
HAL Id: hal-01418160
https://hal.science/hal-01418160v1

Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental Learning for Bootstrapping Object
Classifier Models

Cem Karaoguz, Alexander Gepperth

To cite this version:
Cem Karaoguz, Alexander Gepperth. Incremental Learning for Bootstrapping Object Classifier Mod-
els. IEEE International Conference On Intelligent Transportation Systems (ITSC), 2016, Seoul, South
Korea. �hal-01418160�

https://hal.science/hal-01418160v1
https://hal.archives-ouvertes.fr

Incremental Learning for Bootstrapping Object Classifier Models

Cem Karaoguz1,2 and Alexander Gepperth1,2

Accepted for 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC 2016)

Abstract— Many state of the art object classification appli-
cations require many data samples, whose collection is usually
a very costly process. Performing initial model training with
synthetic samples (from virtual reality tools) has been proposed
as a possible solution, although the resulting classification
models need to be adapted (fine-tuned) to real-world data
afterwards. In this paper, we propose to use an incremental
learning from cognitive robotics, which is is particularly suited
for perceptual problems, for this bootstrapping process. We
apply it to a pedestrian detection problem where a synthetic
dataset is used for initial training, and two different real-
world datasets for fine-tuning and evaluation. The proposed
scheme greatly reduces the number of real-world samples
required while maintaining high classification accuracy. We also
demonstrate an innovative incremental learning schemes for
object detection which training object and background samples
one after the other: this keeps models simple by representing
only those background samples that can actually be confused
with pedestrians.

I. INTRODUCTION

Applications in domains of driver assistance systems and
autonomous driving demand visual recognition of traffic
participants invariant to changes like illumination, view-
point etc. To cope with this, modern object classification
systems based on statistical learning require datasets with
large number of annotated samples recorded under different
conditions. Building up such large datasets is usually a
tedious process and comes with high costs in resource
and time. Furthermore, changes in various aspects of the
application (e.g. hardware) might require construction of a
modified database and retraining of models from scratch.
This retraining ”from scratch” is necessary since none of the
methods usually used for classification have what is termed
incremental learning capacity (see [1] for a discussion of the
term) that would allow to update models with new samples
without complete retraining, and without ”damaging” already
learnt knowledge.

In this context, a very popular setting for activities like
domain adaptation [2] is to consider model training on a
source database with easy-to-obtain synthetic samples, e.g.,
from a virtual reality tool, and then to adapt (or fine-tune)
the model to a target database with hard-to-obtain real-world
samples. The beauty of this bootstrapping approach is that
the number of hard-to-obtain samples required for fine-tuning
is usually far inferior than the number required for training

1Cem Karaoguz and Alexander Gepperth are with ENSTA ParisTech,
UIIS Lab University of Paris-Saclay, 91762 Palaiseau, France

2Cem Karaoguz and Alexander Gepperth are with IN-
RIA FLOWERS Team, 200 Avenue de la Veille Tour,
33405 Talence, France cem.karaoguz@ensta.fr,
alexander.gepperth@ensta.fr

from scratch, and thus a great increase in efficiency can be
achieved.

In this article, we show that dedicated incremental learning
algorithms, as proposed in the domain of machine learning
and developmental robotics, can be used as a ready-made
tool to greatly facilitate the bootstrapping process for per-
ceptual tasks in intelligent vehicles. In particular, we use
the incremental learning approach presented in [3] which is
particularly suited for high-dimensional perceptual problems,
for implementing the bootstrapping approach between a
synthetic and several real-world databases for pedestrian
classification. The bootstrapping is done in two phases: with
positive (i.e. object) data first, and subsequently with negative
data (i.e. background). Positive bootstrapping aims to form a
coarse representation of an object using the source database
and adapt it to a target database with only a limited number
of examples. Negative bootstrapping aims at filtering out
simple negative samples from the training process using
already learned object representations so that only hard
negative samples are represented. This scheme eliminates
the necessity of multiple rounds of training employed by
many state of the art object classifiers as well as leaves more
resources in the model to represent object characteristics.

When performing experiments using synthetic data from
[4] and real-world data from the KITTI and Daimler
databases [5], [6], we show that only a few annotated
real samples are enough to sufficiently adapt models to
the (slightly different) statistics of real samples. Hence, the
proposed framework significantly reduces the number of real
images and corresponding annotations required by the model
training process and renders models reusable across different
datasets, eliminating the necessity of model re-training from
scratch.

A. Related Work

The related work can be addressed in two main groups: in-
cremental learning and domain adaptation. A common strat-
egy for incremental learning is to partition the input space
and use local models for each partition. This avoids common
problems of machine learning like catastrophic forgetting [7]
or concept drift [8] since learning is always localized in the
input space, in the sense that a change of statistics in one part
of that space will not affect learning in other, distant parts.
The manner of performing this partitioning is very diverse,
ranging from kd-trees [9] to genetic algorithms [10], adaptive
Gaussian receptive fields [11]. Equally, the choice of local
models varies between linear models [11], Gaussian mixture
regression [9] or Gaussian Processes [12]. The choice has

to be made regarding the constraints on the computational
complexity imposed by the application.

Bootstrapping object classifiers is closely related to do-
main adaptation problem where an object classifier trained
on a source dataset needs to be operated reliably on a
different target dataset. Two major approaches exist to face
this problem: feature transformation and model adaptation.
Feature transformation relies on projecting feature vectors to
a space compatible with the classifier of the source domain
(e.g. [13], [14]). On the other hand, model adaptation is
based on adjusting the parameters of an already learned
model or learning complementary models to cope with
changing data statistics. This is also the approach taken in
the current work. An incremental domain adaptation frame-
work is presented in [15] where two separate classifiers are
used. A linear combination of domain and target classifiers
gives the final classification result and the weight of each
classifier is determined by their recorded performance. In
[16] a Gaussian process regression model is constructed
from confident outputs of a classifier and the scores of
data instances with low prediction values are modified by
this model. A-SVM is introduced in [17] which enables
domain adaptation for SVM based classifiers by learning a
perturbation function between source and target classifiers.
This idea is extended to cope with multiple target domains
by hierarchically organizing these target domains in [18].
The majority of these works are based on discriminative
models where direct adaptation of the model to changing
data statistics is problematic. Hence, these methods often
train new models (target models) on top of the existing ones
(source models) or learn a residual function i.e. statistical
difference between datasets. In contrast, in the presented
work models are updated directly and continuously in the
presence of new data. Hence, the approach is generic and
works without prior knowledge about datasets.

II. METHODS

The proposed architecture is a three-layer neural network
which is illustrated in Fig. 1. Adopting the common nota-
tion of neural networks, we utilize superscripts I , H and
O for entities related to input, hidden and output layers,
respectively. The input layer of the network is composed
of a feature vector which is generated from the input data.
The hidden layer of the network projects the input vector
onto the prototype space based on a distance metric. Sub-
spaces of the input space are coarsely approximated by
hyperspheres whose centers are defined by the prototypes
in the hidden layer. The output layer is composed of all-
to-all connected neurons that map local input space regions
(i.e., sets of prototypes) to class memberships using simple
linear regression learning.

A. Projection

The hidden layer of the network is composed of topo-
logically organized prototypes represented as weight vectors
wH~m where wH ∈ IRN×M. Prototypes are distributed in a two
dimensional grid (see Fig. 1), hence prototype locations are

indicated as vectors ~m. However, we drop the vector notation
for brevity and simply use m which can also be interpreted as
prototype ID. The hidden layer acts similar to the well-known
self-organizing map (SOM) algorithm [19]: the projection of
the input onto the hidden layer starts with computing the
distance between the input vector and all prototypes:

z̄H(m) = ||wHm − zI || (1)

where zI is the input vector, || · || is the Euclidean norm.
The prototype m∗ with the smallest distance is called the
best matching unit. In our model, the hidden layer re-encodes
the input in a way that enables incremental learning while
preserving information. Therefore, instead of reducing the
output of the hidden layer to the best-matching unit (as
it is usually done for SOMs), we calculate the (graded)
activations of all hidden layer units:

z̃H = gκ
(
z̄H

)
(2)

where the activation function gκ is Gaussian with standard
deviation κ. The activation function converts the distance
measures into similarity and keep them in the [0, 1] inter-
val. A transfer function is further applied to sparsify these
activations:

zH = TFp
(
z̃H

)
(3)

where TF(·) represents a monotonous non-linear transfer
function, TF : [0, 1] → [0, 1] which maintains the best
matching unit value unchanged while non-linearly suppress-
ing smaller values:

TFp(z̃H) =

(
z̃H

)p
(z̃H(m∗))

p−1 (4)

B. Prediction

Hidden layer is connected to the output layer in all-to-
all fashion with weights wP ∈ IRM×C. Generation of output
layer activities is performed by a simple linear transformation
of hidden layer activities zH :

zO(m) = wOm · zH (5)

The class associated with the unit that has the strongest
activity in the output layer becomes simply the predicted
class if the activity exceeds a threshold.

C. Learning model parameters

Prototype adaptation is performed online using the con-
ventional SOM update step except that it takes into account
a control signal λ coming from the output level of the
hierarchy:

wHm ← wHm + λεHgσ(||m−m∗||)(zI − wHm) (6)

where gσ(x) is a zero-mean Gaussian function with standard
deviation σ. The control signal λ is a binary value that is set
to 1 only if the current estimate of class membership, i.e.,
the output layer activities zP is either uncertain or wrong.
The uncertainty is measured from the bounded difference
between first and second maximum of the output layer

Input vector Prototypes Activation Map Prediction vector

Projection Prediction

Regression

Fig. 1: The overview of the proposed architecture applied to pedestrian detection task. In this example, image intensity
values are used directly as feature vector. The input vector is projected on the topologically organized prototype space that
involves comparison with all prototypes. This renders an activation map of prototypes where prototypes similar to the input
vector give higher values. At the prediction step the resulting activation map is mapped to a class-membership vector via
regression.

activities. If the difference is below a threshold θm the
control signal is set to 1. In accordance with standard SOM
training practices, the SOM learning rate and radius, εH and
σ, are maintained at ε0, σ0 for t < T1 iterations and are
exponentially decreased afterwards in order to attain their
long-term values ε∞, σ∞ at t = Tconv.

Since the output layer performs linear regression, the
weights are modified via online gradient descent, optimizing
the mapping of hidden layer activities zH to the target
representation zT containing the ”true” class of a sample:

wOm ← wOm + 2εOzH
(
zO(m)− zT (m)

)
(7)

In contrast to the hidden layer learning rate, the learning rate
of linear regression, εP remains constant at all times.

D. Incremental Learning for Bootstrapping

We employ incremental learning for bootstrapping of
models in two phases: Positive bootstrapping aims that a
basic prototype structure is learned with the source dataset.
Prototypes are later fine-tuned with the target dataset where
necessary. In order to realize this, the system is exposed to
positive samples from the source dataset for Tbsp+ iterations.
After this, fine-tuning is performed by exposing positive sam-
ples from the target dataset to the system. The incremental
learning scheme outlined in Sec.II-C ensures that weights are
adapted only if the system cannot correctly classify a given
sample. Hence, prototypes which describe the target dataset
already sufficiently are not touched.

Negative bootstrapping is done subsequently and follows
a scheme similar to the positive bootstrapping with addi-
tional heuristics. The prototype-based representation previ-
ously trained on positive samples enables early rejection
of negative samples before actual classification due to the
generative nature of the model: Eqn. (2) computes the
activation of an input vector, negative samples yielding low

n
eg

at
i v

e

b
o

o
ts

t r
a

p
p

in
g

training

fine-
tuning

training

fine-
tuning

p
o

s
it

iv
e

b
o

o
ts

t r
a

p
p

in
g

1

2

Fig. 2: Temporal sequence of training steps during the boot-
strapping process from a source dataset (usually synthetic) to
a target dataset (usually real-world, here: KITTI). The first
step of positive bootstrapping includes training on positive
samples from the source dataset, then training on positive
samples from the target dataset. The subsequent negative
bootstrapping is conducted in an analogous fashion except
that it excludes ”easy” negative samples.

activation values in this process if they are dissimilar to
objects. Setting a threshold θbsp can identify such samples
in order to leave them out from further computations, i.e.
classification and learning. This has two benefits: first, the
model only represents negative samples which are very
similar to the objects. With minimum allocation of the
model’s resources to negative samples, more representational
resources (prototypes) can be allocated for representing the
object class. Second, the system can use its own output
directly during tests with annotated images without having
to crop and prepare negative samples beforehand.

The training schedule employed in experiments (see
Fig. 2) starts with positive bootstrapping for Tbsp+ iterations,
followed by fine tuning with positive samples for Tft+
iterations and finalized by negative bootstrapping for Tbsp−

iterations.

III. EXPERIMENTS
A. Setup and Parameters

Three different datasets are used in the experiments: for
synthetic dataset, the Virtual Pedestrian dataset presented in
[4] is used whereas for real-world ones the KITTI Vision
Benchmark Suite [5] and the Daimler Mono Pedestrian
Detection Benchmark Dataset [6] are used. Sample images
from these datasets are shown in Fig. 3, and the number of
samples used in the experiments are shown in Tab. I for each
dataset. Experiments are conducted in the following settings:
• Baseline: measures the performance of the system on

the source dataset. In this setting, both training and test
are done in the same dataset.

• Baseline-Small: measures the performance of the sys-
tem on the source dataset but training is done with
a much smaller sub-set of positive samples chosen
randomly. This setting is a control scenario to analyze if
adapting models with few examples after bootstrapping
does not converge to the same solution as learning
models with few examples.

• Cross-Dataset: performs training on source dataset using
all data available while testing on a target dataset.

• Bootstrapping: performs training on the source dataset
and incremental model updated with limited positive
data from target dataset as explained in Sec. II-D. For
bootstrapping the same number of samples shown in
Tab.I are used. For update smaller number of samples
are used.

The number of positive samples for the settings Baseline-
Small and Bootstrapping is set to 50. We use the following
fixed parameters for our system: the number of prototypes in
the hidden layer: M = 20×20 = 400, εO = 0.001, ε0 = 0.1,
σ0 = 6, ε∞ = 0.001, σ∞ = 1, θm = 0.7, T1 = 50000,
Tconv = 150000, p = 20 and τ = 0.001. Both SOM and
LR weight matrices are initialized to random uniform values
between -0.001 and 0.001. Training examples are always
randomly and uniformly drawn from the current training
set. The Histograms of Oriented Gradients features extracted
from samples following [20] to be used as input vectors.
This method is chosen due to the availability of the feature
extraction framework however, any vectorized representation
of images can be used with the system. The number of
iterations is set to Tbsp+ = 500000, Tft+ = 300000 and
Tbsp− = 700000.

For comparison to the state of the art, a discriminative
approach is also implemented and evaluated to assess how
close training on the synthetic dataset can get to training on
real-world datasets, and whether it is feasible to be used
as a basis for bootstrapping. We chose a state-of-the-art
boosting algorithm for the purpose, which is widely used
in discriminative object detection (see [21] for a survey).
Our implementation follows [22] with the number of weak
classifiers set to 1000 which are selected from a pool
generated using the aggregated channel features explained
in the paper.

(a) Samples from the synthetic dataset [4]

(b) Samples from KITTI dataset [5]

(c) Samples from Daimler dataset [6]

Fig. 3: Representative samples from datasets used in exper-
iments

TABLE I: Number of samples used in experiments

Training Test
Positive Negative Positive Negative

Synthetic 1700 1000 716 2000
KITTI 1000 10000 532 4968
Daimler 5000 5000 10660 8488

B. Cross-Database Performance of Discriminative Models

Fig. 4 shows the performance of Adaboost classifiers
trained and tested on various datasets. Boosting-RonR is the
classifier trained and tested on KITTI dataset hence it serves
as a baseline for the real-world dataset. Similarly, Boosting-
SonS is trained and tested on synthetic dataset and serves
as a baseline for this dataset. Boosting-SonR is the classifier
trained on the synthetic dataset and tested on KITTI dataset.
The results suggest that synthetic data has indeed statistical
drift w.r.t. the real-world one. However, the extent of this
drift is still below a margin that would allow us to use the
synthetic dataset for positive bootstrapping purposes. The
results are also in accordance with [23] where a similar
study is done for a comparable synthetic dataset and Daimler
dataset using SVM classifiers.

C. Effects of Positive Bootstrapping

Firstly, we examine the performance of the system after
positive bootstrapping only. This corresponds to the state

Fig. 4: Results of experiments with boosting models on
KITTI as the real-world dataset.

Fig. 5: Performance of the systems trained with only
positive bootstrapping (synthetic and real-world) on KITTI
and Daimler datasets.

of the models achieved after box 1 in Fig. 2 is processed.
Results shown in Fig. 5 indicate that already at this stage, it
is possible to filter out half of the negative samples and still
achieve around 1% of miss rate on both KITTI and Daimler
datasets. Adding the negative bootstrapping on top of this
(i.e. after both box 1 and box 2 in Fig. 2 are processed)
greately reduces the amount of false positives as shown
in Fig. 6. Highest detection rates achieved after the full
bootstrapping process are summarized in Tab. II. Compared
to discriminative model (Fig. 4), false positive performance
of the generative models does not vary extensively. Cross-
Database performance of the model trained on the synthetic
dataset varies. When applied to Daimler dataset, this model
can achieve a performance close to the setting Baseline-
Small whereas on KITTI, the performance is the lowest
among all. Bootstrapping improves the models in both cases:
the detection performance is increased from 62% to 88%
on KITTI and from 92% to 95% on Daimler. On both
datasets, the Bootstrapping setting achieves better results
than Baseline-Small indicating that virtual dataset indeed
provides the models with a useful knowledge basis.

TABLE II: Detection performance obtained in experiments

Detection Rate FPR
KITTI Baseline 0.94 0.025
KITTI Baseline-Small 0.86 0.030
Cross-Dataset (KITTI) 0.62 0.030
Bootstrapping (KITTI) 0.88 0.035
Daimler Baseline 0.97 0.015
Daimler Baseline-Small 0.91 0.015
Cross-Dataset (Daimler) 0.92 0.015
Bootstrapping (Daimler) 0.95 0.015

D. Effects of Negative Bootstrapping

As shown earlier, a generative model trained with only
positive samples can filter out ”easy” negative samples:
for a sample, if no similar prototype is found, the sample
can be regarded as negative. Hard negatives on the other
hand, are used in the training. This process is referred to
as negative bootstrapping. In order to analyze the effects
of negative bootstrapping, we keep track of the negative
samples that are rejected during the training process. For
both Daimler and KITTI datasets around 22% of the negative
samples are filtered out by the models during the whole
negative bootstrapping process. This is not to be confused
with the performance of the system where models are trained
with positive bootstrapping only (Fig. 5). During negative
bootstrapping, as hard negative samples are accepted by the
system the generative model starts building their explicit
representations (i.e. prototypes). As the training process
advances these prototypes accept more negative samples,
which similar to them, reducing the total number of negative
samples filtered out by the end of training. Fig. 7 shows some
examples of the accepted and skipped negative samples from
Daimler dataset. It can be noticed that the system not only
eliminates easy samples such as sky, but also samples with
texture. On the other hand, samples with high texture seem
to be included in the training process. These may generate
feature vectors that can confuse the models depending on
texture patterns e.g. specific constellation of tree branches
and leaves or shadows cast on the road surface.

IV. CONCLUSION
We present an object classification architecture that com-

bines generative and discriminative models that facilitates
incremental learning. The main contribution of this work
is the utilization of the incremental learning approach for
bootstrapping of object classification models. Bootstrapping
is practised with both positive and negative samples. The
essence of positive bootstrapping is training the generative
model with positive samples from one dataset followed by
a fine tuning process with positive samples from another
dataset. The incremental learning capability of the system
allows to make local changes in the model hence, the
knowledge acquired from the first dataset is retained if it is
useful for the second and statistical properties of the second
dataset, which is not covered, is incorporated into the model
gracefully. The feasibility of the system is demonstrated
on pedestrian detection task. The positive bootstrapping is

(a) KITTI dataset (b) Daimler dataset

Fig. 6: Performance of the systems trained under various settings.

(a) Skipped negative samples

(b) Included negative samples

Fig. 7: Some of the negative samples included and excluded
by the system during training on Daimler dataset.

employed with synthetic data from the synthetic Pedestrian
dataset and tested on a real-world dataset. It is possible to
further improve the performance to the baseline level via the
fine tuning step with only a few labeled examples from the
real-world dataset. This is especially useful for applications
where the amount of annotated data is limited. Cheaper and
more convenient synthetic data can be used to bootstrap the
models and state of the art performance can still be achieved.

In addition to positive bootstrapping, we also proposed
negative bootstrapping where the system can reject a portion
of negative samples using the internal object representations
built by positive training. Incremental learning yields the
benefit of updating only the parts of the model where the
positive/negative discrimination stays weak. In this case,
the representation of negative samples in the model is kept
at minimum, allowing more resources for positive samples
for a better object representation. This also eliminates the
necessity of employing conventional bootstrapping methods
where the models are initially trained with positive samples,
false positives are collected as hard negative samples via the
learned models and models are re-trained with positive and
hard negative samples. In the proposed approach, the system
is trained with positive and negative samples sequentially.
Initial training only with positive samples already builds
object representations and later at test stage only hard
negatives are determined by the system and incorporated in
the training. This property, combined with low computational
complexity of the models and GPU paralellization renders
relatively short training times. For the work presented, the
whole training process takes less than 30 minutes.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA Cor-
poration with GPU donation for this research.

REFERENCES

[1] A. Gepperth and B. Hammer, “Incremental learning algorithms and
applications,” in European Sympoisum on Artificial Neural Networks
(ESANN), 2016.

[2] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan, “A theory of learning from different domains,” Machine
learning, vol. 79, no. 1-2, pp. 151–175, 2010.

[3] A. Gepperth and C. Karaoguz, “A bio-inspired incremental learning
architecture for applied perceptual problems,” Cognitive Computation,
pp. 1–11, 2016.

[4] D. Vazquez, A. M. Lopez, J. Marin, D. Ponsa, and D. Geronimo,
“Virtual and real world adaptation for pedestrian detection,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 36,
no. 4, pp. 797–809, 2014.

[5] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

[6] M. Enzweiler and D. Gavrila, “Monocular pedestrian detection: Survey
and experiments,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 31, no. 12, pp. 2179–2195, 2009.

[7] I. J. Goodfellow, M. Mirza, X. Da, A. Courville, and Y. Bengio,
“An empirical investigation of catastrophic forgeting in gradient-based
neural networks,” arXiv preprint arXiv:1312.6211, 2013.

[8] P. Kulkarni and R. Ade, “Incremental learning from unbalanced data
with concept class, concept drift and missing features: a review,”
International Journal of Data Mining and Knowledge Management
Process, vol. 4, no. 6, 2014.

[9] T. Cederborg, M. Li, A. Baranes, and P.-Y. Oudeyer, “Incremental local
online gaussian mixture regression for imitation learning of multiple
tasks,” 2010.

[10] M. Butz, D. Goldberg, and P. Lanzi, “Computational complexity of
the xcs classifier system,” Foundations of Learning Classifier Systems,
vol. 51, 2005.

[11] S. Vijayakumar and S. Schaal, “Locally weighted projection re-
gression: An o(n) algorithm for incremental real time learning in
high-dimensional spaces,” in International Conference on Machine
Learning, 2000.

[12] D. Nguyen-Tuong and J. Peters, “Local gaussian processes regression
for real-time model-based robot control,” in IEEE/RSJ International
Conference on Intelligent Robot Systems, 2008.

[13] J. Hoffman, T. Darrell, and K. Saenko, “Continuous manifold based
adaptation for evolving visual domains,” in Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on, pp. 867–874,
IEEE, 2014.

[14] B. Kulis, K. Saenko, and T. Darrell, “What you saw is not what
you get: Domain adaptation using asymmetric kernel transforms,” in
Proceedings of the 2011 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR ’11, (Washington, DC, USA), pp. 1785–
1792, IEEE Computer Society, 2011.

[15] J. Xu, S. Ramos, D. Vázquez, and A. M. López, “Incremental domain
adaptation of deformable part-based models.,” in BMVC, 2014.

[16] V. Jain and E. Learned-Miller, “Online domain adaptation of a
pre-trained cascade of classifiers,” in Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, pp. 577–584, IEEE,
2011.

[17] J. Yang, R. Yan, and A. G. Hauptmann, “Cross-domain video concept
detection using adaptive svms,” in Proceedings of the 15th interna-
tional conference on Multimedia, pp. 188–197, ACM, 2007.

[18] J. Xu, S. Ramos, D. Vázquez, and A. M. López, “Hierarchi-
cal adaptive structural svm for domain adaptation,” arXiv preprint
arXiv:1408.5400, 2014.

[19] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biol. Cybernet., vol. 43, pp. 59–69, 1982.

[20] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1, pp. 886–893,
IEEE, 2005.

[21] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
An evaluation of the state of the art,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 34, no. 4, pp. 743–761, 2012.

[22] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast feature pyramids
for object detection,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 36, no. 8, pp. 1532–1545, 2014.

[23] J. Marin, D. V.zquez, D. Gerónimo, and A. López, “Learning appear-
ance in virtual scenarios for pedestrian detection,” in Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 137–
144, IEEE, 2010.

