Polyhedral Divisors, Dedekind Domains and Algebraic Function Fields - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Polyhedral Divisors, Dedekind Domains and Algebraic Function Fields

Kevin Langlois
  • Fonction : Auteur
  • PersonId : 919708

Résumé

We show that the presentation of affine $\mathbb{T}$-varieties of complexity one in terms of polyhedral divisor of Altmann-Hausen holds over an arbitrary field. We describe also a class of multigraded algebras over Dedekind domains. We study how the algebra associated to a polyhedral divisor changes when we extend the scalars. As another application, we provide a combinatorial description of affine $\mathbf{G}$-varieties of complexity one over a field, where $\mathbf{G}$ is a (non-nescessary split) torus, by using elementary facts on Galois descent. This class of affine $\mathbf{G}$-varieties are described via a new combinatorial object, which we call (Galois) invariant polyhedral divisor.
Fichier principal
Vignette du fichier
Papier_2p.pdf (326.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00713400 , version 1 (30-06-2012)
hal-00713400 , version 2 (01-07-2012)
hal-00713400 , version 3 (02-05-2013)
hal-00713400 , version 4 (11-07-2014)
hal-00713400 , version 5 (16-06-2020)

Identifiants

Citer

Kevin Langlois. Polyhedral Divisors, Dedekind Domains and Algebraic Function Fields. 2013. ⟨hal-00713400v3⟩
261 Consultations
361 Téléchargements

Altmetric

Partager

More