On the product of two generic $q$-Gevrey series - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2024

On the product of two generic $q$-Gevrey series

Changgui Zhang
  • Fonction : Auteur
  • PersonId : 1276553

Résumé

In this paper, we consider a $q$-analog of the Borel-Laplace summation process introduced by Fabienne Marotte and the second author. We specifically examine two power series solutions of linear $q$-difference equations whose Newton polygon admits only positive slopes equal to $1$. These series, known as the generic $q$-Gevrey series, are shown to have the property that the product of two such series is $Gq$-summable at double level $(1,2)$. Furthermore, we prove that the $Gq$-sum of this product equals the product of the $Gq$-sums of the original two series.
Fichier principal
Vignette du fichier
TD_CZ_2024-Rev-C1.pdf (438.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04715276 , version 1 (30-09-2024)

Identifiants

  • HAL Id : hal-04715276 , version 1

Citer

Thomas Dreyfus, Changgui Zhang. On the product of two generic $q$-Gevrey series. 2024. ⟨hal-04715276⟩
41 Consultations
15 Téléchargements

Partager

More