle the underlying
geospatial meaning of these numbers. Instead, we represent
each AIS point by a “four-hot vector” (Fig. 1). A “four-
hot” representation is a concatenated vector of the one-hot
vectors of the latitude coordinate, longitude coordinate, SOG
and COG.

Fig. 3. Continuous real-valued representation (left) vs. “four-hot” re-
presentation (right) of AIS messages in the considered learning-based setting.
For the sake of simplicity, SOG and COG are not considered here. Assume
that there is a maritime route (depicted by blue lines), and at the junction,
half of the vessels in the historical dataset turned left (to position x1) and
half turned right (to position x2), but none of them went straight ahead (to
position x3). Left: If vessel positions are represented by real-valued vectors
and the dynamics of vessels are modeled by Gaussian distributions, at the next
timestep, the abnormal position x3 would yield a better score than the actual
normal positions x1 and x2, because x3 is closer to the red dot—the center
of the Gaussian distribution (depicted by the yellow circle). Right: If vessels
positions are represented by “four-hot” vectors and the dynamics of vessels
are modeled by multivariate Bernoulli distributions, at the next timestep, the
model would give higher probability values to the two blue “‘bins” only, and
position x3 would be very unlikely compared with positions x1 and x2.

In addition to the classically-expected benefits of bucketing
representation [33], “four-hot” vectors help disentangle the
geometric features as well as the phase (time-space) patterns of
AIS tracks. For example, Fig. 2 shows how this representation
accentuates the geometric feature of an AIS track. Similarly,
the phase feature appears when we sum up the one-hot vectors
of the latitude, longitude coordinates and the speeds in the
resulting 3-D space (see [1]). We also expect that during the
learning process, the “four-hot” representation enforces route-
related characteristics of trajectory data in general, and of AIS
data in particular. More precisely, the model shall learn that
some vessels should follow some specific routes, and hence
detects as abnormal any vessel deviating from the maritime
route that it is on. As an illustration, Fig. 3 shows how the
“four-hot” representation can help the model detect abnormal
movements deviating from maritime routes.

The hyper-parameters are the resolution of each bin in
the one-hot vectors. If the resolution is too high, the whole
network becomes too bulky and requires a high computational
resource to run, and may also lead to overfitting. If the
resolution is too low, we may lose critical information. For
anomaly detection, we may not need very accurate position
and velocity features. For example, a speed of 10 knots or 10.1
knots is not expected to make any difference in the context
of anomaly detection. Overall, our experiments suggest that
the resolutions of 0.01◦ for longitude and latitude, 1 knot for
SOG and 5◦ for COG work well most of the time.

B. Probabilistic Recurrent Neural Network Representation of
AIS Tracks

In this section we introduce a probabilistic neural network
architecture that we use to represent AIS tracks: the Variational



Recurrent Neural Network (VRNN) [13]. VRNNs are an
extension of RNNs where stochastic factors are added to
improve the modelling capacity of the network. VRNNs are
widely used to create generative models for speech [34], text
[35], [36], videos [37], machine translation [38], or even
physical processes [39]. We detail the associated probabilistic
formulation and the resulting; however, we present a different
derivation which would clarify some terms used in the next
sections of this paper.

For any contiguous AIS track2, we can always apply an
interpolation and sampling technique to create a sequence of
T variables: x1:T = {xt},t=1:T , with xt is the “four-hot”
vector representation of AIS messages presented in Section
III-A. The objective is to learn a distribution that maximise
the log likelihood log p(x1:T ), which can factorise as:

log p(x1:T ) = log p(x1)

T∑
t=2

log p(xt|x1:t−1). (1)

Recently, Recurrent Neural Networks (RNNs) have emerged
as the state-of-the-art approach for time series modelling and
analysis [31], [40]. RNNs assume that at a given time t, the
relevant historical information in x1:t−1 can be encoded in
a deterministic hidden state ht: p(xt|x1:t−1) = p(xt|ht).
The dynamics of the series are modeled by a deterministic
differentiable function f : ht = f(xt−1,ht−1). f is usually
parameterised by LSTMs [41] or GRUs [42]. The initial
condition h1 is commonly set to 0. Eq. (1) becomes:

log p(x1:T ) =

T∑
t=1

log p(xt|ht). (2)

The fact that f is deterministic makes RNNs hardly be able
to capture all the variations and uncertainties in data. In our
context, f can be interpreted as a model of the maneuvering
patterns of AIS trajectories. Associated uncertainties may
come from AIS data streams themselves as well as their
discretisation using “four-hot” vectors. Variations in AIS data
streams may relate to vessel types, weather conditions, AIS
message corruption, etc.

To account for such variations and uncertainties, proba-
bilistic RNNs relate to the introduction of latent stochastic
variables, denoted as zt, which follow a prior distribution:

zt ∼ p(zt|ht). (3)

The dynamics and the emission distribution become:

ht = f(xt−1, zt−1,ht−1), (4)

xt ∼ p(xt|zt,ht). (5)

At each time step t, the joint probability of xt and zt can
factorise as:

p(xt, zt|ht) = p(xt|zt,ht)p(zt|ht). (6)

Hence, p(xt|ht) can be obtained by integrating out zt in Eq.
(6):

p(xt|ht) = Ep(zt|xt,ht) [p(xt|zt,ht)p(zt|ht)] . (7)

2A contiguous AIS track is a track whose the time gap between any two
successive messages is smaller than a threshold, here 2h.

However, this integral is usually intractable. Variational ap-
proaches propose that instead of maximising log p(xt|ht),
we maximise a lower bound of this distribution, called the
Evidence Lower BOund (ELBO), using an approximation
q(zt|xt,ht) of the true posterior distribution p(zt|xt,ht) [13],
[43]:

L(xt|ht, p, q) = Eq(zt|xt,ht) [log p(xt|zt,ht)]

−KL [q(zt|xt,ht)||p(zt|ht)] . (8)

where KL [q(zt|xt,ht)||p(zt|zt)] is the Kullback-Leibler di-
vergence between two distributions q and p.

Overall, given the neural network parameterisation for
function f , the emission distribution p(xt|zt,ht) and the
approximated posterior distribution q(zt|xt,ht), the training
step comes to maximise Eq. (2) where the term log p(xt|ht)
is approximated by L(xt|ht, p, q). This maximisation is im-
plemented using a stochastic gradient ascent technique. The
details of the considered neural network parameterisations for
the different building blocks of the model (using LSTMs) are
presented in Section IV.

C. A contrario detection

Once distribution p(x1:T ) is learnt, we can simply apply
a “global thresholding” rule to state the detection, i.e. AIS
tracks whose log p(x1:T ) < ε are flagged as abnormal, like
in our previous work [44]. However, as mentioned in Section
II, vessels’ behaviours vary significantly, depending on the
considered geographical areas. In some areas, AIS tracks may
involve multimodal but well-defined patterns, and the learnt
model can precisely capture these patterns. As a result, normal
AIS tracks shall be associated with high probability values,
whereas tracks will low probability values shall relate to
unusual and possibly abnormal ones. In other areas, because
of the variabilities of vessels’ behaviours, limited amount of
AIS data and/or a lower capacity of the model to represent
AIS tracks, the learnt model may result in low probability
values whatever the tracks. In such cases, the use of a global
thresholding approach might lead to poorly relevant detection
results.

To address these issues, we introduce a new detection
method, referred to as “geospatial a contrario” detection. It
takes into account the geospatially-heterogeneous performance
of the learnt model. We rely on the division of the ROI into a
grid. Let us denote by lCi

xt
the log probability log p(xt|ht) of

AIS messages in a small geographical cell Ci (i.e., xt ∈ Ci)
and pCi the distribution of lCi

xt
:

lCi
xt
∼ pCi . (9)

An AIS message in cell Ci is considered as abnormal if its
log probability is smaller than the lowest 1

p -quantile of pCi .

xt is abnormal⇔ pCi(L < lCi
xt
) < p. (10)

That means, if we randomly sample lCi
xt

from pCi (note
that pCi is the distribution of variable lCi

xt
, and not xt), the

probability that “xt is abnormal” is p.
Assuming that the event “xt is abnormal” of each AIS mes-

sage xt in an AIS track x1:T is independent, the probability



that “at least k out of n AIS messages in an AIS segment of
length n (denoted xt:t+n−1) of this track are abnormal” is a
tail of a Binomial distribution:

B(n, k, p) =
n∑

i=k

(
n

i

)
pi(1− p)n−i. (11)

A contrario detection [45] detects whether such an AIS
segment is abnormal based on the Number of False Alarms
(NFA), defined as:

NFA(n, k, p) = NsB(n, k, p), (12)

where Ns =
T (T+1)

2 is the number of all possible segments.
For example, if T = 3, there are 6 possible segments: 3

segments of length 1, 2 segments of length 2 and 1 segment
of length 3.

If the NFA of a track segment is smaller than a predefined
threshold ε, this segment will be considered as abnormal.
An AIS track is abnormal if at least one of its segments is
abnormal:

x1:T is abnormal.⇔ ∃(n, k),NFA(n, k, p) < ε. (13)

The threshold ε is the allowed expectation of “false alarm”,
that means, if we run the detector on a series of random lCi

xt
1/ε

times, there will be 1 segment flagged as abnormal. Interested
readers are referred to [45] for more details. To implement
this a contrario scheme, we use two approaches to model
distribution pCi : i) a simple Gaussian approximation and ii) a
Kernel Density Estimation (KDE) [46], [47].

IV. EXPERIMENTS AND RESULTS

A. Experimental set-up

Datasets: We tested our model on AIS data received by an
AIS station located in Ushant. The ROI was a rectangle from
(47.5◦N, 7.0◦W) to (49.5◦N, 4.0◦W). The data were collected
from January to March 2017 and from July to September
2017. In each period, there were more than 4.2 million AIS
messages. For each period, we divided the data into three sets:
a training set, from the first day to the 10th of the last month
of this period (e.g. from January 1 to March 10); a validation
set, from the 11th of the last month to the 20th of the last
month (e.g. from March 11 to March 20) and a test set, from
the 21st of the last month to the last day of this period (e.g.
from March 20 to March 31). The basic idea behind this
experimental setting is that for operational applications, we
use historical data to train the model (i.e. to learn p(x1:T )),
then apply the learnt model to current data. The validation
sets are used to check for overfitting and for the estimation of
distribution pCi . Fig. 4 shows an illustration of the training set,
the validation set and the test set of the period from January
to March 2017.

Preprocessing: GeoTracknet can process AIS streams in
real-time. In real-time operational applications, whenever an
AIS message arrives, it will be grouped into a track keyed by
the MMSI. The detection starts if the track is long enough to
be meaningful, here greater or equal to 4 hours. The system
incrementally updates the tracks by adding arriving AIS mes-
sages and discarding old data. The implementation and the

(a)

(b)

(c)

Fig. 4. All AIS tracks in the dataset from January 1 to March 31, 2017. (a)
training set; (b) validation set; (c) test set.

performance of the online detection version of GeoTracknet
can be found in [48]. Those technical details are out of scope
of this paper. Here, for the sake of simplicity, we present the
offline version of GeoTracknet.

We removed erroneous position or speed messages in the
considered AIS data streams. The SOG was truncated to 30
knots. Discontiguous voyages (voyages that have the maxi-
mum interval between two successive AIS messages longer
than a threshold, here 2 hours) were split into contiguous ones.
We re-sampled all voyages to a resolution of 10 minutes (i.e.
, {t + 1} − {t} = 10mins) using a linear interpolation. Very
long voyages were split into smaller tracks from 4 to 24 hours
each.

Neural Network architectures: for the model reported in
this paper, the resolutions of the latitude, longitude, SOG and
COG were set to 0.01◦(about 1km), 0.01◦, 1 knot and 5◦,



respectively. We modeled f by an LSTM with one single
hidden layer of size 100 for datasets comprising only cargo and
tanker vessels, and of size 120 for datasets comprising all types
of vessels. zt was real-valued vectors of the same size of the
hidden layer of the LSTM. p(zt|ht) and q(zt|xt,ht) were two
Gaussian distributions parameterised by two fully connected
networks with one hidden layer of size 100. p(xt|ht, zt)
is a multivariate Bernoulli distribution parameterised by a
fully connected network with one hidden layer of size 100.
The network was trained using Adam optimiser [49] with a
learning rate of 0.0003.

A contrario detection: for the a contrario detector, we
chose p = 0.1. ε was initially set at a high value (in order to
flag many tracks as abnormal), then was gradually decreased
to reduce the number of false positives while keeping all the
true detections.

The code, as well as the data that can replicate the re-
sults in this paper are available at: https://github.com/CIA-
Oceanix/GeoTrackNet.

Baseline: We used the Traffic Route Extraction and
Anomaly Detection (TREAD) method, presented in [10], [11]
as the baseline. This model supposes that vessels following
the same route have similar velocity in each small area. The
hyper-parameters were set at the values suggested by [10] and
[23] (minPts = 10, eps = 2000, the radius of each small
area is 3 km). We also included state-of-the-art NN models
for sequential data, namely LSTMs [50], [51] and VRNNs
[44], [52].

Evaluation method: As no reference groundtruth dataset is
available, a quantitative benchmarking synthesis in terms of
accuracy or false alarm rate is not feasible. We rather analyse
the different types of anomalies identified by different models.
Besides, a more thorough analysis has been performed for
GeoTrackNet through an inspection of each detected anomaly
by AIS experts.

B. Experiments and results

Basic case study: For this test, we trained the models
on the training set and evaluated the performance on the
corresponding test set of each period. The dataset comprises
only cargoes and tankers. Fig. 5 shows the mean and the
standard deviation of distributions pCi . As expected, in some
regions, there are many vessels and the learnt model fits well
the data with a mono-modal or multimodal distribution, such
that the values of log p(xt|ht) are high. There are also regions
where log p(xt|ht) is low on average. If an AIS track results in
a low log probability in these regions, we do not know whether
this track is unusual or the model does not fit well the data.
Applying a “global thresholding” rule like in [44] would lead
to a bad outcome, as shown in Fig. 6d, where all the detections
are in low log likelihood regions. By contrast, the proposed a
contrario detector compares log p(xt|ht) of an AIS message
xt with those in the same area, if it is significantly smaller
than the others, then xt is regarded as abnormal. The results
are shown in Fig. 6e and Fig. 6f. Most of the time, the model
using Gaussian distribution approximation and the one using
KDE gives similar outcomes. The proposed model can detect

(a)

(b)

Fig. 5. The “geospatial performance” map displaying the mean (a) and the
standard deviation (b) of the Gaussian approximation of distributions pCi

from AIS messages in the validation set from January to March, 2017. On
maritime routes, there are many vessels, mainly cargoes and tankers, their
movement patterns can be learnt easily, log p(xt|ht) is usually high and its
variation is small. On the other hand, some areas depict few vessels or vessels’
behaviours are too complicated for the model to learn, log p(xt|ht) is usually
low and highly variable. Blank regions are regions where we do not apply
the detection (e.g., land areas or regions where we do not have enough data).

both: i) space-wise (geometric and geographic) anomalies,
when vessels deviate from maritime routes, perform unusual
turns, etc. and ii) phase-wise (kinetic) anomalies, when vessels
have abnormal evolution in speed and course (e.g. unusual
slowing down, sudden changes in speed, etc.), as shown in
Fig. 7. Among those 25 tracks flagged as abnormal in Fig.
6f, AIS experts reported only one (the dark yellow track
turning north at (49◦N, 5◦W)) as a false alarm. We suspect
this detection relates to the low number of AIS tracks in
this area in the training set as this area is outside of the
coverage zone of the terrestrial AIS station located in Ushant.
Additional experiments reported in [48] support this statement
as the model trained with a larger training set (comprising both
terrestrial AIS and satellite AIS) does not flag this AIS track
as abnormal.

Regarding LSTM and VRNN models (Fig. 6a and Fig. 6b,
respectively), the performance does not appear very relevant.
They flag many normal tracks as abnormal. For example,
in both figures, the tracks along the 6.0◦W longitude line
are usual tracks. In Fig. 6b, the yellow, orange and red
tracks departing from Brest (48.4◦N, 4.5◦W) are normal tracks
(except the red track in Fig. 7e).

When comparing our approach to TREAD [10], we note
that some types of anomaly, such as the double U-turn,
abnormal turns, or abnormal speeds, are detected by both



(a) (b) (c)

(d) (e) (f)

Fig. 6. Abnormal tracks detected by different models (the dataset comprises only cargo and tanker vessels, from January to March 2017). Blue: tracks in
the training set; other colors: abnormal tracks in the test set (the colors of abnormal tracks were chosen randomly). (a) LSTM; (b) VRNN, (c) TREAD (a
DBSCAN-based method introduced in [10]); (d) GeoTrackNet without the a contrario detector (i.e. using a “global thresholding” rule); (e) GeoTrackNet,
approximating each pCi by a Gaussian distribution; and (f) GeoTrackNet, approximating each pCi by KDE.

approaches, as shown in Fig. 6c and Fig. 6f. However, since
TREAD compares the velocity of a vessel with the average of
vessels on the same route to state the detection, this method
is sensitive to vessels’ speed. TREAD considers all vessels
that move slower or faster than others as abnormal. This may
lead to some unexpected results, when the statistical anomaly
is not suspicious, like the one in Fig. 8a. This vessel is
flagged by TREAD because it moved too fast. However, it
might not involve any suspicious activity. On the other hand,
GeoTrackNet focuses more on sudden changes in speed of
vessels, see Fig. 8d for an example. This detection is relevant
because this vessel may encounter an engine failure.

The detection of abnormal tracks which do not follow
any maritime route like those in Fig. 7a and Fig. 7e is a
key advantage of GeoTrackNet over DBSCAN-based models.
Because those tracks can not be mapped to any maritime route,
DBSCAN-based methods have two options, either to flag all
of them as abnormal or to not monitor them. Since the number
of those tracks is high, typically from 10% to 60% of the total
tracks in the ROI, [10] (see Fig. 9), neither of these options
is relevant for maritime surveillance.

Relevance of the “four-hot” representation: to demon-
strate the relevance of the “four-hot” representation, we tested
the proposed model without the “four-hot” representation. The
result is shown in Fig. 10a. The model fails to detect small, yet
very unusual deviations from the common behaviours, such as
the double U-turn in Fig. 7d, or the abnormal turns of the red
track in Fig. 7b. We also tested GeoTrackNet with different
resolutions of the “four-hot vector”. In general, GeoTrackNet is
relatively robust to the considered resolutions for the latitude,

longitude, SOG and COG. The performance of the model was
consistent when we increased or decreased the resolutions of
the latitude and the longitude by a factor of 2. When we
increased or reduced those resolutions by a factor of 5, the
detection started changing. The results with those settings are
shown in Fig. 10b and Fig. 10c. When the resolution is too
fine, the amount of information that the model has to learn is
too much. For example, a spatial resolution of 0.002◦ means
that the model has to be able to predict the next position a
vessel in 10 minutes (the time resolution of the model) with
a tolerance of only 200 meters. On the other hands, if the
resolution is too coarse, the information available to the model
may not be enough to characterise the movement patterns. For
example, a spatial resolution of 0.05◦ means that two positions
within a radius of 5 kilometers are not distinguishable.

Vessel types: Another advantage of GeoTrackNet is the
possibility of applying to any type of vessels. The first step of
DBSCAN-based methods is to cluster AIS tracks into maritime
routes and learn the signature of each route. Hence, those
methods can only apply to vessels that follow maritime routes,
i.e. cargo and tanker vessels. By contrast, our method does
not impose any hypothesis of this type, so it can apply to
any type of vessels. We tested our model on a dataset that
comprises all kinds of vessels, the results are shown in Fig.
12. Since the number of vessels of other types than cargo and
tanker is significant, applying the surveillance on all types of
vessels is of interest. However, this is a difficult task. Unlike
cargo and tanker vessels, some other types, for example fishing
vessels, have very complex moving patterns, the model can
hardly learn all of them. Even when the model is able to
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Fig. 7. Examples of anomalies detected by KDE GeoTrackNet. (a) Vessels following abnormal routes. DBSCAN-based methods can not apply to these tracks
because they can not be assigned to any common maritime route. (b) Geometrically or geographically abnormal tracks (e.g., deviating from maritime routes,
unusual turns, etc.). (c) Abnormal speed tracks (e.g. suspiciously slowing down in a maritime route). (d) Double U-turn. (e) A cargo vessel steamed to sea
then went back to the departing port. (f) Each segment of this track is normal, however, it is unusual that a vessel follows this path. GeoTrackNet can detect
this track because it has a memory (the memory of its LTSM).

(a) (b)

(c) (d)

Fig. 8. Examples of tracks with abnormal speed patterns detected by TREAD
and GeoTrackNet. (a) An example of a track flagged as abnormal by TREAD
and the associated speed pattern (b). The speed of vessels along this route
typically varies between 10 and 18 knots while this vessel was moving at
around 19 to 20 knots. (c) An example of a track flagged as abnormal by
KDE GeoTrackNet and the associated speed pattern (d). It involves a sudden
slowing-down which may relate to engine problems or abnormal sea/traffic
conditions.

Fig. 9. AIS tracks that cannot be mapped to maritime routes, hence cannot
be monitored by DBSCAN-based methods. In the test set that comprises only
cargo and tanker vessels (from March 21 to March 31, 2017), such tracks
account for 13% of all AIS tracks.

capture all the dynamics of AIS tracks, unexpected results
are still inevitable, when the statistical anomalies are actually
not suspicious (see Fig. 12a). There is a trade-off between the
monitoring capacity and the performance. When monitoring all
types of vessels, it is possible that in a small area, there are
some patterns that can be learnt and others that can not. The
distribution pCi is not unimodal anymore. Hence, it cannot
be approximated by a Gaussian distribution (see Fig. 11).
This explains why the non-parametric density estimation using
KDE gives better outcomes in those cases.

Hereafter in this paper, unless specified otherwise, the
reported results are the results of KDE GeoTrackNet.

Seasonal effects: We conducted additional experiments to
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Fig. 10. Illustration of the relevance of the “four-hot” representation. (a) Abnormal tracks detected by a model without the “four-hot” representation; (b)
Abnormal tracks detected by a GeoTrackNet model with the resolutions of the latitude, longitude, SOG and COG set to 0.002◦(=0.2 times the reference
setting), 0.002◦, 1 knot and 5◦, respectively; (c) Abnormal tracks detected by a GeoTrackNet model with the resolutions of the latitude, longitude, SOG and
COG set to 0.05◦(=5 times the reference setting), 0.05◦, 1 knot and 5◦, respectively. (d) The reference result, the resolutions of the latitude, longitude, SOG
and COG were set to 0.01◦, 0.01◦, 1 knot and 5◦, respectively.

(a)

(b)

Fig. 11. Comparison between the Gaussian approximation and KDE for
distribution pCi . (a) a track detected as abnormal by KDE GeoTrackNet, and
not by Gaussian GeoTrackNet when the dataset comprises all types of vessels.
(b) pCi of the area around the point “x” in (a). pCi

KDE(L < l
Ci
xt ) = 0.128

while p
Ci
Gauss(L < l

Ci
xt ) = 0.082. Overall, when the data comprises all types

of vessels, pCi is not unimodal and KDE shall be preferred.

TABLE I
AVERAGE LOG LIKELIHOOD OF GeoTrackNet FOR DIFFERENT TEST SETS

WHEN TRAINED ON AIS DATA FROM JAN 1 TO MAR 10, 2017.

Test set Cargoes and tankers All types

March 2017 -5.83 -6.53
September 2017 -5.93 -7.43
March 2018 -5.84 -6.76

demonstrate the consistency of GeoTrackNet. In this test,
the models learnt from the training set of one period were
evaluated on the test set of another period3. Table I shows the
average log likelihood on different test sets of models trained
on data from January 1 to March 10, 2017. The test sets are
data from the 21st to the end of the corresponding month.
Seasonal effects are small for cargo and tanker vessels. Over
seasons, most of the changes are in speed. While for other
types of vessels, especially for fishing vessels, the behaviours
change completely. That explains why the log likelihood of
the model trained on all vessels, from January 1 to March
10, 2017 is considerably low on the test set of September
2017. As shown in Fig. 13, between winter and summer,
the fishing patterns are very different. A model trained on
data in one season may not apply to data in another season.
These experiments suggest considering season-specific models
and/or training a general model which also takes into account
a seasonal information.

3In real-life applications, we always train the model on recent data. This
setting is just to test the consistency of the model
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Fig. 12. Anomaly detection examples of KDE GeoTrackNet with AIS data
comprising all vessel types from January to March 2017. (a) AIS tracks that
are flagged as abnormal by KDE GeoTrackNet. Some tracks are statistically
abnormal, however, their behaviours are not suspicious. For examples, the
red tracks that steamed from land are fishing vessels went fishing; they are
detected as abnormal because there are not enough similar AIS tracks in the
training set. (b) AIS tracks of fishing vessels in the training set (about 13%
of tracks in the training set).

(a)

(b)

Fig. 13. Anomaly detection examples of the model trained on data from
January 1 to March 20, 2017 and tested on data from July 21 to September
30, 2017. (a) When the data comprise only cargo and tanker vessels. (b) When
the data comprise all kind of vessels.

(a)

(b)

Fig. 14. Effect of the size of the historical data. (a) The maximum duration
of each track is 8h; (b) The maximum duration of each track is 16h. If the
system does not keep the track long enough, some anomalies may be missed.

AIS memory requirements: In operational mode, one
question arises is how long we should keep the past data
of each AIS track. In the offline version of GeoTrackNet,
this quantity is the maximum duration Lmax of each track.
Fig. 14 shows the results of the detection when we split long
voyages into small tracks from 4h to: (a) 8h and (b) 16h.
Discarding old AIS messages may save memory resources
of the system, however, in some cases, we have to observe
the track long enough to recognise the anomaly. For example,
the voyage of the cargo vessel in Fig. 7e was not detected if
the maximum duration of each track is 8h. This is because
without knowing the other parts, each segment of this voyage
is normal. For dataset presented in this paper, Lmax = 16h and
Lmax = 24h give the same outcomes. We chose Lmax = 24h
in our experiments as our computational resources could store
and process the resulting datasets.

V. CONCLUSIONS AND FUTURE WORK

We introduced a new approach for maritime anomaly detec-
tion using AIS data. To our knowledge, this is the first model
which relies on a normalcy model of AIS tracks using a deep
learning generative scheme. The proposed model is novel, both
in the way the normalcy model is built and the way deviations
from the normalcy are evaluated. More precisely, we exploit
Variational Recurrent Neural Networks to represent AIS tracks
probabilistically using an original four-hot encoding of AIS
data. Once the approximate distribution of the data is learnt,
a geospatial a contrario detector is used to evaluate how
likely an AIS track is. This detector takes into account the
fact that the performance of the learning is geographically



dependent. The general idea is that if an AIS message has its
log probability lower than other messages’ in the same region,
it should be flagged as abnormal. An AIS track is abnormal
if there are many abnormal messages in this track.

The key features of the proposed approach are as follows:
• It requires a minimal prior knowledge about the data. The

model can be applied in different regions without major
modifications.

• It does not require important hyperparameters such as the
number of points in a cluster when using DBSCAN, the
number of modes in mixture models, etc.

• We can control the percentage of the activities expected
to be flagged as abnormal by simply changing the value
of ε in Eq. (13).

• DBSCAN-based models cannot monitor AIS tracks that
do not follow maritime routes. Fig. 9 and Fig. 12b show
that the number of those tracks are significant4. Our
method applies to all AIS tracks in the processed area.

• The proposed model can detect both geo-
metric/geographic and speed-related anomalies.

• The nature of VRNN provides an additional means to
condition the output onto external forcing variables or
other sources of information. Hence, our model could
further benefit from complementary information such
as weather conditions, ocean current situations, etc.
Mathematically, it comes to modelling p(xt|x1:t−1) =
p(xt|ht,ut) with ut the forcing variables and additional
information.

• It is worth noting that anomaly detection is one task
(and the most important one) in maritime surveillance.
A model that can be integrated into a bigger system
would optimise computational and storage resources. In
the preliminary version of this work [1], we showed
the proposed NN architecture to be generic and relevant
to address other tasks besides anomaly detection such
as vessel type recognition and trajectory interpolation.
We let the reader to [1] for additional information.
Regarding computational requirements, the resolution of
GeoTrackNet is 10 minutes, i.e. the system keeps only one
AIS message each 10 minutes. This reduces significantly
the amount of data to process and store (by convention,
the transmit rate of dynamic AIS message is from every
few seconds to every few minutes [53]). Once the model
is learnt, we do not need to store the training dataset.
For example, the training set used in this paper from
January 1 to March 10, 2017 comprises about 3.3 million
AIS messages, which amounts to ∼450MB in *.csv
format. The learnt model (i.e., VRNN weights) can be
embedded into ∼40MB in Tensorflow format, which
is relatively small. The development of a stream-based
version GeoTrackNet in [48] supports its relevance for a
real-time implementation within a big data and distributed
system.

Although deep learning has recently grown extremely fast
and has become the state-of-the-art approach in many domains

4The original paper [10] reported the fraction of processable AIS messages
varied from 40 to 95%

[31], its achievements in MSA are surprisingly limited. To
the best of our knowledge, this work is the first one that
applies unsupervised deep learning to maritime anomaly de-
tection. This work opens new avenues to explore new research
directions to complement and/or outperform DBSCAN-based
approaches. As any unsupervised learning-based model, the
proposed approach detects events that are statistically unusual.
These events may not involve suspicious actions. Ongoing
experiments involve analyses by experts to evaluate the con-
sistency of the detections w.r.t. operational requirements. In
this respect, the creation of a reference groundtruth dataset
would be highly beneficial to advance the state-of-the-art and
make benchmarking experiments quantitative. This is however
a complicated task that would require a large collaborative
effort. A more thorough study of the relationship between
the resolution of the “four-hot” vector and the corresponding
detection results could facilitate the hyper-parameters selection
process when applying the model in different zones. The
proposed neural network representation provides a flexible and
powerful means to learn the distribution of AIS tracks, yet
uninterpretable. The model is more suitable for a computer-
assisted system (where the final decision is still on the human
operator) than a fully automatic system. We may emphasise
that this representation is also of interest for other tasks, e.g.,
AIS track interpolation, vessel type identification, as shown
in our preliminary work [1]. Future work might benefit from
such multi-task settings.
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