Incremental Learning for Bootstrapping Object Classifier Models - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Incremental Learning for Bootstrapping Object Classifier Models

Résumé

Many state of the art object classification applications require many data samples, whose collection is usually a very costly process. Performing initial model training with synthetic samples (from virtual reality tools) has been proposed as a possible solution, although the resulting classification models need to be adapted (fine-tuned) to real-world data afterwards. In this paper, we propose to use an incremental learning from cognitive robotics, which is is particularly suited for perceptual problems, for this bootstrapping process. We apply it to a pedestrian detection problem where a synthetic dataset is used for initial training, and two different real-world datasets for fine-tuning and evaluation. The proposed scheme greatly reduces the number of real-world samples required while maintaining high classification accuracy. We also demonstrate an innovative incremental learning schemes for object detection which training object and background samples one after the other: this keeps models simple by representing only those background samples that can actually be confused with pedestrians.
Fichier principal
Vignette du fichier
karaoguz_2016_itsc_submission.pdf (1.3 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01418160 , version 1 (16-12-2016)

Identifiants

  • HAL Id : hal-01418160 , version 1

Citer

Cem Karaoguz, Alexander Gepperth. Incremental Learning for Bootstrapping Object Classifier Models. IEEE International Conference On Intelligent Transportation Systems (ITSC), 2016, Seoul, South Korea. ⟨hal-01418160⟩
76 Consultations
265 Téléchargements

Partager

More