GeoTrackNet-A Maritime Anomaly Detector using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

GeoTrackNet-A Maritime Anomaly Detector using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection

Résumé

Representing maritime traffic patterns and detecting anomalies from them are key to vessel monitoring and maritime situational awareness. We propose a novel approach-referred to as GeoTrackNet-for maritime anomaly detection from AIS data streams. Our model exploits state-of-the-art neural network schemes to learn a probabilistic representation of AIS tracks, then uses a contrario detection to detect abnormal events. The neural network helps us capture complex and heterogeneous patterns in vessels' behaviors, while the a contrario detection takes into account the fact that the learned distribution may be location-dependent. Experiments on a real AIS dataset comprising more than 4.2 million AIS messages demonstrate the relevance of the proposed method.
Fichier principal
Vignette du fichier
GeoTrackNet.pdf (7.46 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02388260 , version 1 (01-12-2019)
hal-02388260 , version 2 (02-12-2019)
hal-02388260 , version 3 (04-01-2021)
hal-02388260 , version 4 (08-02-2021)

Identifiants

  • HAL Id : hal-02388260 , version 2

Citer

Duong Nguyen, Rodolphe Vadaine, Guillaume Hajduch, René Garello, Ronan Fablet. GeoTrackNet-A Maritime Anomaly Detector using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection. 2019. ⟨hal-02388260v2⟩
354 Consultations
121 Téléchargements

Partager

More