Polyhedral divisors and torus actions of complexity one over arbitrary fields - Archive ouverte HAL
Article Dans Une Revue Journal of Pure and Applied Algebra Année : 2015

Polyhedral divisors and torus actions of complexity one over arbitrary fields

Kevin Langlois
  • Fonction : Auteur
  • PersonId : 919708

Résumé

We show that the presentation of affine $\mathbb{T}$-varieties of complexity one in terms of polyhedral divisors holds over an arbitrary field. We also describe a class of multigraded algebras over Dedekind domains. We study how the algebra associated to a polyhedral divisor changes when we extend the scalars. As another application, we provide a combinatorial description of affine $\mathbf{G}$-varieties of complexity one over a field, where $\mathbf{G}$ is a (not-nescessary split) torus, by using elementary facts on Galois descent. This class of affine $\mathbf{G}$-varieties is described via a new combinatorial object, which we call (Galois) invariant polyhedral divisor.
Fichier principal
Vignette du fichier
art2.pdf (522.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00713400 , version 1 (30-06-2012)
hal-00713400 , version 2 (01-07-2012)
hal-00713400 , version 3 (02-05-2013)
hal-00713400 , version 4 (11-07-2014)
hal-00713400 , version 5 (16-06-2020)

Identifiants

Citer

Kevin Langlois. Polyhedral divisors and torus actions of complexity one over arbitrary fields. Journal of Pure and Applied Algebra, 2015, 219 (6), ⟨10.1016/j.jpaa.2014.07.021⟩. ⟨hal-00713400v5⟩

Collections

CNRS FOURIER INSMI
264 Consultations
364 Téléchargements

Altmetric

Partager

More