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Abstract. We show that the presentation of affine T-varieties of complexity one
in terms of polyhedral divisor of Altmann-Hausen holds over an arbitrary field. We
describe also a class of multigraded algebras over Dedekind domains. We study how
the algebra associated to a polyhedral divisor changes when we extend the scalars.
As another application, we provide a combinatorial description of affine G-varieties
of complexity one over a field, where G is a (non-nescessary split) torus, by using
elementary facts on Galois descent. This class of affine G-varieties are described via
a new combinatorial object, which we call (Galois) invariant polyhedral divisor.
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Introduction

In this paper, we are interested in a combinatorial description of multigraded nor-
mal affine algebras of complexity one. From a geometrical viewpoint, these algebras
are related to the classification of algebraic tori actions of complexity one on affine
varieties. Let k be a field and consider a split algebraic torus T over k. Recall that
a T-variety is a normal variety over k endowed with an effective T-action. There ex-
ist several combinatorial descriptions of T-varieties in term of the convex geometry.
See [Do],[Pi],[De],[FZ] for the Dolgachev-Pinkham-Demazure (D.P.D.) presentation,
[KKMS],[Ti],[Ti2] for toric case and complexity one case, and [AH],[AHS],[AOPSV] for
higher complexity. Most of these works requires the ground field k to be algebraically
closed of characteristic zero. It is worthwile mentioning that the description of affine
Gm-varieties [De] due to Demazure holds over any field.

Let us list the most important results of the paper.
- The Altmann-Hausen presentation of affine T-varieties of complexity one in terms

of polyhedral divisor holds over an arbitrary field, see Theorem 4.3.
- This description holds as well for an important class of multigraded algebras over

Dedekind domains, see Theorem 2.5.
1
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- We study how the algebra associated to a polyhedral divisor changes when we
extend the scalars, see 2.12 and 3.9.

- As another application, we provide a combinatorial description of affine G-varieties
of complexity one, whereG is a (non-nescessary split) torus over k, by using elementary
facts on Galois descent. This class of affine G-varieties are classifyed via a new com-
binatorial object, which we call a (Galois) invariant polyhedral divisor, see Theorem
5.10.

Let us now stay on these results in more details. We start with a simple case
of varieties with an action of a split torus. Recall that a split algebraic torus T of
dimension n over the field k is an algebraic group isomorphic to Gn

m, where Gm is the
multiplicative group of the filed k. Let M = Hom(T,Gm) be the character lattice of
the torus T. Then defining a T-action on an affine variety X is equivalent to fixing
an M-grading on the algebra A = k[X ], where k[X ] is the coordinate ring of X .
Following the classification of affine Gm-surfaces [FiKa] we say as in [Li, 1.1] that the
M-graded algebra A is elliptic if the graded piece A0 is reduced to k. Multigraded affine
algebras are classifyed via a numerical invariant called complexity. This invariant was
introduced in [LV] for the classification of homogeneous spaces under the action of a
connected reductive group. Consider the field k(X) of rational functions on X and
its subfield K0 of T-invariant functions. The complexity of the T-action on X is the
trancendence degree of K0 over the field k. Note that for the situation where k is
algebraically closed, the complexity is also the codimension of the general T-orbit in
X (see [Ro]).

In order to describe affine T-schemes of complexity one, we have to consider com-
binatorial objects coming from convex geometry and from the geometry of algebraic
curves. Let C be a smooth curve over k. A point of C is assumed to be a closed point,
and in particular, non-nescessary rational. Futhermore, the residual field extension of
k at any point of C has finite degree.

To reformulate our first result, we need some combinatorial notion of convex geome-
try, see [AH, Section 1]. Denote by N = Hom(Gm ,T) the lattice of one parameter sub-
groups of the torus T wich is the dual of the latticeM . LetMQ = Q⊗ZM , NQ = Q⊗ZN
be the associated dual Q-vector spaces of M,N and let σ ⊂ NQ be a strongly convex
polyhedral cone. We can define as in [AH] a Weil divisor D =

∑

z∈C ∆z · z with
σ-polyhedral coefficients in NQ, called polyhedral divisor of Altmann-Hausen. More
precisely, each ∆z ⊂ NQ is a polyhedron with tailed cone σ (see 2.1) and ∆z = σ for all
but finitely many points z ∈ C. Denoting by κz the residual field of the point z ∈ C
and by [κz : k] ·∆z the image of ∆z under the homothety of ratio [κz : k], the sum

degD =
∑

z∈C

[κz : k] ·∆z

is a polyhedron in NQ. This sum may be seen as the finite Minkowski sum of all
polyhedra [κz : k] ·∆z different from σ. Considering the dual cone σ∨ ⊂ MQ of σ, we
define an evaluation function

σ∨ → DivQ(C ), m 7→ D(m) =
∑

z∈C

min
l∈∆z

〈m, l〉
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with value in the vector space DivQ(C ) of Weil Q-divisors over C. As in the classical
case [AH, 2.12] we introduce the technical condition of properness for the polyhedral
divisor D (see 2.2, 3.4, 4.2) that we recall thereafter.

Definition 0.1. A σ-polyhedral divisor D =
∑

z∈C ∆z · z is called proper if it satifies
one of the conditions.

(i) C is affine.
(ii) C is projective and degD is strictly contained in the cone σ. Futhermore, if

degD(m) = 0 then m belongs to the boundary of σ∨ and an integral multiple
of D(m) is principal.

For instance, if C = P1
k
is the projective line then the polyhedral divisor D is proper

if and only if degD is strictly included in σ. One of the main results of this paper can
be stated as follows.

Theorem 0.2. Let k be field.

(i) To any proper σ-polyhedral divisorD on a smooth curve over k one can associate
a normal finitely generated effectively M-graded domain of complexity one over
k, given by

A[C,D] =
⊕

m∈σ∨∩M

Am, where Am = H 0(C ,OC (⌊D(m)⌋)).

(ii) Conversely, any normal finitely generated effectively M-graded domain of com-
plexity one over k is isomorphic to A[C,D] for some smooth curve C over k

and some proper polyhedral divisor D over C.

In the proof of assertion (ii), we use an effective calculation from [La]. We divide
the proof into two cases. In the non-elliptic case we show that the assertion holds
more generally in the context of Dedekind domains. More precisely, we give a perfect
dictionary similar to 0.2(i), (ii) for M-graded algebras defined by a polyhedral divisor
over a Dedekind ring (see 2.2, 2.3 and Theorem 2.5). We deal in 2.6 as an example
with a polyhedral divisor over Z[

√
−5]. In the elliptic case, we consider an elliptic M-

graded algebra A over k satisfying the assumptions of 0.2 (ii). We construct a smooth
projective curve arising from the algebraic function field K0 = (FracA)T; the points of
C are indentifyed with the places of K0 (see [EGA II, 7.4]). Then we show that the
M-graded algebra is described by a polyhedral divisor over C (see Theorem 3.5).

Let us pass further to the general case of varieties with an action of a non nescessarily
split torus. The reader may consult [Bry],[Vo],[ELST], for the theory of non-split toric
varieties and [Hu] for the spherical embeddings. Let G be a torus over k that splits in
a finite Galois extension E/k. Let VarG,E(k) be the category of affine G-varieties of
complexity one splitting in E/k (see 5.4). For an object X ∈ VarG,E(k) we let [X ] be
its isomorphism class and X(E) = X×Speck SpecE be its extension of X over the field
extension. Fixing X ∈ VarG,E (k), as an application of our previous results, we study
the pointed set

({

[Y ] | Y ∈ VarG,E(k) and X(E) ≃VarG,E (E) Y (E )
}

, [X ]
)

of isomorphism classes of E/k-forms of X that is in bijection with the first pointed set
H1(E/k,AutG(E)(X (E ))) of non abelian Galois cohomology. By elementary argument
(see 5.7) these latter pointed sets are described by all possible homogeneous semi-linear
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SE/k-action on the multigraded algebra E[X(E)], where here SE/k is the Galois group
of E/k. Translating to the language of polyhedral divisors, we obtain a combinatorial
description of E/k-forms of X , see Theorem 5.10. This theorem can be viewed as a
first step towards the study of the forms of G-varieties of complexity one.

Let us give a brief summary of the contents of each section. In the first section, we
recall how to extend the D.P.D. presentation of parabolic graded algebra to context
of Dedekind domain. This fact has been mentioned in [FZ] and firstly traited by a
master student of Hubert Flenner [Ka]. In the second and the third section, we study
respectively a class of multigraded algebras over Dedekind domains and a class of
elliptic multigraded algebras over a field. In the fourth section, we classify non-split
affine T-varieties of complexity one. The last section is devoted to the non-split case.

0.3. All considered rings are commutative and unitary. Let k denote a field. Given a
lattice M we let k[M ] be the semigroup algebra

⊕

m∈M

kχm, where χm+m′

= χm · χm′

.

By a variety X over k we mean an integral separated scheme of finite type over k ;
one assumes in addition that k is algebraically closed in the field of rational functions
k(X). In particular, X is geometrically irreducible.

Acknowledgments. The author is grateful to Mikhail Zaidenberg for his remarks
which helped us to improve the text. We would like to thank Matthieu Romagny
for kindly answering to our questions, and Hanspeter Kraft for proposing to treat the
non-split case.

1. Graded algebras over Dedekind domains

In this section we recall how to generalize the Dolgachev-Pinkham-Demazure (D.P.D.)
presentation in [FZ, Section 3] to the context of Dedekind domains (see Lemma 1.6).
This generalization concerns in particular an algebraic description of affine normal
parabolic complex C⋆-surfaces. Let us start by a well known definition.

1.1. An integral domain A0 is called a Dedekind domain (or Dedekind ring) if it is not
a field and if it satisfies the following conditions.

(i) The ring A0 is noetherian.
(ii) The ring A0 is integrally closed in its field of fractions.
(iii) Every nonzero prime ideal is a maximal ideal.

Let us mention several classical examples of Dedekind domains.

Exemple 1.2. Let K be a number field. If ZK denotes the ring of integers of K then
ZK is a Dedekind ring.

Let A be a finitely generated normal algebra of dimension one over a field k. This
means that the scheme C = SpecA is an affine smooth curve. The coordinate ring
A = k[C] is Dedekind.

The algebra of power series k[[t]] in one variable over the field k is a Dedekind
domain. More generally every principal ideal domain (and so every discrete valuation
ring) that is not a field is a Dedekind domain.
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1.3. Let A0 be an integral domain and let K0 be its field of fractions. Recall that a
fractional ideal b is a finitely generated nonzero A0-submodule of K0. Actually every
fractional ideal is of the form 1

f
· a, where f ∈ A0 is nonzero and a is a nonzero ideal

of A0. If b is equal to u · A0 for some nonzero element u ∈ K0 then we say that b is a
principal fractional ideal.

The following result gives a description of fractional ideals of A0 in terms of Weil
divisors on Y = SpecA0 when A0 is a Dedekind domain. This assertion is well known.
For convenience of the reader we include a short proof.

Theorem 1.4. Let A0 be a Dedekind ring with field of fractions K0. Let Y = SpecA0.
Then the map

DivZ(Y ) → Id(A0), D 7→ H 0(Y ,OY (D))

is a bijection between the set of integral Weil divisors on Y and the set of fractional
ideals of A0. Every fractional ideal is locally free of rank 1 as A0-module and the natural
map

H0(Y,OY (D))⊗H0(Y,OY (D
′)) → H0(Y,OY (D +D′))

is surjective. A Weil divisor D on Y is principal (resp. effective) if and only if the
corresponding fractional ideal is principal (resp. contains A0).

Proof. By [Ha, II.6.11] the group of Weil divisors on Y coincides with the group of
Cartier divisors. In particular, every A0-module H0(Y,OY (D)) is of finite type [Ha,
II.5.5], locally free of rank one, and so has a nonzero global section. Therefore the map

DivZ(Y ) → Id(A0)

is well defined.
Let D,D′ be divisors of DivZ(Y ). Then by the previous observation the OY -sheaves

OY (D) ⊗ OY (D
′) and OY (D + D′) are isomorphic. This induces an isomorphism on

the level of global sections.
Every nonzero prime ideal of A0 is the module of global sections of an invertible

sheaf over OY . Thus by the primary decomposition, the map DivZ(Y ) → Id(A0) is
surjective.

Assume that

H0(Y,OY (D)) = H0(Y,OY (D
′))

for some D,D′ ∈ DivZ(Y ). Then we can write D = D+−D− and D = D′
+−D′

−, where
D+, D

′
+, D−, D

′
+ are integral effective divisors. By tensoring we obtain the equality

H0(Y,OY (−D− −D′
+)) = H0(Y,OY (−D′

− −D+))

between ideals of A0. Again using the decomposition in prime ideals we have −D− −
D′

+ = −D′
− −D+ so that D = D′. One concludes that the map is injective.

Assume that H0(Y,OY (D)) contains A0. Write D = D+−D− with D+, D− effective
divisors having disjoint supports. Then by our assumption

H0(Y,OY (0)) = A0 = A0 ∩H0(Y,OY (D)) = H0(Y,OY (−D−)).

This yields D− = 0 and so D is effective. The rest of the proof is straightforward. �
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Notation 1.5. Let A0 be a Dedekind domain. For a Q-divisor D on the affine scheme
Y = SpecA0 we denote by A0[D] the graded algebra

⊕

i∈N

H0(Y,OY (⌊iD⌋)) ti,

where t is a variable over the field K0. Note that A0[D] is normal as intersection of
discrete valuation rings with field of fractions K0(t) (see the argument for [De, 2.7]).

The next lemma provides a D.P.D. presentation for a class of graded subrings of
K0[t]. It will be useful for the next section. Here we give an elementary proof using
the description in 1.4 of fractional ideals.

Lemma 1.6. Let A0 be a Dedekind ring with the field of fractions K0. Let

A =
⊕

i∈N

Ai t
i ⊂ K0[t]

be a normal graded subalgebra of finite type over A0, where every Ai is contained in K0.
Assume that the field of fractions of A is K0(t). Then there exists a unique Q-divisor
D on Y = SpecA0 such that A = A0[D]. Futhermore we have Y = ProjA.

Proof. Theorem 1.4 and Lemma 2.2 in [GY] imply that every nonzero module Ai can
be written

Ai = H0(Y,OY (Di))

for some Di ∈ DivZ(Y ). By Proposition 3 in [Bou, III.3] there exists a positive integer
d such that the subalgebra

A(d) :=
⊕

i≥0

Adi t
di

is generated by Ad t
d. Proceeding by induction, for any i ∈ N we have Ddi = iDd. Let

D = Dd/d. Then using the normality of A and A0[D], we obtain for any homogenous
element f ∈ K0[t] the following equivalences

f ∈ A0[D] ⇔ f d ∈ A0[D] ⇔ f d ∈ A⇔ f ∈ A.

This yields A = A0[D].
Let D′ be another Q-divisor on Y such that A = A0[D

′]. Comparing the graded
pieces of A0[D] and of A0[D

′], it follows that ⌊iD⌋ = ⌊iD′⌋ for any i ∈ N. Hence
D = D′ and so the decomposition is unique.

It remains to show the equality Y = ProjA. Let V = ProjA. By Exercice 5.13 in
[Ha, II] and Proposition 3 in [Bou, III.1] we may assume that A = A0[D] is generated by
A1t. Since the sheafOY (D) is locally free of rank one overOY there exist g1, . . . , gs ∈ A0

such that

Y =

s
⋃

j=1

Ygj , where Ygj = Spec (A0)gj

and such that for e = 1, . . . , s,

A1 ⊗A0
(A0)ge = OY (D)(Yge) = he · A0
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for some he ∈ K⋆
0 . Let π : V → Y be the natural morphism induced by the inclusion

A0 ⊂ A. The preimage of the open subset Yge under π is

ProjA⊗A0
(A0)ge = Proj (A0)ge [A1 ⊗A0

(A0)ge t ] = Proj (A0)ge [het ] = Yge .

Hence π is the identity map and so Y = V , as required. �

As an immediate consequence we obtain the following. The reader can see that the
proof of [FZ, 3.9] holds m.m. for positively graded 2-dimensional normal algebras of
finite type over a Dedekind domain.

Corollary 1.7. Let A0 be a Dedekind ring with field of fractions K0 and let t be a
variable over K0. Consider the subalgebra

A = A0[f1t
m1 , . . . , frt

mr ] ⊂ K0[t],

where m1, . . . , mr are positive integers and f1, . . . , fr ∈ K⋆
0 are such that the field of

fractions of A is K0(t). Then the normalization of A is equal to A0[D], where D is the
Q-divisor

D = − min
1≤i≤r

div fi
mi

.

2. Multigraded algebras over Dedekind domains

Let A0 be a Dedekind ring and let K0 be its field of fractions. Given a lattice M
the purpose of this section is to study normal noetherian M-graded A0-subalgebras of
K0[M ]. We show below that these subalgebras admit a description in terms of poly-
hedral divisors. We start by recalling some necessary notation from convex geometry
available in [AH, Section 1].

2.1. Let N be a lattice and let M = Hom(N ,Z) be its dual. Denote by NQ = Q⊗ZN
and MQ = Q ⊗Z M the associated dual Q-linear spaces. To any linear form m ∈ MQ

and to any vector v ∈ NQ we write 〈m, v〉 for the number m(v). A polyhedral cone
σ ⊂ NQ is called strongly convex if it admits a vertex. This is equivalent to say that
the dual cone

σ∨ = {m ∈MQ | ∀v ∈ σ, 〈m, v〉 ≥ 0 }
is full dimensional.

Recall that for a nonzero strongly convex polyhedral cone σ ⊂ NQ the Hilbert basis
Hσ = Hσ,N of σ in the lattice N is the subset of irreducible elements

{v ∈ σN − {0} | ∀v1, v2 ∈ σN − {0}, v = v1 + v2 ⇒ v = v1 or v = v2} .
It is known that the set Hσ is finite and generates the semigroup (σ ∩N,+). Futher-
more, it is minimal for these latter properties. The cone σ is said regular if Hσ is
contained in a basis of N .

Let us fix a strongly convex polyhedral cone σ ⊂ NQ. A subset Q ⊂ NQ is a
polytope if Q is non-empty and if Q is the convex hull of a finite number of vectors. We
define Polσ(NQ) to be the set of polyhedra which can be written as the Minkowski sum
P = Q + σ with Q a polytope of NQ. An element of Polσ(NQ) is called a polyhedron
with tailed cone σ.

The following definition introduces the notion of polyhedral divisors over Dedekind
domains.
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Definition 2.2. Consider the subset Z of closed points of the affine scheme Y =
SpecA0. A σ-polyhedral divisor D over A0 is a formal sum

D =
∑

z∈Z

∆z · z,

where ∆z belongs to Polσ(NQ) and ∆z = σ for all but finitely many z in Z. Let
z1, . . . , zr be elements of Z such that for any z ∈ Z and for i = 1, . . . , r, z 6= zi implies
∆z = σ. If the meaning of A0 is clear from the context then we write

D =
r
∑

i=1

∆zi · zi.

In the sequel, we let ωM = ω ∩M whether ω ⊂ MQ is a polyhedral cone. Starting
from a σ-polyhedral divisor D we can build an M-graded algebra over A0 with weight
cone σ∨ in the same way as in [AH, Section 3].

2.3. Let m ∈ σ∨. Then for any z ∈ Z the expression

hz(m) = min
v∈∆z

〈m, v〉

is well defined. The function hz on the cone σ∨ is upper convex and positively homo-
geneous. It is identically zero if and only if ∆z = σ. The evaluation of D in a vector
m ∈ σ∨ is the Q-divisor

D(m) =
∑

z∈Z

hz(m) · z.

In analogy with the notation of [FZ] we denote by A0[D] the M-graded subring
⊕

m∈σ∨M

Amχ
m ⊂ K0[M ], where Am = H 0 (Y ,OY (⌊D(m)⌋)) .

Notation 2.4. Let

f = (f1χ
m1 , . . . , frχ

mr)

be an r-uplet of homogeneous elements of K0[M ]. Assume that the vectors m1, . . . , mr

generate the cone σ∨. We denote by D[f ] the σ-polyhedral divisor
∑

z∈Z

∆z[f ] · z, where ∆z [f ] = { v ∈ NQ | 〈mi , v〉 ≥ −ordz fi , i = 1, 2, . . . , r } .

In section 3, we use a similar notation for polyhedral divisors over a smooth projective
curve; we remplace the set Z by a smooth projective curve C.

The main result of this section is the following theorem. For a proof of part (iii) we
refer the reader to the argument of Theorem 2.4 in [La].

Theorem 2.5. Let A0 be a Dedekind domain with field of fractions K0 and let σ ⊂ NQ

be a strongly convex polyhedral cone. Then the following hold.

(i) If D is a σ-polyhedral divisor over A0 then the algebra A0[D] is normal, noe-
therian, and has the same field of fractions as that of K0[M ].
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(ii) Conversely, let

A =
⊕

m∈σ∨M

Amχ
m

be a normal noetherian M-graded A0-subalgebra of K0[M ] with weight cone σ∨.
Assume that the rings A and K0[M ] have the same field of fractions1. Then
there exists a unique σ-polyhedral divisor D over A0 such that A = A0[D].

(iii) More explicitly, if

f = (f1χ
m1 , . . . , frχ

mr)

is an r-uplet of homogeneous elements of K0[M ] with nonzero vectorsm1, . . . , mr

generating the lattice M then the normalization of the ring

A = A0[f1χ
m1 , . . . , frχ

mr ]

is equal to A0[D[f ]] (see 2.4).

Let us give an example related to the ring of integers of a number field.

Exemple 2.6. For a number field K, the group of classes ClK is the quotient of the
group of fractional ideals of K by the subgroup of principal fractional ideals. In other
words, ClK = PicY , where Y = SpecZK is the affine scheme associated to the ring of
integers of K. It is known that the group ClK is finite. Futhermore ZK is a principal
ideal domain if and only if ClK is trivial.

Let K = Q(
√
−5). Then ZK = Z[

√
−5] and the group ClK is isomorphic to Z/2Z.

A set of representatives in ClK is given by the fractional ideals a = (2, 1 +
√
−5) and

ZK . Given x, y two independent variables over K, consider the Z2-graded ring

A = ZK
[

3 x2y, 2 y, 6 x
]

.

Let us describe the normalization Ā of A. Denoting respectively by b, c the prime
ideals (3, 1 +

√
−5) and (3, 1−

√
−5), we have the decompositions

(2) = a2, (3) = b · c.
Observe that the ideals a, b, c are distincts. Thus we have

div 2 = 2 · a and div 3 = b+ c,

where a, b, c are seen as closed points of Y = SpecZK . Let D be the polyhedral divisor
over ZK given by ∆a · a+∆b · b +∆c · c with the polyhedra

∆a =
{

(v1, v2) ∈ Q2 | 2v1 + v2 ≥ 0, v2 ≥ −2, v1 ≥ −2
}

and

∆b = ∆c =
{

(v1, v2) ∈ Q2 | 2v1 + v2 ≥ −1, v2 ≥ 0, v1 ≥ −1
}

.

By Theorem 2.5 we obtain Ā = A0[D], where A0 = ZK . The weight cone of A is the
first quadrant ω = (Q≥0)

2. An easy computation shows that

A0[D] = ZK
[

2 y, 6 xy, 3(1 +
√
−5) xy, 3 x2y, 6x

]

.

1This condition is equivalent to ask that the weight semigroup of A generates M
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The proof of Theorem 2.5 needs some preparations. We start by a well known result
[GY, Theorem 1.1] yielding an equivalence between noetherian and finitely generated
properties of multigraded algebras. Note that this result does not hold for algebras
graded by an arbitrary abelian group; a counterexample is given in [GY, 3.1].

Theorem 2.7. Let G denote a finitely generated abelian group and let A be a G-graded
ring. Then the following statements are equivalent.

(i) The ring A is noetherian.
(ii) The graded piece A0 corresponding to the neutral element of G is a noetherian

ring and the A0-algebra A is finitely generated.

The next lemma will enable us to show that the ring A0[D], coming from a polyhedral
divisor D over a Dedekind domain A0, is noetherian.

Lemma 2.8. Let D1, . . . , Dr be Q-divisors on Y = SpecA0. Then the A0-algebra

B =
⊕

(m1,...,mr)∈Nr

H0

(

Y,OY

(⌊

r
∑

i=1

miDi

⌋))

is finitely generated.

Proof. Let d be a positive integer such that for i = 1, . . . , r, the divisor dDi is integral.
Consider the lattice polytope

Q = { (m1, . . . , mr) ∈ Qr | 0 ≤ mi ≤ d, i = 1, . . . , r } .
The subset Q ∩ Nr being finite, the A0-module

E :=
⊕

(m1,...,mr)∈Nr∩Q

H0

(

Y,OY

(⌊

r
∑

i=1

miDi

⌋))

is finitely generated (see 1.4). Let (m1, . . . , mr) be an element of Nr. Writemi = dqi+ri
with qi, ri ∈ N such that 0 ≤ ri < d. The equality

⌊

r
∑

i=1

miDi

⌋

=

r
∑

i=1

qi ⌊dDi⌋ +
⌊

r
∑

i=1

riDi

⌋

implies that every homogeneous element of B can be expressed as a polynomial in E.
If f1, . . . , fs generate the A0-module E then we have A = A0[f1, . . . , fs], proving our
statement. �

Next we give a proof of the first part of Theorem 2.5.

Proof. Let A = A0[D]. By Theorem 1.4 and since the cone σ∨ is full dimensional the
algebras A and K0[M ] have the same field of fractions. Let us show that A is a normal
ring. Given a closed point z ∈ Z and an element of v ∈ ∆z consider the map

νz,v : K0[M ]− {0} → Z

defined as follows. Let α ∈ K0[M ] be nonzero with decomposition in homogeneous
elements

α =
r
∑

i=1

fiχ
mi , where fi ∈ K ⋆

0 .
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Then let

νz,v(α) = min
1≤i≤r

{ordz fi + 〈mi , v〉} .

The map νz,v defines a discrete valuation on FracA. Denote by Ov,z the associated
local ring. By the definition of the algebra A0[D] we have

A = K0[M ] ∩
⋂

z∈Z

⋂

v∈∆z

Ov,z ,

proving that A is normal as intersection of normal rings with field of fractions FracA.
It remains to show that A is noetherian. By Hilbert’s Basis Theorem, it suffices to

show that A is finitely generated. Let λ1, . . . , λe be full dimensional regular subcones
of σ∨ giving a subdivision such that for any i the evaluation map

σ∨ → DivQ(Y ), m 7→ D(m)

is linear on λi. Fix i ∈ N such that 1 ≤ i ≤ e. Consider the distinct elements v1, . . . , vn
of the Hilbert basis of λi. Denote by Aλi the algebra

⊕

m∈λi∩M

H0(Y,OY (⌊D(m)⌋)χm.

Then the vectors v1, . . . , vn form a basis of the lattice M and so

Aλi ≃
⊕

(m1,...,mn)∈Nn

H0

(

Y,OY

(⌊

n
∑

i=1

miD(vi)

⌋))

.

By Lemma 2.8, the algebra Aλi is finitely generated over A0. The surjective map

Aλ1 ⊗ . . .⊗Aλe → A

shows that A is also finitely generated. �

For the second part of Theorem 2.5 we need the following lemma.

Lemma 2.9. Assume that A verifies the assumptions of 2.5 (ii). Then the following
statements hold.

(i) For any m ∈ σ∨
M we have Am 6= {0}. In other words, the weight semigroup of

the M-graded algebra A is σ∨
M .

(ii) If L = Q≥0 ·m′ is a half-line contained in σ∨ then the ring

AL :=
⊕

m∈L∩M

Amχ
m

is normal and noetherian.

Proof. Let

S = {m ∈ σ∨
M , Am 6= {0}}

be the weight semigroup of A. Assume that S 6= σ∨
M . Then there exist e ∈ Z>0 and

m ∈M such that m 6∈ S and e ·m ∈ S. Since A is a noetherian ring, by [GY, Lemma
2.2] the A0-module Aem is a fractional ideal of A0. By Theorem 1.4 we obtain

Aem = H0(Y,OY (Dem))
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for some integral divisor Dem ∈ DivZ(Y ). Let f be a nonzero section of

H0

(

Y,OY

(⌊

Dem

e

⌋))

.

This element exists by virtue of Theorem 1.4. We have the inequalities

div f e ≥ −e

⌊

Dem

e

⌋

≥ −Dem .

The normality of A implies f ∈ Am. This contradicts our assumption and gives (i).
For the second assertion we notice by 2.7 and by the argument of [AH, Lemma 4.1]

that AL is noetherian.
It remains to show that AL is normal. Let α ∈ FracAL be an integral element over

AL. By normality of A and K0[χ
m] we obtain α ∈ A ∩ K0[χ

m] = AL and so AL is
normal. �

In the sequel, we introduce some useful notation of convex geometry.

Notation 2.10. Let

(mi, ei), i = 1, . . . , r

be elements of M × Z such that the vectors m1, . . . , mr are nonzero and generate the
lattice M . Then the cone ω = Cone(m1, . . . ,mr) is full dimensional in MQ. Consider
the ω∨-polyhedron

∆ = { v ∈ NQ, 〈mi, v〉 ≥ −ei, i = 1, 2, . . . , r } .
Let L = Q≥0 ·m be a half-line contained in ω with primitive vector m. In other words,
the element m generates the semigroup L∩M . Denote by HL the Hilbert basis in the
lattice Zr of the nonzero cone

p−1(L) ∩ (Q≥0)
r, where p : Qr → MQ

is the Q-linear map sending the canonical basis onto (m1, . . . , mr). We let

H
⋆
L =

{

(s1, . . . , sr) ∈ HL ,

r
∑

i=1

si ·mi 6= 0

}

.

For any vector (s1, . . . , sr) ∈ H ⋆
L there exists a unique λ(s1, . . . , sr) ∈ Z>0 such that

r
∑

i=1

si ·mi = λ(s1, . . . , sr) ·m.

The argument of the proof of the following lemma uses only elementary facts of
commutative algebra and of convex geometry. This is the key idea in order to obtain
the Altmann-Hausen’s presentation of Theorem 2.5 (ii).

Lemma 2.11. Let min 〈m,∆〉 = minv∈∆〈m, v〉. Under the assumptions of 2.10 we
have

min 〈m,∆〉 = − min
(s1,...,sr)∈H ⋆

L

∑r
i=1 si · ei

λ(s1, . . . , sr)
.
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Proof. Let t be a variable over the field of complex numbers C. Consider theM-graded
subalgebra

A = C[t][te1χm1 , . . . , terχmr ] ⊂ C(t)[M ].

The field of fractions of A is the same as that of C(t)[M ]. Using results of [Ho] the
normalization of the algebra A is

Ā = C[ω0 ∩ (M × Z)], where ω0 ⊂ MQ ×Q

is the rational cone generated by (0, 1), (m1, e1), . . . , (mr, er). Actually a routine cal-
culation shows that

ω0 = {(w,−min 〈w,∆〉+ e) |w ∈ ω, e ∈ Q≥0}
and so

Ā =
⊕

m∈ω∩M

H0(A1
C,OA1

C
(⌊min 〈m,∆〉⌋ · (0)))χm,

where A1
C = SpecC[t ].

The sublattice G ⊂M generated by p(H ⋆
L ) is a subgroup of Z ·m. Therefore there

exists a unique integer d ∈ Z>0 such that G = dZ ·m. For an element m′ ∈ ω ∩M , we
denote by Am′ (resp. Ām′) the graded piece of A (resp. Ā) corresponding to m′. Then

the normalization Ā
(d)
L of the algebra

A
(d)
L :=

⊕

s≥0

Asdmχ
sdm is BL :=

⊕

s≥0

Āsdmχ
sdm .

Futhermore

AL =
⊕

s≥0

Asmχ
sm

is generated over C[t] by the elements

f(s1,...,sr) :=

r
∏

i=1

(teiχmi)si = t
∑r

i=1
sieiχλ(s1,...,sr)m,

where (s1, . . . , sr) runs H ⋆
L . By the choice of the integer d we have A

(d)
L = AL. Con-

sidering the G-graduation of A
(d)
L for any (s1, . . . , sr) ∈ H

⋆
L the element f(s1,...,sr) of the

graded ring A
(d)
L has degree

deg f(s1,...,sr ) :=
λ(s1, . . . , sr)

d
.

Letting

D = − min
(s1,...,sr)∈H ⋆

L

div f(s1,...,sr )
deg f(s1,...,sr )

= − min
(s1,...,sr)∈H ⋆

L

d ·
∑r

i=1 siei
λ(s1, . . . , sr)

· (0)

by Corollary 1.7 we obtain

Ā
(d)
L =

⊕

s≥0

H0(A1
C,OA1

C
(⌊sD⌋))χsdm.

The equality Ā
(d)
L = BL implies that for any integer s ≥ 0

H0(A1
C,OA1

C
(⌊min 〈sd ·m,∆〉⌋ · (0))) = H0(A1

C,OA1

C
(⌊sD⌋)).
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Hence by Lemma 1.6 we have

D = min 〈d ·m,∆〉 · (0).
Dividing by d, we obtain the desired formula. �

Let A be an M-graded algebra satisfying the assumptions of 2.5 (ii). Using the
D.P.D. presentation on each half line of the weight cone σ∨ (see Lemma 1.6), we can
build a map

σ∨ → DivQ(Y ), m 7→ Dm .

It is upper convex, positively homogeneous, and verifies for any m ∈ σ∨
M ,

Am = H0(C,OC(⌊Dm⌋)).
By Lemma 2.11, this map is piecewise linear (see [AH, 2.11]) or equivalently m 7→ Dm

is the evaluation map of a polyhedral divisor. The following proof precises this idea.

Proof of 2.5 (ii). By 2.7 we may consider

f = (f1χ
m1 , . . . , frχ

mr)

a system of homogeneous generators of A with nonzero vectors m1, . . . , mr ∈ M . We
use the same notation as in 2.4. Denote by D the σ-polyhedral divisor D[f ]. Let us
show that A = A0[D]. Let L = Q≥0 · m be a half-line contained in ω = σ∨ with m
being the primitive vector of L. By Lemma 2.9, the graded subalgebra

AL :=
⊕

m′∈L∩M

Am′χm
′ ⊂ K0[χ

m]

is normal, noetherian, and has the same field of fractions as that ofK0[χ
m]. Futhermore

with the same notation as in 2.10, the algebra AL is generated by the set
{

r
∏

i=1

(fiχ
mi)si, (s1, . . . , sr) ∈ H

⋆
L

}

.

By Corollary 1.7, if

Dm := − min
(s1,...,sr)∈H ⋆

L

∑r
i=1 si div fi

λ(s1, . . . , sr)

then AL = A0[Dm] with respect to the variable χm. By Lemma 2.11 for any closed
point z ∈ Z we have

hz[f ](m) = min〈m,∆z[f ]〉 = − min
(s1,...,sr)∈H ⋆

L

∑r
i=1 si ordz fi

λ(s1, . . . , sr)
.

Hence D(m) = Dm. Since this equality holds for all primitive vectors belonging to σ∨

one concludes that A = A0[D]. The uniqueness of D is straightforward (see Theorem
1.4 and [La, 2.2]). �

Using well known facts on Dedekind domains we obtain the following result.
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Proposition 2.12. Let A0 be a Dedekind domain and let B0 be the integral closure of
A0 in a finite separable extension L0/K0, where K0 = FracA0. Let D =

∑

z∈Z ∆z · z
be a polyhedral divisor over A0, where Z ⊂ Y = SpecA0 is the subset of closed points.
Letting Y ′ = SpecB0 and considering the natural projection p : Y ′ → Y , B0 is a
Dedekind domain and we have the formula

A0[D]⊗A0
B0 = B0[p

⋆D] with p⋆D =
∑

z∈Z

∆z · p⋆(z ).

Exemple 2.13. Consider the polyhedral divisor

D = ∆(t) · (t) + ∆(t2+1) · (t2 + 1)

over the Dedekind ring A0 = R[t], where the coefficients are

∆(t) = (−1, 0) + σ, ∆(t2+1) = [(0, 0), (1, 0)] + σ,

and σ ⊂ Q2 is the rational cone generated by (1, 0) and (1, 1). An easy computation
shows that

A0[D] = R
[

t,−tχ(1,0), χ(0,1), t(t2 + 1)χ(1,−1)
]

≃ R[x1, x2, x3, x4]

((1 + x21)x2 + x3x4)
,

where x1, x2, x3, x4 are independent variables over R. Let ζ =
√
−1. Considering the

natural projection p : A1
C → A1

R we obtain

p⋆D = ∆0 · 0 + ∆(t2+1) · ζ +∆(t2+1) · (−ζ).
Letting B0 = C[t] one concludes that A0[D]⊗R C = B0[p

⋆D].

3. Multigraded algebras and algebraic function fields

In this section, we study another type of multigraded algebras. They are described
by a proper polyhedral divisor over an algebraic function field in one variable. Fix an
arbitrary field k. Let us recall a classical definition.

3.1. An algebraic function field (in one variable) over k is a field extension K0/k
verifying the following conditions.

(i) The transcendence degree of K0 over k is equal to one.
(ii) Every element of K0 that is algebraic over k belongs to k.

Actually, by virtue of our convention, a smooth projective curve C over k gives
naturally an algebraic function field K0/k by letting K0 = k(C). As an application
of the valuative criterion of properness (see [EGA II, Section 7.4]), every algebraic
function field K0/k is the field of rational functions of a unique (up to isomorphism)
smooth projective curve C over k. In the next paragraph, we recall the construction
of the curve C starting from an algebraic function field K0.

3.2. A valuation ring of K0 is a proper subring O ⊂ K0 strictly containing k and such
that for any nonzero element f ∈ K0, either f ∈ O or 1

f
∈ O. By [St, 1.1.6] every

valuation ring of K0 is the ring associated to a discrete valuation of K0/k. A subset
P ⊂ K0 is called a place of K0 if there is some valuation ring O of K0 such that P is
the maximal ideal of O. We denote by RkK0 the set of places of K0. The latter is
called the Riemann surface of K0. By [EGA II, 7.4.18] the set RkK0 can be identified
with a smooth projective curve C over the field k such that K0 = k(C).
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In the sequel we consider C = RkK0 as a geometrical object with its structure of
scheme. By convention an element z belonging to C is a closed point. We write Pz the
associated place to a point z ∈ C. Note that we keep the notation of convex geometry
introduced in 2.1.

3.3. Let M,N be dual lattices and let σ ⊂ NQ be a strongly convex polyhedral cone.
A σ-polyhedral divisor over K0 (or over C) is a formal sum D =

∑

z∈C ∆z · z with
∆z ∈ Polσ(NQ) and ∆z = σ for all but finitely many z ∈ C. Again we let

D(m) =
∑

z∈C

min
v∈∆z

〈m, v〉 · z

be the evaluation inm ∈ σ∨; that is, a Q-divisor over the curve C. We let κ(P ) = O/P ,
where O is the valuation ring of a place P . The field κ(P ) is a finite extension of k [St,
1.1.15] and we call it the residual field of P . The degree of D is the Minkowski sum

degD =
∑

z∈C

[κ(Pz ) : k] ·∆z ,

where [κ(P ) : k] is the dimension of the k-vector space κ(P ). The number [κ(P ) : k]
is also called the degree of the place P . Given m ∈ σ∨ we have naturally the relation
(degD)(m) = degD(m).

We can now introduce the notion of properness for polyhedral divisors. See [AH,
2.7, 2.12] for other particular cases.

Definition 3.4. A σ-polyedral divisor D =
∑

z∈C ∆z · z is called proper if it satifies
the following conditions.

(i) The polyhedron degD is strictly contained in the cone σ.
(ii) If degD(m) = 0 then m belongs to the boundary of σ∨ and a multiple of D(m)

is principal.

Our next main result gives a description similar to that in 2.5 for algebraic function
fields. For a proof of 3.5 (iii) we refer to the argument of [La, 2.4].

Theorem 3.5. Let k be a field and let C = RkK0 be the Riemann surface of an
algebraic function field K0/k. Then the following statements hold.

(i) Let

A =
⊕

m∈σ∨M

Amχ
m

be an M-graded normal noetherian k-subalgebra of K0[M ] with weight cone σ∨

and A0 = k. If A and K0[M ] have the same field of fractions then there exists
a unique proper σ-polyhedral divisor D over C such that A = A[C,D], where

A[C,D] =
⊕

m∈σ∨M

H0(C,OC(⌊D(m)⌋))χm.

(ii) Let D be a proper σ-polyhedral divisor over C. Then the algebra A[C,D] is
M-graded, normal, and finitely generated with weight cone σ∨. Futhermore it
has the same field of fractions as that of K0[M ].
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(iii) Let

A = k[f1χ
m1 , . . . , frχ

mr ]

be an M-graded subalgebra of K0[M ] with the fiχ
mi homogeneous of nonzero

degree mi. Let f = (f1χ
m1 , . . . , frχ

mr). Assume that A and K0[M ] have the
same field of fractions. Then D[f ] is the proper σ-polyhedral divisor such that
the normalization of A is A[C,D[f ]] (see 2.4).

For the proof of 3.5 we need some preliminary results. We begin by collecting some
properties from a M-graded algebra A as in 3.5 (i) to some graded subring AL.

Lemma 3.6. Let A be anM-graded algebra satisfying the assumptions of 3.5 (i). Given
a half-line L = Q≥0 ·m ⊂ σ∨ with a primitive vector m consider the subalgebra

AL =
⊕

m′∈L∩M

Am′χm
′

.

Let

Q(AL)0 =
{ a

b
| a ∈ Asm, b ∈ Asm, b 6= 0, s ≥ 0

}

.

Then the following assertions hold.

(i) The algebra AL is finitely generated and normal.
(ii) Either Q(AL)0 = k or Q(AL)0 = K0.
(iii) If Q(AL)0 = k then AL = k[βχdm] for some β ∈ K⋆

0 and some d ∈ Z>0.

Proof. The proof of (i) is similar to that of 2.9 (ii) and so we omitted it.
The field Q(AL)0 is an extension of k contained in K0. If the transcendence degree

of Q(AL)0 over k is zero then by normality of AL we have Q(AL)0 = k. Otherwise
the extension K0/Q(AL)0 is algebraic. Let α be an element of K0. Then there exist
a1, . . . , ad ∈ Q(AL)0 with ad 6= 0 such that

αd =
d
∑

j=1

ajα
d−j .

Let

I = {i ∈ {1, . . . , d}, ai 6= 0}.
For any i ∈ I we write ai =

pi
qi

with pi, qi ∈ AL being homogeneous of the same degree.

Considering q =
∏

i∈I qi we obtain the equality

(αq)d =

d
∑

j=1

ajq
j(αq)d−j.

The normality of AL gives αq ∈ AL, proving that α = αq/q ∈ Q(AL)0.
To show (iii) we let S ⊂ Z ·m be the weight semigroup of the graded algebra AL.

Since L is contained in the weight cone σ∨, S is nonzero. Therefore if G is the subgroup
generated by S then there exists d ∈ Z>0 such that G = Z d ·m. Letting u = χdm we
can write

AL =
⊕

s≥0

Asdmu
s.
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Thus for all homogeneous elements a1u
l, a2u

l ∈ AL of the same degree we have a1
a2

∈
Q(AL)

⋆
0 = k⋆ so that

AL =
⊕

s∈S′

kfs u
s,

where S ′ := 1
d
S and fs ∈ k(C)⋆. Let us fix homogeneous generators fs1u

s1, . . . , fsru
sr of

the G-graded algebra AL. Consider d
′ := g.c.d(s1, . . . , sr). If d

′ > 1 then the inclusion
S ⊂ dd′Z ·m yields a contradiction. So d′ = 1 and there are some integers l1, . . . , lr
such that 1 =

∑r
i=1 lisi. The element

βu =
r
∏

i=1

(fsiu
si)li

verifies

(βu)s1

fs1u
s1

∈ Q(AL)
⋆
0 = k⋆.

By normality of AL, βu ∈ AL and so AL = k[βu] = k[βχdm], establishing (iii). �

The following lemma is well known. For the main argument we refer the reader to
[De, Section 3], [AH, 9.1].

Lemma 3.7. Let D1, D2, D be Q-divisors on C. Then the following hold.

(i) If D has positive degree then there exists d ∈ Z>0 such that the invertible sheaf
OC(⌊dD⌋) of OC-modules is very ample. Futhermore, the graded algebra

B =
⊕

l≥0

H0(C,OC(⌊lD⌋))tl,

where t is a variable over k(C), is finitely generated. The field of fractions of
B is k(C)(t).

(ii) Assume that for i = 1, 2 we have either degDi > 0 or rDi is principal for some
r ∈ Z>0. If for any s ∈ N the inclusion

H0(C,OC(⌊sD1⌋)) ⊂ H0(C,OC(⌊sD2⌋))
holds then we have D1 ≤ D2.

In the next corollary, we keep the notation of Lemma 3.6. Using Demazure’s Theorem
for normal graded algebras, we show that each AL admits a D.P.D. presentation given
on the same smooth projective curve.

Corollary 3.8. There exists a unique Q-divisor D on C such that

AL =
⊕

s≥0

H0(C,OC(⌊sD⌋))χsm

and the following hold.

(i) If Q(AL)0 = k then D = div f
d

for some f ∈ K⋆
0 and some d ∈ Z>0.

(ii) If Q(AL)0 = K0 then degD > 0.
(iii) If f1χ

s1m, . . . , frχ
srm are homogeneous generators of the algebra AL then

D = − min
1≤i≤r

div fi
si

.
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Proof. (i) Assume that Q(AL)0 = k. By Lemma 3.6, AL = k[β χdm] for some β ∈ K⋆
0

and some d ∈ Z>0. Thus, we can take D = div β−1

d
. The uniqueness in this case is easy.

This gives assertion (i).
(ii) The field of rational functions of the normal variety ProjAL is K0 = Q(AL)0.

Since ProjAL is a smooth projective curve over A0 = k, we may identify its points
with the places of K0. Therefore the existence and the uniqueness of D follow from
Demazure’s Theorem (see [De, Theorem 3.5]). Futhermore Q(AL)0 6= k implies that
dimkAsm ≥ 2, for some s ∈ Z>0. Hence by [St, 1.4.12] we obtain degD > 0.

The proof of (iii) follows from 3.7 and from the argument in [FZ, 3.9]. �

As a consequence of Corollary 3.8, again we can apply the formula of convex geometry
of 2.11 to obtain the existence of the polyhedral divisor D in the statement of 3.5 (i).

Proof of 3.5 (i). Let us adopt the notation introduced in 2.4 and 2.10. Let

f = (f1χ
m1 , . . . , frχ

mr)

be a system of homogeneous generators of A. Consider a half-line

L = Q≥0 ·m ⊂ σ∨

with primitive vector m ∈M . By Corollary 3.8

AL =
⊕

s≥0

H0(C,OC(⌊sDm⌋))χsm

for a unique Q-divisor Dm on C. By the proof of [AH, Lemma 4.1] the algebra AL is
generated by

r
∏

i=1

(fiχ
mi)si, where (s1, . . . sr) ∈ H

⋆
L .

By Corollary 3.8 (iii) and Lemma 2.11 we have D[f ](m) = Dm and so A = A[C,D[f ]].
It remains to show that D = D[f ] is proper; the uniqueness of D will be given by

Lemma 3.7 (ii). Denote by S ⊂ C the union of the supports of divisors div fi , for
i = 1, . . . , r. Let v ∈ degD. We can write

v =
∑

z∈S

[κ(Pz) : k] · vz

for some vz ∈ ∆z[f ]. Therefore for any i we have

〈mi,
∑

z∈S

[κ(Pz) : k] · vz〉 ≥ −
∑

s∈S

[κ(Pz) : k] · ordz fi = −deg div fi = 0

and so degD ⊂ σ. If degD = σ then one concludes that FracA is different from
FracK0[M ], contradicting our assumption. Hence degD 6= σ. Let m ∈ σ∨

M be such
that degD(m) = 0. Then m belongs to the boundary of σ∨. Consider the half-line
L generated by m. Applying Corollary 3.8 (i) for the algebra AL, we deduce that a
multiple of D(m) is principal, proving that D is proper. �

Proof of 3.5 (ii). Let us show that A = A[C,D] and K0[M ] have the same field of
fractions. Let L = Q≥0 · m be a half-line intersecting σ∨ with its relative interior
and having m for primitive vector. Since degD(m) > 0 by Lemma 3.7 (i) we have
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FracAL = K0(χ
m), yielding our first claim. As a consequence, σ∨ is the weight cone of

the M-graded algebra A. The proof of the normality is similar to that of 2.5 (i).
Let us show further that A is finitely generated. First we may consider a subdivision

of σ∨ by regular strongly convex polyhedral cones ω1, . . . , ωs such that for any i we
have ωi ∩ relint σ∨ 6= ∅, ωi is full dimensional, and D is linear on ωi. Fix 1 ≤ i ≤ s
and a positive integer k. Let (e1, . . . , en) be a basis of M generating the cone ωi and
such that e1 ∈ relint σ∨. By properness there exists d ∈ Z>0 such that every D(dej) is
a globally generated integral divisor. Letting

Aωi,k =
⊕

(a1,...,an)∈Zn

H0

(

C,O
(⌊

n
∑

i=1

aikei

⌋))

χ
∑

i aikei

we consider homogeneous elements f1χ
m1 , . . . , frχ

mr ∈ Aωi,d obtained by taking gen-
erators of the space of global sections of every O(D(dej)) and homogeneous generators
of the graded algebra

B =
⊕

l≥0

H0(C,OC(D(dle1)))χ
lde1 ,

see Lemma 3.7 (i). Using Theorem 3.5 (iii) the normalization of k[f1χ
m1 , . . . , frχ

mr ] is
Aωi,d and so by Theorem 2 in [Bou, V3.2] the algebra Aωi

= Aωi,1 is finitely generated.
One concludes by taking the surjection Aω1

⊗ . . .⊗Aωs → A. �

In the next assertion, we study how the algebra associated to a polyhedral divisor
over a smooth projective curve changes when we extend the scalars passing to the
algebraic closure of the ground field k. Assertions (i), (ii) are classical for the theory
of algebraic function fields and the proofs are omitted.

Proposition 3.9. Assume that k is a perfect field and let k̄ be an algebraic closure of
k. Denote by Sk̄/k the absolute Galois group of k. For a smooth projective curve C
over k associated to an algebraic function field K0/k the following hold.

(i) The field K̄0 = k̄ ·K0 is an algebraic function field over k̄.
(ii) The group Sk̄/k acts naturally on C

(

k̄
)

= Rk̄ K̄0 by

g · (λf) = g(λ)f and g ⋆ P = { g · F |F ∈ P},
where g ∈ Sk̄/k, λ ∈ k̄, f ∈ K0, and P ∈ C

(

k̄
)

. Any Sk̄/k-orbit of C
(

k̄
)

is a
finite set and corresponds to a fiber of the surjective map

S : C
(

k̄
)

→ C, P 7→ P ∩K0.

In other words, there is a bijection between the set of Sk̄/k-orbits of C
(

k̄
)

and
the curve C.

(iii) If D =
∑

z∈C ∆z · z is a proper σ-polyedral divisors over C then

A[C,D]⊗k k̄ = A
[

C
(

k̄
)

,Dk̄

]

,

where Dk̄ is the proper σ-polyhedral divisor over C
(

k̄
)

defined by

Dk̄ =
∑

z∈C

∆z · S⋆(z) with S ⋆(z ) =
∑

z ′∈S−1(z)

z ′.
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Proof. (iii) Given a Weil Q-divisor D over C, by [St, Theorem 3.6.3] we obtain

H0(C,OC(⌊D⌋))⊗k k̄ = H0(C
(

k̄
)

,OC(k̄)(⌊S
⋆D⌋)).

The proof of (iii) follows from the computation of A[C,D]⊗k k̄. The properness of Dk̄

is given for instance by 3.5 (i). �

Remark 3.10. It is well known that every finitely generated extension of a perfect field
is separable. However for non-perfect case, we may consider the inseparable algebraic
function field of one variable

K0 = Frac
k[X ,Y ]

(tX 2 + s + Y 2)
,

where k = F2(s, t) is the rational function field in two variables. Consequently, for any
proper polyhedral divisor D over C = RkK0, the ring A[C,D]⊗k k̄ contains a nonzero
nilpotent element.

4. Split affine T-varieties of complexity one

As an application of the results in the previous sections, we can give now a combi-
natorial description of split affine T-varieties of complexity one over any field k.

4.1. Let T be a split algebraic torus over k. Denote by M and N its dual lattices of
characters and of one parameter subgroups. Let X = SpecA be an affine variety over
k. Assume that T acts on X . Then the associated morphism A → A⊗k k[T] endows
A with an M-grading. Conversely, an M-grading on the algebra A yields naturally
a T-action on X . Consider the subextension Q(A)0 ⊂ k(X) of k generated by the
quotients a/b, where a, b ∈ A are homogeneous of the same degree. The complexity of
the T-action is the transcendence degree of Q(A)0 over k.

We say that X is a T-variety if X is normal and if the T-action on X is effective2.
This is equivalent to say that A is normal and the set of its weights generates M .

Definition 4.2. Let C be a smooth curve over k and let σ ⊂ NQ be a strongly convex
polyhedral cone. A σ-polyhedral divisor D =

∑

z∈C ∆z · z is called proper if it satifies
one of the following statement.

(i) C is affine. In particular, D is a polyhedral divisor over the Dedekind ring
A0 = k[C].

(ii) C is projective and D is a proper polyhedral divisor in the sense of 3.4.

We denote by A[C,D] the associated M-graded algebra.

Combining 2.5 and 3.5 one can describe a split affine T-variety of complexity one by
a proper polyhedral divisor.

Theorem 4.3.

(i) To any split affine T-variety X = SpecA over k of complexity one there is
some proper σ-polyhedral divisor D on a smooth curve C over k such that
A ≃ A[C,D] as M-graded algebras.

2Seeing T as a representable group functor, this means that the kernel of the natural transformation
of group functors T → AutX is trivial.
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(ii) Conversely, if D is a proper σ-polyhedral divisor on a smooth curve C then
X = SpecA, where A = A[C,D], defines a split affine T-variety of complexity
one.

Proof. (i) Let σ ⊂ NQ be the dual of the weight cone of A. Remark that we can choose
some weight vectors χm ∈ FracA such that χm · χm′

= χm+m′

and such that we have
an embedding

A ⊂
⊕

m∈M

Q(A)0 χ
m = Q(A)0[M ],

making A an M-graded subalgebra. Futhermore A and Q(A)0[M ] have the same field
of fractions. The graded piece A0 is the algebra of T-invariants. Denote by K0 the
field of fractions of A0. Assume that A0 6= k. Then we have K0 = Q(A)0. Indeed,
by assumption every algebraic element of K0 over k belongs to k. Therefore the
trancendence degree of K0/k is equal to 1 so that Q(A)0/K0 is algebraic. Using the
normality of A0 one concludes that K0 = Q(A)0. Remark further that the ring A0 is a
Dedekind Domain. By Theorem 2.5 (ii) we obtain A = A[C,D] for some σ-polyhedral
divisor D over A0. If A0 = k then one concludes by Theorem 3.5 (i). Assertion (ii)
follows immediately from 2.5 (i) and 3.5 (ii). �

4.4. By a principal σ-polyhedral divisor F over C we mean a pair (ϕ,D) with a mor-
phism of semigroup ϕ : σ∨

M → k(C)⋆ and a σ-polyhedral divisor D over C such that
for any m ∈ σ∨

M we have

D(m) = divC F(m).

Actually starting from F and choosing a finite generating set of σ∨
M one can easily

construct D satisfying the equalities as before. Usually we write F and D by the same
letter.

The following result provides a description of equivariant isomorphisms between two
affine T-varieties of complexity one over the same base curve. See [AH, Section 8, 9]
for higher complexity when the ground field is algebraically closed of characteric zero.

Proposition 4.5. Let D and D′ be two proper σ-polyhedral divisors over a smooth
curve C. Then A[C,D] and A[C,D′] are equivariantly isomorphic if and only if the
following assertion holds. There exist a principal σ-polyhedral divisor F, a linear au-
tomorphism F of MQ preserving σ∨

M and, φ ∈ AutC such that for any m ∈ σ∨
M we

have

φ⋆D(m) = D′(F (m)) + F(m).

Proof. Let K0 = k(C). Let ψ : A[C,D] → A[C,D′] be an isomorphism of M-graded
algebras. Since each homogeneous element is sent into a homogeneous element, the
morphism ψ extends to an automorphism of K0[M ]. We have also automorphisms
of k[C] and k(C) coming from an element φ ∈ AutC . Composing by (φ⋆)−1 we
may suppose that ψ is the identity map on K0. Futhermore there exists a linear
automorphism F of MQ preseving σ∨

M such that for any m ∈ M we have ψ(χm) =
fmχ

F (m) for some fm ∈ K⋆
0 . Again we may suppose that F is the identity. One observes

that m 7→ fm, σ
∨
M → K⋆

0 defined a principal σ-polyhedral divisor F. Using Theorem
1.4 and Lemma 3.7 (ii) for any m ∈ σ∨

M we have the equality D(m) = D′(m) + F(m).
The converse is straightforward and left to the reader. �
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5. Non-split case via Galois descent

In view of the result of the above section, we provide a combinatorial description of
affine normal varieties endowed with a (non-nescessary split) torus action of complexity
one (see 5.4 for a precise definition). This can be compared with well known descriptions
for toric and spherical varieties, see [Bry], [Vo], [ELST], [Hu].

5.1. For a field extension F/k and an algebraic scheme X over k we let

X(F ) = X ×Spec k SpecF .

This is an algebraic scheme over F . An algebraic torus of dimension n is an alge-
braic group G over k such that there exists a finite Galois extension E/k yielding an
isomorphism of algebraic groups G(E) ≃ Gn

m(E) (⋆), where Gm is the multiplicative
group scheme over k. We say that the torus G splits in the extension E/k if we have
an isomorphism similar to (⋆). For more details concerning the theory of non-split
reductive group the reader may consult [BoTi].

Below G is a torus over k that splits in a finite Galois extension E/k. Denote by
SE/k the Galois group of E/k. Consider also M and N the dual lattices of characters
and of one parameter subgroups of the split torus G(E). Notice that in the sequel
most of our varieties are defined over the field E. We start by precising the following
classical notion.

Definition 5.2.

(i) ASE/k-action on a variety V over E is called semi-linear ifSE/k acts by scheme
automorphisms over k and if for any g ∈ SE/k the diagram

V
g

//

��

V

��

SpecE g
// SpecE

is commutative.
(ii) Let B be an algebra over E. A semi-linear SE/k-action on B is an action by

automorphisms of algebras over k such that for all a ∈ B, λ ∈ E, and g ∈ SE/k

g · (λa) = g(λ)g · a.
If V is affine then having a semi-linear SE/k-action on V is equivalent to having a
semi-linear SE/k-action on the algebra E[V ].

Next, we recall a well known description of algebraic tori related to finite groups
actions on lattices.

5.3. The Galois group SE/k acts naturally on the torus

G(E) = G×Spec k SpecE

by the second factor. The corresponding action on E[M ] is determinated by a linear
SE/k-action on M (see e.g. [ELST, Proposition 2.5], [Vo, Section 1]) permuting the
Laurent monomials.
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Conversely, given a linear SE/k-action on M we have a semi-linear action on E[M ]
defined by

g · (λχm) = g(λ)χg·m,

where g ∈ SE/k, λ ∈ E and m ∈ M , respects the Hopf algebra structure. As a
consequence of the Speiser’s Lemma, we obtain a torus G over k that splits in E/k.
In addition, the semi-linear action that we have built on G(E) = SpecE [M ] is exacty
the natural semi-linear action on the second factor.

The following definition introduces the category of G-varieties.

Definition 5.4. AG-variety of complexity d (splitting in E/k) is a normal variety over
k with a G-action and such that X(E) is a G(E)-variety of complexity d in sense of
Section 4. A G-morphism between G-varieties X, Y over k is a morphism f : X → Y
of varieties over k such that

G×X
id×f

//

��

G× Y

��

X
f

// Y

is commutative.

An important class of semi-linear actions is provided by those respecting a split torus
action. The SE/k-action on G(E) is given as in paragraph 5.3.

Definition 5.5.

(i) Let B be an M-graded algebra over E. A semi-linear SE/k-action on B is
called homogeneous whether it sends homogeneous elements into homogeneous
elements.

(ii) A semi-linear SE/k-action on a G(E)-variety V respects the G(E)-action if the
following diagram

G(E)× V
g×g

//

��

G(E)× V

��

V g
// V

commutes, where g runs SE/k.

With the assumption that V is affine, a semi-linear SE/k-action on the variety V
respecting the G(E)-action corresponds to a homogeneous semi-linear SE/k-action on
the algebra E[V ].

The following result is classically stated for the category of quasi-projective varieties
(see the proof of [Hu2, 1.10]). In the setting of affine G-varieties we include a short
argument.

Lemma 5.6. Let V be an affine G(E)-variety of complexity d over E with a semi-linear
SE/k-action. Then the quotient X = V/SE/k is an affine G- variety of complexity d.
We have a natural isomorphism of G(E)-varieties X(E) ≃ V respecting the SE/k-
actions.
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Proof. It is known that R = BSE/k is finitely generated. Let us show that R is normal.
Letting L be the field of fractions of R and considering f ∈ L an integral element over
R, by normality of B, we have f ∈ B ∩L = R. This proves the normality of R. Using
the above definition, the variety X is endowed with a G-action. The rest of the proof
follows from Speiser’s Lemma. �

Fixing an affine G-variety X of complexity d over E, an E/k-form of X is an affine
G-variety Y over k such that we have a G(E)-isomorphism X(E) ≃ Y (E). Our aim
is to give a combinatorial description of E/k-forms of X . Let us recall first in this
context some notion of non-abelian Galois cohomology (see e.g. [ELST, Section 2.5]
for the category of varieties).

5.7. Let Y, Y ′ be E/k-forms of the fixed affine G-variety X . The Galois group SE/k

acts on the set of G(E)-isomorphisms between Y (E) and Y ′(E). Consequently, it acts
also by group automorphisms on the group of G(E)-automorphims AutG(E)(X (E ))
of X(E). More precisely, recall that for any g ∈ SE/k and any G(E)-isomorphism
ϕ : Y (E) → Y ′(E) one defines g(ϕ) by the following commutative diagram

Y (E)
g(ϕ)

//

g

��

Y ′(E)

g

��

Y (E) ϕ
// Y ′(E)

.

Note that this SE/k-action depends on the data of the E/k-forms Y, Y ′. Now given a
G(E)-isomorphism ψ : X(E) → Y (E) the map

a : SE/k → AutG(E)(X (E )), g 7→ ag = ψ−1 ◦ g(ψ)
is a 1-cocycle. This means that for all g, g′ ∈ SE/k we have

ag ◦ g(ag′) = ψ−1 ◦ g(ψ) ◦ g
(

ψ−1 ◦ g′(ψ)
)

= agg′.

Let φ : Y → Y ′ be a G-isomorphism and take a G(E)-isomorphism ϕ : X(E) → Y ′(E)
giving a 1-cocycle b as above. The diagram

X(E)
ψ

//

α

��

Y (E)

φ′=φ×id
��

X(E) ϕ
// Y ′(E)

is commutative, where α ∈ AutG(E)(X (E )) and φ′ is the extension φ. Since for any
g ∈ SE/k we have g(φ′) = φ′, it follows that

bg = α ◦ ag ◦ g
(

α−1
)

.

In this case, we say that the cocycles a and b are cohomologous. We obtain as well
a map Φ between the pointed set of isomorphism classes of E/k-forms of X and the
pointed set

H1(E/k,AutG(E)(X (E )))

of cohomology classes of 1-cocycles a : SE/k → AutG(E)(X (E )).
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Conversely, starting with a cocycle a the map

SE/k → AutG(E)(X (E )), g 7→ ag ◦ g
is a semi-linear action on X(E) respecting the G(E)-action. According to Lemma 5.6
one can associate an E/k-form W of X by taking the quotient X(E)/SE/k. Changing
a by a cohomologous 1-cocycle gives an E/k-form of X isomorphic to W . Thus we
deduce that the map Φ is bijective.

Moreover, let γ be a semi-linear SE/k-action on X(E). Remark that

X(E)
γ(g′)

//

g−1

��

X(E)

g−1

��

X(E)
g(γ(g′))

// X(E)

commutes for all g, g′ ∈ SE/k. Hence the equality ag = γ(g) ◦ g−1 defines a 1-cocycle
a. A straightforward verification shows that H1(E/k,AutG(E)(X (E ))) is also in bi-
jection with the pointed set of conjugacy classes of semi-linear SE/k-actions on X(E)
respecting the G(E)-action.

As explained in the above paragraph, classifying the pointed set of E/k-forms of
X is equivalent to classifying all possible semi-linear SE/k-actions on X(E). Thus
generalizing the notion of proper polyhedral divisors, we consider the combinatorial
counterpart of this classification.

Definition 5.8. Let C be a smooth curve over E and let σ ⊂ NQ be a strongly convex
cone. A SE/k-invariant σ-polyhedral divisor over C is a 4-uplet (D,F, ⋆, ·) verifying
the following conditions.

(i) D (resp. F) is a proper (resp. principal) σ-polyhedral divisor over C.
(ii) The curve C is endowed with a semi-linear SE/k-action

SE/k × C → C, (g, z) 7→ g ⋆ z.

This yields naturally an action on the space of Weil Q-divisors over C. More
precisely, given g ∈ SE/k and a Q-divisor D over C we let

g ⋆ D =
∑

z∈C

ag−1⋆z · z, where D =
∑

z∈C

az · z .

(iii) The lattice M is endowed with a linear SE/k-action

SE/k ×M →M, (g,m) 7→ g ·m
preserving the subset σ∨

M .

The 4-uplet (D,F, ⋆, ·) satisfies in addition the equality

g ⋆ (D(m) + F(m)) = D(g ·m) + F(g ·m),

where m ∈ σ∨
M and g ∈ SE/k.

The following result is a direct consequence of Hilbert’s Theorem 90. For the conve-
nience of the reader we give a short argument.
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Lemma 5.9. Let E0/K0 be a finite Galois extension with Galois group SE0/K0
. Assume

that SE0/K0
acts linearly on M . For any g ∈ SE0/K0

consider a morphism of groups
fg :M → E⋆

0 satisfying the equalities

fgh(m) = g (fh(m)) fg(h ·m),

where g, h ∈ SE0/K0
and m ∈ M . Then there exists a morphism of groups b :M → E⋆

0

such that for all g ∈ SE0/K0
, m ∈M we have

fg(m) = b(g ·m)g(b(m))−1 .

Proof. The opposite of SE0/K0
is the group H with underlying set SE0/K0

and the
multiplication law defined by g ⋆ h = hg, where g, h ∈ H . For g ∈ H we denote by
ag :M → E⋆

0 the morphism of groups defined by

ag(m) = g−1(fg(m)),

where m ∈ M . We can also define an H-action by group automorphisms on the split
torus

T = Hom(M ,E ⋆
0 )

over E0 by letting (g · α)(m) = g−1(α(g · m)), where α ∈ T , g ∈ H , and m ∈ M .
Considering g, h ∈ H we obtain

ah⋆g(m) = (gh)−1(fgh(m)) = (gh)−1(g(fh(m))fg(h ·m)) = ah(m)(h · ag)(m)

so that g 7→ ag is a 1-cocycle. By the Hilbert Theorem 90 one has

H1(H, T ) ≃ H1(E0/K0, T ) = 1.

Hence there exists b ∈ T such that for any g ∈ H we have ag = b · (g · b−1). These
latter equalities provide our result. �

The next theorem yields a classification of affine G-varieties of complexity one in
terms of invariant polyhedral divisors.

Theorem 5.10. Let G be a torus over k splitting in a finite Galois extension E/k.
Denote by SE/k the Galois group of E/k.

(i) Every affine G-variety of complexity one splitting in E/k is described by a
SE/k-invariant proper polyhedral divisor over a smooth curve.

(ii) Conversely, let C be a smooth curve over E. For a SE/k-invariant proper σ-
polyhedral divisor (D,F, ⋆, ·) over C one can endow the algebra A[C,D] with
a homogeneous semi-linear SE/k-action and associate an affine G-variety of
complexity one over k splitting in E/k by taking X = SpecA, where

A = A[C,D]SE/k.

Proof. (i) Let X be a G-variety of complexity one over k. According to Theorem 4.3
we may suppose that B = A[C,D] is the coordinate ring of X(E) for some proper
σ-polyhedral divisor D over a smooth curve C. The algebra B is endowed with a
homogeneous semi-linear SE/k-action. Let E0 = E(C). Extending this action on
E0[M ] we remark that E0 and E[C] are preserved. We obtain a semi-linear SE/k-
action on C. If C is projective then one defines the SE/k-action on C by the following
way ; given a place P ⊂ E0 we let

g ⋆ P = {g ⋆ f | f ∈ P}.
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In the case where C is arbitrary the Speiser Lemma gives the equality

E0 = E ·K0, where K0 = E
SE/k

0 .

The finite extension E0/K0 is Galois. We have a natural identification SE/k ≃ SE0/K0

with the Galois group of E0/K0. For all m ∈M , g ∈ SE/k we have

g · (fχm) = g(f)fg(m)χΓ(g,m)(1)

for some some element fg in the split torus T = Hom(M ,E ⋆
0 ) and some Γ(g,m) ∈ M .

We observe that Γ is a linear action on M . Denote by g ·m the lattice vector Γ(g,m).
For all g, h ∈ SE/k we have

fgh(m)χm = gh · χm = g · (h · χm) = g(fh(m))fg(h ·m)χgh·m.

Using Lemma 5.9 there exists b ∈ T such that for all m ∈ M , g ∈ SE/k we have
fg(m) = b(g ·m)/g(b(m)). We let F be the principal σ-polyhedral divisor associated
to b.

It remains to show the equalities

g ⋆ (D(m) + F(m)) = D(g ·m) + F(g ·m), ∀m ∈ σ∨
M , ∀g ∈ SE/k.(2)

First of all, we remark that if f ∈ E⋆
0 and g ∈ SE/k then g ⋆ div f = div g(f ). Let

fχm ∈ B be homogeneous of degree m. The transformation of fχm by g is an element
of B of degree g ·m and so

div g(f )fg(m) +D(g ·m) ≥ 0.

This implies that

g ⋆ (−div f + F(m)) ≤ F(g ·m) +D(g ·m).

According to Corollary 1.7 and Corollary 3.8 (iii) we obtain

g ⋆ (D(m) + F(m)) ≤ D(g ·m) + F(g ·m).

The converse inequality uses a similar argument. One concludes that (D,F, ⋆, ·) is an
invariant polyhedral divisor.

(ii) Again if b ∈ T corresponds to F then by virtue of (2) one defines a homogeneous
semi-linear SE/k-action on A[C,D] by letting fg(m) = b(g · m)/g(b(m)) and by the
equality (1). The rest of the proof is a consequence of Lemma 5.6. �

Let us provide an elementary example.

Exemple 5.11. Consider the σ-polyhedral divisor D over A1
C = SpecC[t ] defined by

((1, 0) + σ) · ζ + ((0, 1) + σ) · (−ζ) + ((1,−1) + σ) · 0,
where σ is the first quadrant Q2

≥0 and ζ =
√
−1. We endow D with a structure

of SC/R-invariant polyhedral divisors by considering first F given by the morphism
(m1, m2) 7→ tm2−m1 . We have a SC/R-action

SC/R → GL2(Z), g 7→
(

0 1
1 0

)
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on the lattice Z2, where g is the generator of SC/R. The algebra C[t] has the natural
complex conjugaison action ⋆ of SC/R. A direct computation shows that

A = C

[

t,
1

t(t− ζ)
χ(1,0),

t

t+ ζ
χ(0,1)

]

and so X = SpecA is the affine space A3
C. More concretely, the SC/R-action on the

algebra A is obtained by

g · (f(t)χ(m1,m2)) = ¯f(t)t2(m1−m2)χ(m2,m1).

Letting x = t−1(1 − ζ)−1χ(1,0) and y = t(1 + ζ)−1χ(0,1) we observe that ASC/R =
R[t, x+ y, ζ(x− y)]. Hence X/SC/R ≃ A3

R.

Next we describe the pointed set of E/k-forms of an affine G-varieties of complexity
one in terms of polyhedral divisors.

Definition 5.12. The invariant σ-polyhedral divisors (D,F, ⋆, ·) and (D,F′, ⋆′, ·′) over
C are conjugated if they verify the following. There exist ϕ ∈ Aut(C ), a principal
σ-polyhedral divisor E over C, and a linear automorphism F ∈ Aut(M ) giving an
automorphism of the E-algebra A[C,D] (see 4.5) such that for any g ∈ SE/k the
diagrams

C
g⋆

//

ϕ
��

C

ϕ
��

C
g⋆′

// C

and M
g·

//

F
��

M

F
��

M
g·′

// M

commute and for any m ∈M we have

F(g ·m)

g ⋆ F(m)
=
g ⋆ (ϕ−1)⋆E(m) · (ϕ−1)⋆F′(F (g ·m))

E(g ·m) · g ⋆ (ϕ−1)⋆F′(F (m))
.

Consider X an affine G-variety of complexity one described by the invariant polyhedral
divisor (D,F, ⋆, ·). We denote by EX(E/k) the pointed set of conjugacy classes ofSE/k-
invariant σ-polyhedral divisors over C of the form (D,F′, ⋆′, ·′).

As a direct consequence of the discusion of 5.7 we obtain the following.

Corollary 5.13. Let C be a smooth curve over E. Given an affine G-variety X of
complexity one associated to a SE/k-invariant polyhedral divisor (D,F, ⋆, ·) over C, we
have a bijection of pointed sets

EX(E/k) ≃ H1(E/k,AutG(E)(X (E ))).
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