Polyhedral divisors and torus actions of complexity one over arbitrary fields - Archive ouverte HAL
Article Dans Une Revue Journal of Pure and Applied Algebra Année : 2015

Polyhedral divisors and torus actions of complexity one over arbitrary fields

Kevin Langlois
  • Fonction : Auteur
  • PersonId : 919708

Résumé

We show that the presentation of affine $\mathbb{T}$-varieties of complexity one in terms of polyhedral divisors holds over an arbitrary field. We also describe a class of multigraded algebras over Dedekind domains. We study how the algebra associated to a polyhedral divisor changes when we extend the scalars. As another application, we provide a combinatorial description of affine $\mathbf{G}$-varieties of complexity one over a field, where $\mathbf{G}$ is a (not-nescessary split) torus, by using elementary facts on Galois descent. This class of affine $\mathbf{G}$-varieties is described via a new combinatorial object, which we call (Galois) invariant polyhedral divisor.
Fichier principal
Vignette du fichier
Papier_2p.pdf (344.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00713400 , version 1 (30-06-2012)
hal-00713400 , version 2 (01-07-2012)
hal-00713400 , version 3 (02-05-2013)
hal-00713400 , version 4 (11-07-2014)
hal-00713400 , version 5 (16-06-2020)

Identifiants

Citer

Kevin Langlois. Polyhedral divisors and torus actions of complexity one over arbitrary fields. Journal of Pure and Applied Algebra, 2015, 219 (6). ⟨hal-00713400v4⟩
261 Consultations
361 Téléchargements

Altmetric

Partager

More