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ABSTRACT. We show that the presentation of affine T-varieties of complexity one
in terms of polyhedral divisor of Altmann-Hausen holds over an arbitrary field. We
describe also a class of multigraded algebras over Dedekind domains. We study how
the algebra associated to a polyhedral divisor changes when we extend the scalars.
As another application, we provide a combinatorial description of affine G-varieties
of complexity one over a field, where G is a (non-nescessary split) torus, by using
elementary facts on Galois descent. This class of affine G-varieties are described via
a new combinatorial object, which we call (Galois) invariant polyhedral divisor.

CONTENTS
Introduction 1
1. Graded algebras over Dedekind domains 4
2. Multigraded algebras over Dedekind domains 7
3. Multigraded algebras and algebraic function fields 15
4. Split affine T-varieties of complexity one 21
5. Non-split case via Galois descent 23
References 29
INTRODUCTION

In this paper, we are interested in a combinatorial description of multigraded nor-
mal affine algebras of complexity one. From a geometrical viewpoint, these algebras
are related to the classification of algebraic tori actions of complexity one on affine
varieties. Let k be a field and consider a split algebraic torus T over k. Recall that
a T-variety is a normal variety over k endowed with an effective T-action. There ex-
ist several combinatorial descriptions of T-varieties in term of the convex geometry.
See [Dol,[Pi],[De],[FZ] for the Dolgachev-Pinkham-Demazure (D.P.D.) presentation,
[KKMS],[Ti],[Ti2] for toric case and complexity one case, and [AH],[AHS],|[AOPSV] for
higher complexity. Most of these works requires the ground field k to be algebraically
closed of characteristic zero. It is worthwile mentioning that the description of affine
G,,-varieties [De] due to Demazure holds over any field.

Let us list the most important results of the paper.

- The Altmann-Hausen presentation of affine T-varieties of complexity one in terms
of polyhedral divisor holds over an arbitrary field, see Theorem 4.3.

- This description holds as well for an important class of multigraded algebras over
Dedekind domains, see Theorem 2.5.
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- We study how the algebra associated to a polyhedral divisor changes when we
extend the scalars, see 2.12 and 3.9.

- As another application, we provide a combinatorial description of affine G-varieties
of complexity one, where G is a (non-nescessary split) torus over k, by using elementary
facts on Galois descent. This class of affine G-varieties are classifyed via a new com-
binatorial object, which we call a (Galois) invariant polyhedral divisor, see Theorem
5.10.

Let us now stay on these results in more details. We start with a simple case
of varieties with an action of a split torus. Recall that a split algebraic torus T of
dimension n over the field k is an algebraic group isomorphic to GJ}, where G,, is the
multiplicative group of the filed k. Let M = Hom(T,G,,) be the character lattice of
the torus T. Then defining a T-action on an affine variety X is equivalent to fixing
an M-grading on the algebra A = k[X], where k[X] is the coordinate ring of X.
Following the classification of affine G,,-surfaces [FiKa] we say as in [Li, 1.1] that the
M-graded algebra A is elliptic if the graded piece Ay is reduced to k. Multigraded affine
algebras are classifyed via a numerical invariant called complexity. This invariant was
introduced in [LV] for the classification of homogeneous spaces under the action of a
connected reductive group. Consider the field k(X)) of rational functions on X and
its subfield K of T-invariant functions. The complexity of the T-action on X is the
trancendence degree of K, over the field k. Note that for the situation where k is
algebraically closed, the complexity is also the codimension of the general T-orbit in
X (see [Ro]).

In order to describe affine T-schemes of complexity one, we have to consider com-
binatorial objects coming from convex geometry and from the geometry of algebraic
curves. Let C be a smooth curve over k. A point of C' is assumed to be a closed point,
and in particular, non-nescessary rational. Futhermore, the residual field extension of
k at any point of C' has finite degree.

To reformulate our first result, we need some combinatorial notion of convex geome-
try, see [AH, Section 1]. Denote by N = Hom(G,,, T) the lattice of one parameter sub-
groups of the torus T wich is the dual of the lattice M. Let Mg = Q®zM, Ng = Q®zN
be the associated dual Q-vector spaces of M, N and let o C Ng be a strongly convex
polyhedral cone. We can define as in [AH] a Weil divisor ® = Y A, -z with
o-polyhedral coefficients in Ng, called polyhedral divisor of Altmann-Hausen. More
precisely, each A, C Ny is a polyhedron with tailed cone o (see 2.1) and A, = o for all
but finitely many points z € C. Denoting by k., the residual field of the point z € C
and by [k, : k] - A, the image of A, under the homothety of ratio [x, : k|, the sum

deg® = Z[FLZ (k|- A,

zeC

is a polyhedron in Ng. This sum may be seen as the finite Minkowski sum of all
polyhedra [k, : k] - A, different from o. Considering the dual cone 0¥ C Mg of o, we
define an evaluation function

o’ — Divg(C), m+— D(m) = }niAn<m,l>
€A,
zeC
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with value in the vector space Divg(C') of Weil Q-divisors over C. As in the classical
case [AH, 2.12] we introduce the technical condition of properness for the polyhedral
divisor © (see 2.2, 3.4, 4.2) that we recall thereafter.

Definition 0.1. A o-polyhedral divisor ® =) A, - z is called proper if it satifies
one of the conditions.
(i) C is affine.
(ii) C is projective and deg® is strictly contained in the cone ¢. Futhermore, if
deg®(m) = 0 then m belongs to the boundary of ¢¥ and an integral multiple
of ®(m) is principal.

For instance, if C' = P is the projective line then the polyhedral divisor ® is proper
if and only if deg® is strictly included in o. One of the main results of this paper can
be stated as follows.

Theorem 0.2. Let k be field.

(i) To any proper o-polyhedral divisor ® on a smooth curve over k one can associate
a normal finitely generated effectively M-graded domain of complexity one over
k, given by

AlC.D) = P An, where A, =H(C,0c(|D(m)])).

meaVNM

(ii) Conversely, any normal finitely generated effectively M-graded domain of com-
plezity one over k is isomorphic to A[C, D] for some smooth curve C over k
and some proper polyhedral divisor ® over C.

In the proof of assertion (ii), we use an effective calculation from [La]. We divide
the proof into two cases. In the non-elliptic case we show that the assertion holds
more generally in the context of Dedekind domains. More precisely, we give a perfect
dictionary similar to 0.2(i), (ii) for M-graded algebras defined by a polyhedral divisor
over a Dedekind ring (see 2.2,2.3 and Theorem 2.5). We deal in 2.6 as an example
with a polyhedral divisor over Z[v/—5]. In the elliptic case, we consider an elliptic M-
graded algebra A over k satisfying the assumptions of 0.2 (ii). We construct a smooth
projective curve arising from the algebraic function field Ky = (Frac A)T; the points of
C' are indentifyed with the places of Ky (see [EGA II, 7.4]). Then we show that the
M-graded algebra is described by a polyhedral divisor over C' (see Theorem 3.5).

Let us pass further to the general case of varieties with an action of a non nescessarily
split torus. The reader may consult [Bry],[Vo],[ELST], for the theory of non-split toric
varieties and [Hu] for the spherical embeddings. Let G be a torus over k that splits in
a finite Galois extension E/k. Let Varg g(k) be the category of affine G-varieties of
complexity one splitting in E/k (see 5.4). For an object X € Varg g(k) we let [X] be
its isomorphism class and X (E) = X Xgpeck Spec E be its extension of X over the field
extension. Fixing X € Varg g(k), as an application of our previous results, we study
the pointed set

({[Y]]Y € Varg (k) and X(E) ~vag x5 Y(E)}, [X])

of isomorphism classes of E/k-forms of X that is in bijection with the first pointed set
H'(E/k,Autgg)(X(E))) of non abelian Galois cohomology. By elementary argument
(see 5.7) these latter pointed sets are described by all possible homogeneous semi-linear
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& p/-action on the multigraded algebra E[X (E)], where here &y is the Galois group
of E/k. Translating to the language of polyhedral divisors, we obtain a combinatorial
description of E/k-forms of X, see Theorem 5.10. This theorem can be viewed as a
first step towards the study of the forms of G-varieties of complexity one.

Let us give a brief summary of the contents of each section. In the first section, we
recall how to extend the D.P.D. presentation of parabolic graded algebra to context
of Dedekind domain. This fact has been mentioned in [FZ] and firstly traited by a
master student of Hubert Flenner [Ka]. In the second and the third section, we study
respectively a class of multigraded algebras over Dedekind domains and a class of
elliptic multigraded algebras over a field. In the fourth section, we classify non-split
affine T-varieties of complexity one. The last section is devoted to the non-split case.

0.3. All considered rings are commutative and unitary. Let k denote a field. Given a
lattice M we let k[M] be the semigroup algebra

B o™, where X7 = g7y
meM

By a wvariety X over k we mean an integral separated scheme of finite type over k ;
one assumes in addition that k is algebraically closed in the field of rational functions
k(X). In particular, X is geometrically irreducible.

Acknowledgments. The author is grateful to Mikhail Zaidenberg for his remarks
which helped us to improve the text. We would like to thank Matthieu Romagny
for kindly answering to our questions, and Hanspeter Kraft for proposing to treat the
non-split case.

1. GRADED ALGEBRAS OVER DEDEKIND DOMAINS

In this section we recall how to generalize the Dolgachev-Pinkham-Demazure (D.P.D.)
presentation in [FZ, Section 3] to the context of Dedekind domains (see Lemma 1.6).
This generalization concerns in particular an algebraic description of affine normal
parabolic complex C*-surfaces. Let us start by a well known definition.

1.1. An integral domain Ay is called a Dedekind domain (or Dedekind ring) if it is not
a field and if it satisfies the following conditions.

(i) The ring Ay is noetherian.
(ii) The ring Ay is integrally closed in its field of fractions.
(iii) Every nonzero prime ideal is a maximal ideal.

Let us mention several classical examples of Dedekind domains.

Exemple 1.2. Let K be a number field. If Zx denotes the ring of integers of K then
Zk is a Dedekind ring.

Let A be a finitely generated normal algebra of dimension one over a field k. This
means that the scheme C' = Spec A is an affine smooth curve. The coordinate ring
A = k[C] is Dedekind.

The algebra of power series k[[t]] in one variable over the field k is a Dedekind
domain. More generally every principal ideal domain (and so every discrete valuation
ring) that is not a field is a Dedekind domain.
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1.3. Let Ay be an integral domain and let Ky be its field of fractions. Recall that a
fractional ideal b is a finitely generated nonzero Ag-submodule of Kj. Actually every
fractional ideal is of the form % -a, where f € Ay is nonzero and a is a nonzero ideal
of Ay. If b is equal to u - Ay for some nonzero element u € Ky then we say that b is a
principal fractional ideal.

The following result gives a description of fractional ideals of Ay in terms of Weil
divisors on Y = Spec Ag when Aj is a Dedekind domain. This assertion is well known.
For convenience of the reader we include a short proof.

Theorem 1.4. Let Ay be a Dedekind ring with field of fractions Ky. Let' Y = Spec Aj.
Then the map

Divz(Y) — Id(4g), D+ H°(Y,0y(D))

15 a bigection between the set of integral Weil divisors on'Y and the set of fractional
ideals of Ag. Every fractional ideal is locally free of rank 1 as Ag-module and the natural
map

HY(Y, 0y (D)) ® H(Y, Oy (D)) — H(Y,Oy(D + D))

is surjective. A Weil divisor D on'Y is principal (resp. effective) if and only if the
corresponding fractional ideal is principal (resp. contains Ag).

Proof. By [Ha, 11.6.11] the group of Weil divisors on Y coincides with the group of
Cartier divisors. In particular, every Ag-module H(Y, Oy (D)) is of finite type [Ha,
I1.5.5], locally free of rank one, and so has a nonzero global section. Therefore the map

is well defined.

Let D, D" be divisors of Divz(Y). Then by the previous observation the Oy-sheaves
Oy (D) ® Oy(D') and Oy (D + D’) are isomorphic. This induces an isomorphism on
the level of global sections.

Every nonzero prime ideal of Ay is the module of global sections of an invertible
sheaf over Oy. Thus by the primary decomposition, the map Divy(Y) — Id(Ap) is
surjective.

Assume that

H'(Y,0y(D)) = H(Y, Oy (D))
for some D, D" € Divz(Y'). Then we can write D = D, —D_ and D = D', — D’ , where
Dy, D' ,D_, D! are integral effective divisors. By tensoring we obtain the equality
HO(Y, Oy (~D_ = D)) = H'(Y, Oy (~D'. — D))

between ideals of Ag. Again using the decomposition in prime ideals we have —D_ —
D = —D" — D, so that D = D’. One concludes that the map is injective.
Assume that H°(Y, Oy (D)) contains Ag. Write D = D, — D_ with D, D_ effective
divisors having disjoint supports. Then by our assumption
HY(Y,0y(0)) = Ay = Ag N H(Y, Oy (D)) = H(Y, Oy (—D_)).

This yields D_ = 0 and so D is effective. The rest of the proof is straightforward. [
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Notation 1.5. Let Ay be a Dedekind domain. For a Q-divisor D on the affine scheme
Y = Spec Ag we denote by Ag[D] the graded algebra

D 1 (Y. O (liD))) ¢,
ieN
where ¢ is a variable over the field Ky. Note that Ag[D] is normal as intersection of

discrete valuation rings with field of fractions Ky(t) (see the argument for [De, 2.7]).

The next lemma provides a D.P.D. presentation for a class of graded subrings of
Kyt]. It will be useful for the next section. Here we give an elementary proof using
the description in 1.4 of fractional ideals.

Lemma 1.6. Let Ay be a Dedekind ring with the field of fractions Ko. Let
A=At C Kolt]
ieN
be a normal graded subalgebra of finite type over Ay, where every A; is contained in K.

Assume that the field of fractions of A is Ko(t). Then there exists a unique Q-divisor
D onY = Spec Ay such that A = Ag[D]. Futhermore we have Y = Proj A.

Proof. Theorem 1.4 and Lemma 2.2 in [GY] imply that every nonzero module A; can
be written

Ay = H(Y, Oy (D))

for some D; € Divyz(Y'). By Proposition 3 in [Bou, IIL.3] there exists a positive integer
d such that the subalgebra

AD = P Ay "
i>0
is generated by Ay t?. Proceeding by induction, for any i € N we have Dy = iDy. Let

D = D,/d. Then using the normality of A and Ag[D], we obtain for any homogenous
element f € Kj[t] the following equivalences

feA[D & fle AD) = flec As fe A

This yields A = Ay[D].

Let D" be another Q-divisor on Y such that A = Ay[D']. Comparing the graded
pieces of Ag[D] and of Ay[D’], it follows that [iD] = [¢D’| for any ¢ € N. Hence
D = D' and so the decomposition is unique.

It remains to show the equality Y = Proj A. Let V = Proj A. By Exercice 5.13 in
[Ha, IT] and Proposition 3 in [Bou, III.1] we may assume that A = Ay[D] is generated by
Ajt. Since the sheaf Oy (D) is locally free of rank one over Oy there exist gy, ..., gs € Ag
such that

Y = U Y,,, where Y, = Spec(4y),,
j=1

and such that fore=1,...,s,

Ay @4, (Ao)g. = Oy (D)(Yy,) = he - A
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for some h, € K. Let 7 : V — Y be the natural morphism induced by the inclusion
Ay C A. The preimage of the open subset Y, under 7 is
Proj A ®A0 (A(])ge = Proj (Ao)ge [Al ®AO (Ao)ge t] = Proj (A(])ge [het] = Yge'
Hence 7 is the identity map and so Y = V', as required. U
As an immediate consequence we obtain the following. The reader can see that the

proof of [FZ, 3.9] holds m.m. for positively graded 2-dimensional normal algebras of
finite type over a Dedekind domain.

Corollary 1.7. Let Ay be a Dedekind ring with field of fractions Ky and let t be a
variable over Ky. Consider the subalgebra

A= Ag[fit™, ..., fit™] C Kolt],
where my, ..., m, are positive integers and f1,...,f, € K§ are such that the field of

fractions of A is Ko(t). Then the normalization of A is equal to Ag[D], where D is the
Q-divisor

D = — min dlvfi.

1<i<r

2. MULTIGRADED ALGEBRAS OVER DEDEKIND DOMAINS

Let Ag be a Dedekind ring and let Kj be its field of fractions. Given a lattice M
the purpose of this section is to study normal noetherian M-graded Ag-subalgebras of
Ko[M]. We show below that these subalgebras admit a description in terms of poly-
hedral divisors. We start by recalling some necessary notation from convex geometry
available in [AH, Section 1].

2.1. Let N be a lattice and let M = Hom(N,Z) be its dual. Denote by Ng = Q ®z N
and Mg = Q ®z M the associated dual Q-linear spaces. To any linear form m € My
and to any vector v € Ny we write (m,v) for the number m(v). A polyhedral cone
o C Ng is called strongly conver if it admits a vertex. This is equivalent to say that
the dual cone

o' ={m e Mg|Vv € g, (m,v) >0}

is full dimensional.
Recall that for a nonzero strongly convex polyhedral cone o C Ng the Hilbert basis
Hy = 5 n of o in the lattice N is the subset of irreducible elements

{veoy —{0}|Vv,vs €0y — {0}, v=vi +vy=>v=1; Or V="10r}.

It is known that the set .7 is finite and generates the semigroup (o N N, +). Futher-
more, it is minimal for these latter properties. The cone o is said reqular if 2, is
contained in a basis of N.

Let us fix a strongly convex polyhedral cone 0 C Ng. A subset () C Ng is a
polytope if () is non-empty and if () is the convex hull of a finite number of vectors. We
define Pol,(Ng) to be the set of polyhedra which can be written as the Minkowski sum
P = Q + o with @ a polytope of Ngy. An element of Pol,(Ng) is called a polyhedron
with tailed cone o.

The following definition introduces the notion of polyhedral divisors over Dedekind
domains.
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Definition 2.2. Consider the subset Z of closed points of the affine scheme YV =
Spec Ag. A o-polyhedral divisor ® over Ag is a formal sum

D=) A,z
z€Z

where A, belongs to Pol,(Ng) and A, = o for all but finitely many z in Z. Let
21, ..., %2 be elements of Z such that for any z € Z and fori = 1,...,r, z # z implies
A, = 0. If the meaning of A is clear from the context then we write

i=1

In the sequel, we let wyy = w N M whether w C My is a polyhedral cone. Starting
from a o-polyhedral divisor ® we can build an M-graded algebra over Ay with weight
cone 0" in the same way as in [AH, Section 3.

2.3. Let m € ¢V. Then for any z € Z the expression

hs(m) = min (m, v)

is well defined. The function h, on the cone ¢V is upper convex and positively homo-
geneous. It is identically zero if and only if A, = ¢. The evaluation of ® in a vector
m € o is the Q-divisor

D(m) = th(m) -z

In analogy with the notation of [FZ] we denote by Ay[®D] the M-graded subring
P Anx" € Ko[M], where A, = H°(Y,0y ([D(m)])).

meay,
Notation 2.4. Let
f - (lem17 ey f?"er)

be an r-uplet of homogeneous elements of Ky[M]. Assume that the vectors myq, ..., m,
generate the cone 0. We denote by D[f] the o-polyhedral divisor

> ALf] -z where A[f] ={v e Ng| (mjv)>—ord. f, i=12,...,1}.
z2€Z
In section 3, we use a similar notation for polyhedral divisors over a smooth projective

curve; we remplace the set Z by a smooth projective curve C.

The main result of this section is the following theorem. For a proof of part (iii) we
refer the reader to the argument of Theorem 2.4 in [La].

Theorem 2.5. Let Ay be a Dedekind domain with field of fractions Ky and let o C Ng
be a strongly convex polyhedral cone. Then the following hold.

(i) If © is a o-polyhedral divisor over Ay then the algebra Ayg[®] is normal, noe-
therian, and has the same field of fractions as that of Ko[M].
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(ii) Conversely, let
A= @ A
meoy,

be a normal noetherian M-graded Ag-subalgebra of Ko[M] with weight cone o
Assume that the rings A and Ko[M] have the same field of fractions'. Then
there exists a unique o-polyhedral divisor © over Ay such that A = Ay[D].

(iii) More explicitly, if

f = (lemla---aermr)

is an r-uplet of homogeneous elements of Ko[M] with nonzero vectors my, ..., m,
generating the lattice M then the normalization of the ring

A= Aolfix™, ... fix™]
is equal to Ag[D[f]] (see 2.4).

Let us give an example related to the ring of integers of a number field.

Exemple 2.6. For a number field K, the group of classes Cl K is the quotient of the
group of fractional ideals of K by the subgroup of principal fractional ideals. In other
words, Cl1 K = Pic Y, where Y = Spec Z is the affine scheme associated to the ring of
integers of K. It is known that the group Cl K is finite. Futhermore Zg is a principal
ideal domain if and only if Cl K is trivial.

Let K = Q(v/=5). Then Zy = Z[/—5| and the group Cl1 K is isomorphic to Z/27Z.
A set of representatives in Cl K is given by the fractional ideals a = (2, 1+ v/—5) and
Zy. Given z,y two independent variables over K, consider the Z?-graded ring

A=17Zg [3x2y, 2y, 6:1:} .

Let us describe the normalization A of A. Denoting respectively by b, ¢ the prime
ideals (3, 1 ++/—5) and (3, 1 —y/—5), we have the decompositions

(2)=da% (3)=b-c.
Observe that the ideals a, b, ¢ are distincts. Thus we have
div2=2-a and div3=0b+c¢,

where a, b, ¢ are seen as closed points of Y = Spec Zg. Let © be the polyhedral divisor
over Zg given by Ay -a+ Ay - b+ A - ¢ with the polyhedra

Aa = {<U17U2> € Q2‘2'U1 —|—’U2 Z 07 Vg Z _2’ vy Z _2} and

Ab:Ac: {('UlaUQ) €Q2|2vl+v2 Z _]-7 V2 207 U1 Z _]-}

By Theorem 2.5 we obtain A = Ay[D], where Ay = Zy. The weight cone of A is the
first quadrant w = (Qs0)?. An easy computation shows that

AO[Q] = Lk [23/7 6 xy, 3<1+ v _5) 1Y, 33:23/7 61‘} .

IThis condition is equivalent to ask that the weight semigroup of A generates M
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The proof of Theorem 2.5 needs some preparations. We start by a well known result
[GY, Theorem 1.1] yielding an equivalence between noetherian and finitely generated
properties of multigraded algebras. Note that this result does not hold for algebras
graded by an arbitrary abelian group; a counterexample is given in [GY, 3.1].

Theorem 2.7. Let G denote a finitely generated abelian group and let A be a G-graded
ring. Then the following statements are equivalent.

(i) The ring A is noetherian.
(ii) The graded piece Ay corresponding to the neutral element of G is a noetherian
ring and the Ag-algebra A is finitely generated.

The next lemma will enable us to show that the ring Ay[®], coming from a polyhedral
divisor ®© over a Dedekind domain Ay, is noetherian.

Lemma 2.8. Let Dq,..., D, be Q-divisors on' Y = Spec Ay. Then the Ag-algebra

S ()
(m1,...,my)ENT i=1

1s finitely generated.

Proof. Let d be a positive integer such that for : = 1,...,r, the divisor dD; is integral.
Consider the lattice polytope

Q={(my,....,m)€eQ|0<m; <d,i=1,...,1r}.
The subset () N N" being finite, the Ag-module

8 i )
(m1,....,my)ENTNQ =1

is finitely generated (see 1.4). Let (mq, ..., m,) be an element of N". Write m; = dg;+r;
with ¢;,7; € N such that 0 < r; < d. The equality

{Z miDiJ = Z ¢ | dD;] + \‘Z TiDz‘J

i=1
implies that every homogeneous element of B can be expressed as a polynomial in F.
If f1,..., fs generate the Ag-module E then we have A = Ag|fi, ..., fs], proving our
statement. O

Next we give a proof of the first part of Theorem 2.5.

Proof. Let A = Ay[®]. By Theorem 1.4 and since the cone ¢ is full dimensional the
algebras A and Ky[M] have the same field of fractions. Let us show that A is a normal
ring. Given a closed point z € Z and an element of v € A, consider the map

V., Ko[M] — {0} = Z

defined as follows. Let a € Ky[M] be nonzero with decomposition in homogeneous
elements

o= Zfixmi, where f; € K.
i=1



POLYHEDRAL DIVISORS, DEDEKIND DOMAINS, AND ALGEBRAIC FUNCTION FIELDS 11

Then let
v, () = min {ord, f; + (m;, v)}.

1<i<r

The map v, , defines a discrete valuation on Frac A. Denote by O, . the associated
local ring. By the definition of the algebra Ay[®] we have

A=K MIn() ) O,
2€Z vEA,

proving that A is normal as intersection of normal rings with field of fractions Frac A.

It remains to show that A is noetherian. By Hilbert’s Basis Theorem, it suffices to
show that A is finitely generated. Let Aj,..., A, be full dimensional regular subcones
of ¢V giving a subdivision such that for any 7 the evaluation map

o = Divg(Y), m— D(m)

is linear on ;. Fix 7 € N such that 1 < i < e. Consider the distinct elements vy, ..., v,
of the Hilbert basis of ;. Denote by A, the algebra

P 1,0y (|D(m) )\

Then the vectors vy, ..., v, form a basis of the lattice M and so

(m1,...,mn)EN" i=1

By Lemma 2.8, the algebra A), is finitely generated over Aj,. The surjective map
Ay ®...0 A, - A
shows that A is also finitely generated. ([l
For the second part of Theorem 2.5 we need the following lemma.

Lemma 2.9. Assume that A verifies the assumptions of 2.5 (ii). Then the following
statements hold.

(i) For any m € oy, we have A,, # {0}. In other words, the weight semigroup of
the M-graded algebra A is o).
(ii) If L = Qxo - m’ is a half-line contained in o then the ring

A= @ Anx™

meLNM

1s normal and noetherian.
Proof. Let
S={meay, An #{0}}

be the weight semigroup of A. Assume that S # o),. Then there exist e € Z~o and
m € M such that m ¢ S and e-m € S. Since A is a noetherian ring, by [GY, Lemma
2.2] the Ag-module A.,, is a fractional ideal of Ay. By Theorem 1.4 we obtain

Aem - HO(K OY(Dem))
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for some integral divisor D, € Divz(Y). Let f be a nonzero section of

i (vor (| %)),

This element exists by virtue of Theorem 1.4. We have the inequalities

Dem
(&

divf® > —e { J > —Dep.
The normality of A implies f € A,,. This contradicts our assumption and gives (i).
For the second assertion we notice by 2.7 and by the argument of [AH, Lemma 4.1]
that A;, is noetherian.
It remains to show that Ay is normal. Let a € Frac A, be an integral element over
Ap. By normality of A and Ky[x™] we obtain @« € AN Ky[x"] = A, and so Ay is
normal. O

In the sequel, we introduce some useful notation of convex geometry.

Notation 2.10. Let

(mi,ei), 1= 1,...,7’
be elements of M x 7Z such that the vectors mq, ..., m, are nonzero and generate the
lattice M. Then the cone w = Cone(my, ..., m,) is full dimensional in Mgy. Consider

the w"-polyhedron
A ={v € Ny, (mj,v) > —e;, i=1,2,...,1}.

Let L = Qs(-m be a half-line contained in w with primitive vector m. In other words,
the element m generates the semigroup L N M. Denote by 777, the Hilbert basis in the
lattice Z" of the nonzero cone

pH(L)N (Qs0)", where p: Q" — My

is the Q-linear map sending the canonical basis onto (mq,...,m,). We let
r
A= {(51,...,sr) € A, Zsi-mi#O}.
i=1
For any vector (si,...,s,) € #* there exists a unique A(sy,...,S,) € Z=qo such that

r
Zsi~mi:)\(sl,...,sr)~m.
i=1

The argument of the proof of the following lemma uses only elementary facts of
commutative algebra and of convex geometry. This is the key idea in order to obtain
the Altmann-Hausen’s presentation of Theorem 2.5 (ii).

Lemma 2.11. Let min (m,A) = minyea(m,v). Under the assumptions of 2.10 we
have

T
min (m,A) = —  min Dz Si i
(s1yemsr) €7 N(S1, ..., Sp)
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Proof. Let t be a variable over the field of complex numbers C. Consider the M-graded
subalgebra
A =CH[tx™, ..., tx™] C C(¢t)[M].

The field of fractions of A is the same as that of C(¢)[M]. Using results of [Ho] the
normalization of the algebra A is

A= ClwoN (M x Z)], where wy C Mg x Q
is the rational cone generated by (0, 1), (my,e1),...,(m;,e.). Actually a routine cal-
culation shows that

wo = {(w, —min (w,A) +e) |w Ew, e € Qsp}

and so

where A{ = Spec C[t].

The sublattice G C M generated by p(747") is a subgroup of Z - m. Therefore there
exists a unique integer d € Z~q such that G = dZ-m. For an element m’ € wN M, we
denote by A, (resp. A,) the graded piece of A (resp. A) corresponding to m’. Then

the normalization A(Ld) of the algebra
A(Ld) = @ AsdeSdm 18 BL = @ AsdeSdm'
52>0 520
Futhermore
AL =D Ay
s>0

is generated over Clt] by the elements

T

i=1
where (s1,...,s,) runs ;. By the choice of the integer d we have A(Ld) = Ay. Con-

sidering the G-graduation of AS-Jd) for any (si,...,s,) € 7 the element f(,, ) of the

-----

graded ring A(Ld) has degree

A(S1y ey Sr)
degf(sl ..... sr) T d
Letting
(815e-y8r) €T degf(sl ..... ) (81,0080 ) EHY )\<51’ ey Sr)

by Corollary 1.7 we obtain
AL = P HO (AL, Op (IsD]))X"™

s>0
The equality A(Ld) = By implies that for any integer s > 0
H(Ag, Oy (|min (sd - m, A)] - (0))) = H*(Ag, Onr([sD])).
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Hence by Lemma 1.6 we have
D =min (d-m,A) - (0).
Dividing by d, we obtain the desired formula. O

Let A be an M-graded algebra satisfying the assumptions of 2.5 (ii). Using the
D.P.D. presentation on each half line of the weight cone ¢" (see Lemma 1.6), we can
build a map

o0’ — Divg(Y), m+ D,,.
It is upper convex, positively homogeneous, and verifies for any m € oy,

By Lemma 2.11, this map is piecewise linear (see [AH, 2.11]) or equivalently m — D,,
is the evaluation map of a polyhedral divisor. The following proof precises this idea.

Proof of 2.5 (ii). By 2.7 we may consider
f = (f1Xm17 DK fTer)

a system of homogeneous generators of A with nonzero vectors mq,...,m, € M. We
use the same notation as in 2.4. Denote by ® the o-polyhedral divisor D[f]. Let us
show that A = Ag[®]. Let L = Q¢ - m be a half-line contained in w = ¢" with m
being the primitive vector of L. By Lemma 2.9, the graded subalgebra

Av= P Awx™ C Kolx"]
m/’eLNM

is normal, noetherian, and has the same field of fractions as that of Ky[x™]. Futhermore
with the same notation as in 2.10, the algebra Ay, is generated by the set

{ H(fz‘Xmi)si7 (S1,...,8.) € HT } .

i=1

By Corollary 1.7, if

r .
. s;div f;

D, :==—  min —Zz=1 s div
(8140.s8r) € I )\(81, R 57’)

then Ap = Ag[D,,] with respect to the variable y™. By Lemma 2.11 for any closed
point z € Z we have

. _ : 2 iz siord. fi
hlfllm) = min(m, Aclf]) = = - min  SE Ty

Hence ©(m) = D,,. Since this equality holds for all primitive vectors belonging to ¢
one concludes that A = Ay[®D]. The uniqueness of D is straightforward (see Theorem
1.4 and [La, 2.2]). O

Using well known facts on Dedekind domains we obtain the following result.
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Proposition 2.12. Let Ay be a Dedekind domain and let By be the integral closure of
Ay in a finite separable extension Lo/Ky, where Ky = FracAg. Let ® =3 ., A, -z
be a polyhedral divisor over Agy, where Z C'Y = Spec Aq is the subset of closed points.
Letting Y' = Spec By and considering the natural projection p : ' Y' — Y, By is a
Dedekind domain and we have the formula

Ag[®D] ®4, By = By[p*®] with p*® = ZAZ -p*(2).
z2€Z
Exemple 2.13. Consider the polyhedral divisor
D=A2p - () + Ay - (4 1)
over the Dedekind ring Ay = R[t], where the coefficients are
Ay = (=1,0) +0, Apeyry=1(0,0),(1,0)] + o,

and o C Q? is the rational cone generated by (1,0) and (1,1). An easy computation
shows that

IR[x17 X2, T3, x4]
((1 + SL’%)J?Q + 1’3374) ’
where x1, 9, r3, x4 are independent variables over R. Let ( = v/—1. Considering the
natural projection p : AL — AL we obtain
p*g — AO N 0 + A(t2+1) . g + A(t2+1) . (—g)
Letting By = C[t] one concludes that Ay[®D] @r C = By[p*D].

Ag[®] =R [t, =ty OV (2 + 1)x Y] =

3. MULTIGRADED ALGEBRAS AND ALGEBRAIC FUNCTION FIELDS

In this section, we study another type of multigraded algebras. They are described
by a proper polyhedral divisor over an algebraic function field in one variable. Fix an
arbitrary field k. Let us recall a classical definition.

3.1. An algebraic function field (in one variable) over k is a field extension K,/k
verifying the following conditions.

(i) The transcendence degree of Ky over k is equal to one.
(ii) Every element of K, that is algebraic over k belongs to k.

Actually, by virtue of our convention, a smooth projective curve C' over k gives
naturally an algebraic function field Ky/k by letting Ky = k(C). As an application
of the valuative criterion of properness (see [EGA II, Section 7.4]), every algebraic
function field Ky/k is the field of rational functions of a unique (up to isomorphism)
smooth projective curve C' over k. In the next paragraph, we recall the construction
of the curve C starting from an algebraic function field K.

3.2. A wvaluation ring of K is a proper subring O C K| strictly containing k and such

that for any nonzero element f € Ky, either f € O or % € 0. By [St, 1.1.6] every

valuation ring of Kj is the ring associated to a discrete valuation of Ky/k. A subset
P C K, is called a place of K if there is some valuation ring O of K such that P is
the maximal ideal of @. We denote by Zx Ky the set of places of K. The latter is
called the Riemann surface of Ky. By [EGA II, 7.4.18] the set % Ky can be identified
with a smooth projective curve C' over the field k such that Ky = k(C).
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In the sequel we consider C' = %y K, as a geometrical object with its structure of
scheme. By convention an element z belonging to C'is a closed point. We write P, the
associated place to a point z € C. Note that we keep the notation of convex geometry
introduced in 2.1.

3.3. Let M, N be dual lattices and let o C Ng be a strongly convex polyhedral cone.
A o-polyhedral divisor over Ky (or over C') is a formal sum ® = > A, -z with
A, € Pol,(Ng) and A, = ¢ for all but finitely many z € C. Again we let

D(m) = min (m, v) - z
ZEC 'UEAZ

be the evaluation in m € ¢"; that is, a Q-divisor over the curve C. We let x(P) = O/P,
where O is the valuation ring of a place P. The field x(P) is a finite extension of k [St,
1.1.15] and we call it the residual field of P. The degree of © is the Minkowski sum

deg® = [r(P.) : k|- A,

where [k(P) : k| is the dimension of the k-vector space x(P). The number [k(P) : K]
is also called the degree of the place P. Given m € ¢" we have naturally the relation
(deg®)(m) = deg®(m).

We can now introduce the notion of properness for polyhedral divisors. See [AH,
2.7, 2.12] for other particular cases.

Definition 3.4. A o-polyedral divisor ® = Y A, - z is called proper if it satifies
the following conditions.

(i) The polyhedron deg® is strictly contained in the cone o.
(i) If deg ®(m) = 0 then m belongs to the boundary of o¥ and a multiple of D (m)
is principal.

Our next main result gives a description similar to that in 2.5 for algebraic function
fields. For a proof of 3.5 (iii) we refer to the argument of [La, 2.4].

Theorem 3.5. Let k be a field and let C = %y K,y be the Riemann surface of an
algebraic function field Ko/k. Then the following statements hold.
(i) Let
= @ A
meoy,

be an M -graded normal noetherian k-subalgebra of Ko[M] with weight cone o
and Ag = k. If A and Ko[M] have the same field of fractions then there exists
a unique proper o-polyhedral divisor ® over C such that A = A[C, D], where

AlC, D)= @ H(C,Oc(|D(m)]))X™.

(ii) Let © be a proper o-polyhedral divisor over C. Then the algebra A[C, D] is
M-graded, normal, and finitely generated with weight cone o¥. Futhermore it
has the same field of fractions as that of Ko[M].
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(iii) Let
A= k[flxmlv sy fTXmT]

be an M-graded subalgebra of Ko[M] with the f;x™ homogeneous of nonzero
degree m;. Let f = (fix™, ..., f-X"). Assume that A and Ko[M] have the
same field of fractions. Then D[f] is the proper o-polyhedral divisor such that
the normalization of A is A[C,D[f]] (see 2.4).

For the proof of 3.5 we need some preliminary results. We begin by collecting some
properties from a M-graded algebra A as in 3.5 (i) to some graded subring Aj.

Lemma 3.6. Let A be an M-graded algebra satisfying the assumptions of 3.5 (). Given
a half-line L = Q¢ - m C 0" with a primitive vector m consider the subalgebra

A= P A"
m/eLNM

Let
a
QAL = {51 a € Ay, b€ A, b0, 520}

Then the following assertions hold.

(i) The algebra Ay is finitely generated and normal.
(11) Either Q(AL)O =k or Q(AL)O = Ko.
(iii) If Q(AL)o = k then A = k[Bx%™] for some B € K} and some d € Z.

Proof. The proof of (i) is similar to that of 2.9 (ii) and so we omitted it.

The field Q(ApL)o is an extension of k contained in K. If the transcendence degree
of Q(AL)o over k is zero then by normality of A we have Q(Ar)o = k. Otherwise
the extension Ky/Q(AL)o is algebraic. Let o be an element of K. Then there exist
ay,...,aq € Q(Ar)o with ay # 0 such that

d
ot = Zajad’j.
j=1
Let
I={ie{l,...,d}, a; #0}.

For any ¢ € I we write a; = % with p;, ¢; € Ar being homogeneous of the same degree.
Considering ¢ = [[,c; ¢ we obtain the equality

d
(aq)? = Z a;q’ (agq)™ .

The normality of A, gives ag € Ay, proving that a = aq/q € Q(AL)o.

To show (iii) we let S C Z - m be the weight semigroup of the graded algebra Aj.
Since L is contained in the weight cone ¢, S is nonzero. Therefore if G is the subgroup
generated by S then there exists d € Z-, such that G = Zd - m. Letting u = y¥" we

can write
A = @ Aggmti®

s>0
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Thus for all homogeneous elements a;u!

Q(AL)s = k* so that
Ap=EPkfw,

seS’

,asu! € Ay of the same degree we have o €

where S := é S and f; € k(C)*. Let us fix homogeneous generators fg,u', ..., fs, u® of
the G-graded algebra Aj. Consider d' := g.c.d(s,...,s,;). If d > 1 then the inclusion
S C dd'7Z - m yields a contradiction. So d = 1 and there are some integers [y, ..., 1,
such that 1 ="', l;s;. The element

T

Bu = [J(fsu)"

i=1

verifies
(Bu)* £ _ 1
fs;ut € QAL = K-
By normality of Az, fu € A and so Ay, = k[Bu] = k[Bx?™], establishing (iii). O

The following lemma is well known. For the main argument we refer the reader to
[De, Section 3], [AH, 9.1].
Lemma 3.7. Let Dy, Dy, D be Q-divisors on C'. Then the following hold.

(i) If D has positive degree then there ezists d € Z~q such that the invertible sheaf
Oc(1dD]) of Oc-modules is very ample. Futhermore, the graded algebra

B =@ H(C.0c(ID))I"

where t is a variable over k(C'), is finitely generated. The field of fractions of
B is k(C)(1).

(ii) Assume that fori = 1,2 we have either deg D; > 0 or rD; is principal for some
r € Zwqo. If for any s € N the inclusion

H(C,0c(|sD1))) € HY(C, Oc(|sDs )
holds then we have Dy < D,.

In the next corollary, we keep the notation of Lemma 3.6. Using Demazure’s Theorem
for normal graded algebras, we show that each Ay admits a D.P.D. presentation given
on the same smooth projective curve.

Corollary 3.8. There exists a unique Q-divisor D on C' such that
AL =@ E(C,0c([sD]))x™

s>0
and the following hold.
(i) If Q(AL)o = k then D = % for some f € K} and some d € Z~,.
(11) ]f Q(AL)O = Ky then degD > 0.
(iil) If fix*'™, ..., frx®"™ are homogeneous generators of the algebra Ay then
div f;

D = — min .
I<i<r s,




POLYHEDRAL DIVISORS, DEDEKIND DOMAINS, AND ALGEBRAIC FUNCTION FIELDS 19

Proof. (i) Assume that Q(Ar)y = k. By Lemma 3.6, Ay = k[3 x?™] for some 8 € K¢
and some d € Z-~q. Thus, we can take D = %
This gives assertion (i).

(ii) The field of rational functions of the normal variety Proj Ay is Ky = Q(AL)o.
Since Proj A, is a smooth projective curve over Ay = k, we may identify its points
with the places of K. Therefore the existence and the uniqueness of D follow from
Demazure’s Theorem (see [De, Theorem 3.5]). Futhermore Q(Ay)y # k implies that
dimy Ay, > 2, for some s € Z~(. Hence by [St, 1.4.12] we obtain deg D > 0.

The proof of (iii) follows from 3.7 and from the argument in [FZ, 3.9]. O

. The uniqueness in this case is easy.

As a consequence of Corollary 3.8, again we can apply the formula of convex geometry
of 2.11 to obtain the existence of the polyhedral divisor © in the statement of 3.5 (i).

Proof of 3.5 (i). Let us adopt the notation introduced in 2.4 and 2.10. Let
f = (flxml7 R fTXmT)

be a system of homogeneous generators of A. Consider a half-line
L= QZO -m C CTV

with primitive vector m € M. By Corollary 3.8
A =ED H(C, Oc([sDm )X

s>0

for a unique Q-divisor D,,, on C. By the proof of [AH, Lemma 4.1] the algebra Ay, is
generated by

H(fl-xmi)si, where (si,...s,) € A7

i=1
By Corollary 3.8 (iii) and Lemma 2.11 we have D[f]|(m) = D,, and so A = A[C,D]f]].

It remains to show that © = D[f] is proper; the uniqueness of © will be given by

Lemma 3.7 (ii). Denote by S C C' the union of the supports of divisors div f;, for
1=1,...,r. Let v € deg®. We can write

v = Z[H(Pz) k|- v,
zeS
for some v, € A,[f]. Therefore for any i we have
(mi, Y [K(P.) : K] -v.) > =) [6(P.) : K] - ord, f; = —degdiv f; = 0
z€8 ses

and so deg® C o. If deg® = o then one concludes that Frac A is different from
Frac Ko[M], contradicting our assumption. Hence deg® # o. Let m € o), be such
that deg®(m) = 0. Then m belongs to the boundary of ¢¥. Consider the half-line
L generated by m. Applying Corollary 3.8 (i) for the algebra Ay, we deduce that a
multiple of ©(m) is principal, proving that ® is proper. U

Proof of 3.5 (ii). Let us show that A = A[C,®] and Ky[M] have the same field of
fractions. Let L = Qs - m be a half-line intersecting o¥ with its relative interior
and having m for primitive vector. Since deg®(m) > 0 by Lemma 3.7 (i) we have
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Frac Ap = Ko(x™), yielding our first claim. As a consequence, o is the weight cone of
the M-graded algebra A. The proof of the normality is similar to that of 2.5 (i).

Let us show further that A is finitely generated. First we may consider a subdivision
of ¥ by regular strongly convex polyhedral cones ws,...,w, such that for any ¢ we
have w; Nrelint 0¥ # ), w; is full dimensional, and @ is linear on w;. Fix 1 <i < s
and a positive integer k. Let (eq,...,e,) be a basis of M generating the cone w; and
such that e; € relint o¥. By properness there exists d € Z~( such that every ®(de;) is

a globally generated integral divisor. Letting
o)) o
i=1

Ao= PH H (C, @, (
(at,...,an)EZ™
we consider homogeneous elements fix™, ..., f,x™ € A,, 4 obtained by taking gen-
erators of the space of global sections of every O(®(de;)) and homogeneous generators
of the graded algebra

B =D H"(C, Oc(D(dler)))x'"*,

>0

see Lemma 3.7 (i). Using Theorem 3.5 (iii) the normalization of k[fix™, ..., frx""] is
A,,;.q and so by Theorem 2 in [Bou, V3.2] the algebra A,, = A,, 1 is finitely generated.
One concludes by taking the surjection A, ® ... ® A,, — A. O

In the next assertion, we study how the algebra associated to a polyhedral divisor
over a smooth projective curve changes when we extend the scalars passing to the
algebraic closure of the ground field k. Assertions (i), (ii) are classical for the theory
of algebraic function fields and the proofs are omitted.

Proposition 3.9. Assume that k is a perfect field and let k be an algebraic closure of
k. Denote by Six the absolute Galois group of k. For a smooth projective curve C
over k associated to an algebraic function field Ky/k the following hold.

(i) The field Ky = k - Ky is an algebraic function field over k.
(ii) The group &g acts naturally on C (k) = Y% Ky by

9-(Af)=9(\)f and gxP={g-F|F € P},
where g € Gg, A € k, f € Ky, and P € C (R) Any &y i -orbit of C (R) s a

finite set and corresponds to a fiber of the surjective map
S:C(k)—=C, P— PNK,.

In other words, there is a bijection between the set of S pc-orbits of C' (R) and
the curve C.
(iii) If ® =, .o A, - z is a proper o-polyedral divisors over C' then

AlC, D] ek =A[C (k), D],
where Dy, is the proper o-polyhedral divisor over C' (l_c) defined by

D= A.-5*2) with §*(z) = > 7.

zeC 2’eS—1(z)
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Proof. (iii) Given a Weil Q-divisor D over C, by [St, Theorem 3.6.3] we obtain
H°(C,0c(| D)) @ k= H(C (k), Ocw) (157 D))

The proof of (iii) follows from the computation of A[C, D] ®y k. The properness of Dg
is given for instance by 3.5 (). O

Remark 3.10. It is well known that every finitely generated extension of a perfect field
is separable. However for non-perfect case, we may consider the inseparable algebraic
function field of one variable

k[X, Y]
(tX2+s+ Y?)’
where k = Fy(s, t) is the rational function field in two variables. Consequently, for any

proper polyhedral divisor ® over C' = %y K, the ring A[C, ®] @y k contains a nonzero
nilpotent element.

Ky = Frac

4. SPLIT AFFINE T-VARIETIES OF COMPLEXITY ONE

As an application of the results in the previous sections, we can give now a combi-
natorial description of split affine T-varieties of complexity one over any field k.

4.1. Let T be a split algebraic torus over k. Denote by M and N its dual lattices of
characters and of one parameter subgroups. Let X = Spec A be an affine variety over
k. Assume that T acts on X. Then the associated morphism A — A ®y k[T] endows
A with an M-grading. Conversely, an M-grading on the algebra A yields naturally
a T-action on X. Consider the subextension Q(A)y C k(X) of k generated by the
quotients a/b, where a,b € A are homogeneous of the same degree. The complexity of
the T-action is the transcendence degree of QQ(A)y over k.

We say that X is a T-variety if X is normal and if the T-action on X is effective?.
This is equivalent to say that A is normal and the set of its weights generates M.

Definition 4.2. Let C' be a smooth curve over k and let 0 C Ng be a strongly convex
polyhedral cone. A o-polyhedral divisor ® =" _- A, -z is called proper if it satifies
one of the following statement.

(i) C is affine. In particular, © is a polyhedral divisor over the Dedekind ring
(ii) C is projective and © is a proper polyhedral divisor in the sense of 3.4.
We denote by A[C, D] the associated M-graded algebra.

Combining 2.5 and 3.5 one can describe a split affine T-variety of complexity one by
a proper polyhedral divisor.

Theorem 4.3.

(i) To any split affine T-variety X = Spec A over k of complezity one there is
some proper o-polyhedral divisor © on a smooth curve C' over k such that
A~ A[C, D] as M-graded algebras.

2Seeing T as a representable group functor, this means that the kernel of the natural transformation
of group functors T — Aut X is trivial.
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(ii) Conwversely, if © is a proper o-polyhedral divisor on a smooth curve C' then
X = Spec A, where A = A[C, D], defines a split affine T-variety of complexity
one.

Proof. (i) Let o C Ng be the dual of the weight cone of A. Remark that we can choose
some weight vectors x” € Frac A such that y - x™ =y and such that we have
an embedding

4¢P QA" = QAWM
meM
making A an M-graded subalgebra. Futhermore A and Q(A)[M] have the same field
of fractions. The graded piece Ag is the algebra of T-invariants. Denote by K, the
field of fractions of Ay. Assume that Ay # k. Then we have Ky = Q(A)y. Indeed,
by assumption every algebraic element of Ky over k belongs to k. Therefore the
trancendence degree of Ky/k is equal to 1 so that Q(A)o/ K, is algebraic. Using the
normality of Ay one concludes that Ky = Q(A)p. Remark further that the ring Ay is a
Dedekind Domain. By Theorem 2.5 (ii) we obtain A = A[C, @] for some o-polyhedral
divisor © over Ay. If Ay = k then one concludes by Theorem 3.5 (i). Assertion (ii)
follows immediately from 2.5 (i) and 3.5 (ii). O

4.4. By a principal o-polyhedral divisor § over C' we mean a pair (p, D) with a mor-
phism of semigroup ¢ : oy, — k(C)* and a o-polyhedral divisor © over C' such that
for any m € o), we have

D(m) =dive F(m).
Actually starting from § and choosing a finite generating set of o), one can easily

construct © satisfying the equalities as before. Usually we write § and ® by the same
letter.

The following result provides a description of equivariant isomorphisms between two
affine T-varieties of complexity one over the same base curve. See [AH, Section 8,9
for higher complexity when the ground field is algebraically closed of characteric zero.

Proposition 4.5. Let ® and ®' be two proper o-polyhedral divisors over a smooth
curve C. Then A[C, D] and A[C,D’] are equivariantly isomorphic if and only if the
following assertion holds. There exist a principal o-polyhedral divisor §, a linear au-
tomorphism F of Mg preserving oy, and, ¢ € Aut C' such that for any m € o), we
have
¢*D(m) = D'(F(m)) + F(m).

Proof. Let Ky = k(C). Let ¢ : A[C,D] — A[C,®'] be an isomorphism of M-graded
algebras. Since each homogeneous element is sent into a homogeneous element, the
morphism 1 extends to an automorphism of Ky[M]|. We have also automorphisms
of k[C] and k(C) coming from an element ¢ € Aut C. Composing by (¢*)~! we
may suppose that 1 is the identity map on K. Futhermore there exists a linear
automorphism F' of Mg preseving oy, such that for any m € M we have (x™) =
FXF ) for some f,, € K. Again we may suppose that F' is the identity. One observes
that m — f,,, oy; — K} defined a principal o-polyhedral divisor §. Using Theorem
1.4 and Lemma 3.7 (ii) for any m € o), we have the equality ®(m) = @'(m) + F(m).
The converse is straightforward and left to the reader. 0
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5. NON-SPLIT CASE VIA (GALOIS DESCENT

In view of the result of the above section, we provide a combinatorial description of
affine normal varieties endowed with a (non-nescessary split) torus action of complexity
one (see 5.4 for a precise definition). This can be compared with well known descriptions
for toric and spherical varieties, see [Bry], [Vo], [ELST], [Hu].

5.1. For a field extension F'/k and an algebraic scheme X over k we let
X(F) =X Xgpeck Spec F.

This is an algebraic scheme over F'. An algebraic torus of dimension n is an alge-
braic group G over k such that there exists a finite Galois extension E/k yielding an
isomorphism of algebraic groups G(E) ~ G (FE) (x), where G,, is the multiplicative
group scheme over k. We say that the torus G splits in the extension E/k if we have
an isomorphism similar to (). For more details concerning the theory of non-split
reductive group the reader may consult [BoTi].

Below G is a torus over k that splits in a finite Galois extension F/k. Denote by
S g/ the Galois group of E/k. Consider also M and N the dual lattices of characters
and of one parameter subgroups of the split torus G(F). Notice that in the sequel
most of our varieties are defined over the field E. We start by precising the following
classical notion.

Definition 5.2.

(i) A &p/k-action on a variety V over E is called semi-linear if & i acts by scheme
automorphisms over k and if for any g € &gy the diagram

g

V V

L

Spec E — Spec E

is commutative.
(i) Let B be an algebra over E. A semi-linear &g -action on B is an action by
automorphisms of algebras over k such that for alla € B, A € I/, and g € &g

g-(Xa) =g(N)g-a.

If V' is affine then having a semi-linear &g -action on V' is equivalent to having a
semi-linear & p/-action on the algebra E[V].

Next, we recall a well known description of algebraic tori related to finite groups
actions on lattices.

5.3. The Galois group &g/ acts naturally on the torus
G(E) = G Xgpeck Spec E

by the second factor. The corresponding action on E[M] is determinated by a linear
S g -action on M (see e.g. [ELST, Proposition 2.5], [Vo, Section 1]) permuting the
Laurent monomials.
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Conversely, given a linear &g -action on M we have a semi-linear action on E[M]

defined by

g (AX™) = g(M)x"™,
where g € Ggx, A € E and m € M, respects the Hopf algebra structure. As a
consequence of the Speiser’s Lemma, we obtain a torus G over k that splits in F/k.
In addition, the semi-linear action that we have built on G(F) = Spec E[M] is exacty
the natural semi-linear action on the second factor.

The following definition introduces the category of G-varieties.

Definition 5.4. A G-variety of complezity d (splitting in £ /k) is a normal variety over
k with a G-action and such that X (F) is a G(FE)-variety of complexity d in sense of
Section 4. A G-morphism between G-varieties X, Y over k is a morphism f: X — Y
of varieties over k such that

1S commutative.

An important class of semi-linear actions is provided by those respecting a split torus
action. The &g -action on G(FE) is given as in paragraph 5.3.

Definition 5.5.

(i) Let B be an M-graded algebra over . A semi-linear & -action on B is
called homogeneous whether it sends homogeneous elements into homogeneous
elements.

(i) A semi-linear & -action on a G(FE)-variety V respects the G(E)-action if the
following diagram

GE)xVZLGE)xV

l l

V V

commutes, where g runs G x.

With the assumption that V is affine, a semi-linear &g -action on the variety V'

respecting the G(£)-action corresponds to a homogeneous semi-linear & g/ -action on
the algebra E[V].

The following result is classically stated for the category of quasi-projective varieties
(see the proof of [Hu2, 1.10]). In the setting of affine G-varieties we include a short
argument.

Lemma 5.6. Let V be an affine G(E)-variety of complexity d over E with a semi-linear
Sg/k-action. Then the quotient X = V/Sg)x is an affine G- variety of complexity d.
We have a natural isomorphism of G(E)-varieties X (E) ~ V respecting the S -
actions.
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Proof. 1t is known that R = B®#/x is finitely generated. Let us show that R is normal.
Letting L be the field of fractions of R and considering f € L an integral element over
R, by normality of B, we have f € BN L = R. This proves the normality of R. Using
the above definition, the variety X is endowed with a G-action. The rest of the proof
follows from Speiser’s Lemma. U

Fixing an affine G-variety X of complexity d over E, an E/k-form of X is an affine
G-variety Y over k such that we have a G(E)-isomorphism X (F) ~ Y(E). Our aim
is to give a combinatorial description of F/k-forms of X. Let us recall first in this
context some notion of non-abelian Galois cohomology (see e.g. [ELST, Section 2.5
for the category of varieties).

5.7. Let Y, Y’ be E/k-forms of the fixed affine G-variety X. The Galois group &g
acts on the set of G(F)-isomorphisms between Y (E) and Y’(E). Consequently, it acts
also by group automorphisms on the group of G(E)-automorphims Autgg (X (£))
of X(E). More precisely, recall that for any g € Gg/ and any G(FE)-isomorphism
¢ :Y(E) — Y'(E) one defines ¢g(¢) by the following commutative diagram

a(»)

Y(E) 2L y(E) .

g lg
/
Y(E) —=Y'(E)
Note that this &g -action depends on the data of the F /k-forms Y, Y’. Now given a
G(FE)-isomorphism ¢ : X(F) — Y(FE) the map
a: GE/k — AU-tG(E)(X<E))7 gt— ay = 1/}71 © 9(1/})
is a 1-cocycle. This means that for all g, ¢’ € Sg/ we have
agoglay) = w_l og(¢)og (@Z)_l o gl(w)) = Qgg'-

Let ¢ : Y — Y’ be a G-isomorphism and take a G(E)-isomorphism ¢ : X(E) — Y/'(E)
giving a 1-cocycle b as above. The diagram

is commutative, where o € Autgp) (X (£)) and ¢ is the extension ¢. Since for any
g € S we have g(¢') = ¢/, it follows that

bg:ozoagog(ofl).

In this case, we say that the cocycles a and b are cohomologous. We obtain as well
a map ¢ between the pointed set of isomorphism classes of E/k-forms of X and the
pointed set

H'(E/k, Autgr) (X (E)))
of cohomology classes of 1-cocycles a : g — Autgm) (X (F)).
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Conversely, starting with a cocycle a the map
S — Autgp)(X(E)), g—ag0yg

is a semi-linear action on X (F) respecting the G(E)-action. According to Lemma 5.6
one can associate an F/k-form W of X by taking the quotient X (£)/&p/,. Changing
a by a cohomologous 1-cocycle gives an E/k-form of X isomorphic to W. Thus we
deduce that the map ® is bijective.

Moreover, let v be a semi-linear &g i-action on X (£). Remark that

(9"

x(E) L X(B)

S

X(E) —= X(E)

g(v(g")

commutes for all g,¢' € Sp/. Hence the equality a, = v(g) o g~! defines a 1-cocycle
a. A straightforward verification shows that H'(E/k, Autgg) (X (F))) is also in bi-
jection with the pointed set of conjugacy classes of semi-linear & /-actions on X (F)
respecting the G(FE)-action.

As explained in the above paragraph, classifying the pointed set of E/k-forms of
X is equivalent to classifying all possible semi-linear &y -actions on X (£). Thus
generalizing the notion of proper polyhedral divisors, we consider the combinatorial
counterpart of this classification.

Definition 5.8. Let C' be a smooth curve over E and let o C Ng be a strongly convex
cone. A &g x-invariant o-polyhedral divisor over C' is a 4-uplet (D,§,*, ) verifying
the following conditions.

(i) © (resp. §) is a proper (resp. principal) o-polyhedral divisor over C'.
(ii) The curve C' is endowed with a semi-linear &g /-action

CrpuxC—=0C, (g9,2)—g*z.

This yields naturally an action on the space of Weil QQ-divisors over C. More
precisely, given g € &g/ and a Q-divisor D over C' we let

g*D:Zag_l*z-z, where D :Zaz-z.

zeC zeC

(iii) The lattice M is endowed with a linear & -action
SpxxM—=M, (g,m)—g-m

preserving the subset oy.
The 4-uplet (D, 3§, %, -) satisfies in addition the equality

g* (D(m) +F(m)) =D(g-m) +3(g-m),
where m € oy, and g € Gpi.

The following result is a direct consequence of Hilbert’s Theorem 90. For the conve-
nience of the reader we give a short argument.
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Lemma 5.9. Let Ey/ K be a finite Galois extension with Galois group S, x,. Assume
that S, K, acts linearly on M. For any g € &g, /k, consider a morphism of groups
fqg : M — E§ satisfying the equalities

fon(m) = g (fa(m)) fo(h-m),
where g, h € Gg,/x, and m € M. Then there exists a morphism of groups b : M — Ej
such that for all g € Sg,/k,, m € M we have

fo(m) = b(g - m)g(b(m))~".

Proof. The opposite of &g/, is the group H with underlying set &g, /x, and the
multiplication law defined by g x h = hg, where g,h € H. For ¢ € H we denote by
ag : M — E§ the morphism of groups defined by

ag(m) = g_l(fg(m)),
where m € M. We can also define an H-action by group automorphisms on the split
torus

T = Hom(M, Ej)

over Ey by letting (g - a)(m) = g~ *(a(g - m)), where a € T, g € H, and m € M.
Considering g, h € H we obtain

peg(m) = (gh) ™' (fon(m)) = (gh) " (g(fu(m)) fy(h - m)) = an(m)(h - ag)(m)
so that g — a, is a 1-cocycle. By the Hilbert Theorem 90 one has
H'(H,T)~ H(Ey/K,,T) = 1.

Hence there exists b € T such that for any g € H we have a;, = b- (g-b~'). These
latter equalities provide our result. O

The next theorem yields a classification of affine G-varieties of complexity one in
terms of invariant polyhedral divisors.

Theorem 5.10. Let G be a torus over k splitting in a finite Galois extension F/k.
Denote by S« the Galois group of E/k.
(i) Fvery affine G-variety of complexity one splitting in F/k is described by a
&g x-tnvariant proper polyhedral divisor over a smooth curve.
(ii) Conversely, let C be a smooth curve over E. For a &g -invariant proper o-
polyhedral divisor (D,§,*,-) over C' one can endow the algebra A[C, D] with
a homogeneous semi-linear Sg -action and associate an affine G-variety of
complexity one over k splitting in E /k by taking X = Spec A, where

A= AlC,D]%B/,

Proof. (i) Let X be a G-variety of complexity one over k. According to Theorem 4.3
we may suppose that B = A[C, D] is the coordinate ring of X (FE) for some proper
o-polyhedral divisor ® over a smooth curve C. The algebra B is endowed with a
homogeneous semi-linear &y -action. Let Ey = E(C). Extending this action on
Eo[M] we remark that Ey and E[C] are preserved. We obtain a semi-linear & p/y-
action on C. If C is projective then one defines the G -action on C' by the following
way ; given a place P C Ey we let

gxP={gxf|feP}
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In the case where C' is arbitrary the Speiser Lemma gives the equality
E, = E - Ky, where K, = Ey "/,

The finite extension Ey/Kj is Galois. We have a natural identification G g k= Ggy K
with the Galois group of Ey/Ky. For all m € M, g € &g/ we have

(1) g (fxX™) = g(f) fo(m)x @™

for some some element f, in the split torus 7" = Hom(M, Ef) and some ['(g,m) € M.
We observe that I is a linear action on M. Denote by g -m the lattice vector I'(g, m).
For all g, h € &g/ we have

fan(m)x™ = gh-x™ =g+ (h-X™) = g(fu(m)) fy(h - m)x?"™.

Using Lemma 5.9 there exists b € T such that for all m € M, g € &g/ we have
fo(m) = b(g - m)/g(b(m)). We let § be the principal o-polyhedral divisor associated
to b.

It remains to show the equalities

(2)  gx(@(m)+F(m)) =D(g-m)+(g-m), Ym € oy,Vg € Spp.

First of all, we remark that if f € Ej and g € S/ then g« divf = divg(f). Let
fx™ € B be homogeneous of degree m. The transformation of fx" by g is an element
of B of degree g - m and so

div g(f)fy(m) +D(g-m) = 0.
This implies that
g* (=divf +3(m)) < F(g-m)+D(g-m).
According to Corollary 1.7 and Corollary 3.8 (iii) we obtain
g* (D(m) +F(m)) < D(g-m)+F(g-m).

The converse inequality uses a similar argument. One concludes that (D,§, «, ) is an
invariant polyhedral divisor.

(ii) Again if b € T corresponds to § then by virtue of (2) one defines a homogeneous
semi-linear &g -action on A[C, D] by letting f,(m) = b(g - m)/g(b(m)) and by the
equality (1). The rest of the proof is a consequence of Lemma 5.6. U

Let us provide an elementary example.
Exemple 5.11. Consider the o-polyhedral divisor © over A} = Spec C[¢t] defined by
((1,0)+0)-C+((0,1)+0) - (=¢) + ((1,=1) + ) - 0,

where o is the first quadrant szo and ¢ = v/—1. We endow ® with a structure
of G r-invariant polyhedral divisors by considering first § given by the morphism
(mq, mg) = t™27™ . We have a S¢ g-action

0 1
Sc/r — GLo(Z), g~ (1 0)
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on the lattice Z*, where g is the generator of G¢/r. The algebra C[t] has the natural
complex conjugaison action x of G¢/r. A direct computation shows that

t
(1,0) (0,1)
-0 Tttt

and so X = Spec A is the affine space AZ. More concretely, the G¢/g-action on the
algebra A is obtained by

g+ (f)XTm) = f(e)ePtmma)ymam),

Letting # = t71(1 — )" and y = #(1 + ()~'x(®Y we observe that ASc/z =
Rlt,z 4+ y,{(z — y)]. Hence X/S¢/r ~ A}.

A=Clt,

Next we describe the pointed set of E/k-forms of an affine G-varieties of complexity
one in terms of polyhedral divisors.

Definition 5.12. The invariant o-polyhedral divisors (D, §, %, -) and (D, §',«, ") over
C' are conjugated if they verify the following. There exist ¢ € Aut(C), a principal
o-polyhedral divisor € over C, and a linear automorphism F € Aut(M) giving an
automorphism of the E-algebra A[C, D] (see 4.5) such that for any g € Sp the
diagrams

C2.C and M-L-M

A r
C—>C M—
g* 9
commute and for any m € M we have

S(g-m)  gx(e ) €Em) (¢ )F(Fg-m))

g*§(m) E(g-m)-gx (o' )F (F(m))
Consider X an affine G-variety of complexity one described by the invariant polyhedral
divisor (D, §, *, -). We denote by & (E/k) the pointed set of conjugacy classes of &g -
invariant o-polyhedral divisors over C' of the form (®,§,+',).

As a direct consequence of the discusion of 5.7 we obtain the following.

Corollary 5.13. Let C be a smooth curve over E. Given an affine G-variety X of
complexity one associated to a &g -invariant polyhedral divisor (D,§,*,-) over C, we
have a bijection of pointed sets

Ex(E/K) ~ H'(E/k, Autgp (X (E))).
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