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ON THE PRODUCT OF TWO GENERIC q-GEVREY SERIES

THOMAS DREYFUS AND CHANGGUI ZHANG

Abstract. In this paper, we consider a q-analog of the Borel-Laplace summation pro-
cess introduced by Fabienne Marotte and the second author. We specifically examine
two power series solutions of linear q-difference equations whose Newton polygon ad-
mits only positive slopes equal to 1. These series, known as the generic q-Gevrey series,
are shown to have the property that the product of two such series is Gq-summable at
double level (1, 2). Furthermore, we prove that the Gq-sum of this product equals the
product of the Gq-sums of the original two series.
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1. Introduction

Through the whole paper, q denotes a real number in the open interval (1,+∞).
Let C[[x]] be the C-vector space of power series of the variable x, and let C[[x]]q;1 its
sub-space of q-Gevrey series of the first order, i.e.:

(1.1)
∑
n≥0

cnx
n ∈ C[[x]]q;1 ⇐⇒ ∃C,A > 0, ∀n ≥ 0, |cn| ≤ C Anqn(n−1)/2.

Let C{x} be the C-vector space of convergent power series, which can be identified with
the set of germs of analytic functions at x = 0 in the complex plane. Thus, it is clear
that the inclusion relation C{x} ⊂ C[[x]]q;1 ⊂ C[[x]] holds.

As in [4, §4], we call a generic q-Gevrey series a power series f̂ ∈ C[[x]] that satisfies

a linear q-difference equation ∆f̂ = g ∈ C{x} whose Newton polygon admits only one
finite slope equal to one. More explicitly, one can and one will assume that ∆ represents
a certain n-th order q-difference operator of the following form :

(1.2) ∆ =
n∑
k=0

an−k(x)(xσq)
k ∈ C{x}[xσq], a0(0) an(0) 6= 0 ,

where σq denotes the q-difference operator σqf̂(x) = f̂(qx).

In view of [9, Theorem 5.3], it is known that every generic q-Gevrey series f̂ is Gq-
summable, that is, we can apply a q-Borel-Laplace summation process to it to obtain
a meromorphic solution Sdq;1(f̂) having the series as an asymptotic expansion in the
q-Gevrey sense. Note that generic q-Gevrey series are q-Gevrey of the first order.

Before going further, it is worthwhile to recollect some facts about one of the simplest
generic q-Gevrey series, that will be seen as a q-analog of the well-konwn Euler series∑

n≥0(−1)nn!xn+1:

(1.3) Êq(x) =
∑
n≥0

(−1)nqn(n−1)/2 xn .

By replacing x with −x in [19, 4.3.8], one finds that the square of this last series,

Êq(x)2, is not Gq-summable in any direction. Besides, it is easy to see that Êq(x)2

satisfies a non-homogeneous second order q-difference equation; for instance, see [9,
§2.2.2] or [20, (1.3)]. Thus, by invoking [3, Theorem 3.3.5], it can be found that the

square Êq(x)2 is Gq-multisummable, specifically Gq-summable of double level (1, 2);
further details on this definition will be provided later.

With this established, a pertinent inquiry arises: does the Gq-multisum of the square
of the q-Euler series equate to the square of the Gq-sum of the initial series? This paper
will address this question in a broader context as follows.

Theorem 1.1. Let (f̂1, f̂2) be a pair of generic q-Gevrey series, Then the product

f̂1 f̂2 belongs to the class C{x}q;(1,2). Furthermore, there exists a finite set of direc-
tions {δ1, ..., δM} ⊂ [0, 2π), which can be explicitely describe, such that for all directions

d ∈ R \
(
∪Mj=1 (δj + 2πZ)

)
, the following holds:

(1.4) Sdq;(1,2)(f̂1 f̂2) = Sdq;1 (f̂1)Sdq;1(f̂2) ,
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where Sdq;(1,2) denotes the Gq-multisum in the direction d and Sdq;1 denotes the Gq-sum

in the same direction.

The remainder of the paper is structured as follows:
Section 2: We will review the concepts of Gq-summation and its variant of double-

level extension as introduced in [19] and [9], respectively. Additionally, we will define the
so-called generalized q-Euler series by differentiating a variant of the q-Euler series with
respect to a parameter. This allows us to state a new characterization for any generic
q-Gevrey series; see Theorem 2.5.

Section 3: We will first present several preliminary lemmas concerning the general-
ized q-Euler series. By revisiting a result from [4], we will give a proof of Theorem 2.5.

Section 4: This section is dedicated to establishing Theorem 1.1 for products of
generalized q-Euler series; see Theorem 4.1. For achieve this, particular attention will
be given for the study of such products in two successive q-Borel planes.

Section 5: We will focus on proving the main result of the paper, namely The-
orem 1.1. This will be done in a somewhat technical manner, specifically combining
Theorems 2.5 and 4.1.

Since the historical paper [3] by G. D. Birkhoff in 1913, q-difference equations and
usual difference equations are often considered as sister theories to ordinary differential
equations. Thanks to the work of many mathematicians throughout the 1980s and 1990s,
it is now well-known that any power series solution to a linear or non-linear analytic
ODE is multi-summable and, moreover, the set of multi-summables power series forms
a differential algebra ([12, 1, 2, 6, 8, 10] ...). At the end of our previous paper [9], a
similar but weaker statement was given for the Gq-multi-summable series. The present
paper can be seen as a first proof of one part of this statement. We hope that this work
can be continued to develop a complete theory for the summability of formal solutions
of any non-linear q-difference equations, including q-Painlevé cases. For related topics,
see [7, 11, 13, 14, 15, 16, 17, 18], for instance.

2. Revisiting Gq-summation and generic q-Gevrey series

Throughout this section, we will adhere to the notation for functional transformations
and spaces introduced in [19, 9], applying it wherever relevant. As usual, C̃∗ denotes the
Riemann surface associated with the logarithm function, while log signifies the principal
branch of this function. Specifically, for any real number a > 0, the notation log a
corresponds to the natural logarithm ln a.

2.1. Space of Gq-summable series C{x}q;1. To simplify, we define

(2.1) eq(x) =
√

2π ln q e(log(
√
q x)2/(2 ln(q)) (x ∈ C̃∗) ,

and

(2.2) D̃R = {x ∈ C̃∗ : |x| < R} , V d
ε =

{
ξ ∈ C̃∗ : | arg(ξ)− d| < ε

}
,

where R > 0, d ∈ R and ε > 0. Here, d represents the direction of the argument, and
we will refer to d simply as the direction. In addition, we will denote by Cd the analytic
continuation along the direction d in some sector V d

ε .
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Definition 2.1. A power series f̂ =
∑

n≥0 anx
n is said to be Gq-summable in a given

direction d and one writes f̂ ∈ C{x}dq;1, if one has B̂q;1f̂ ∈ Hd
q;1, where B̂q;1f̂ and Hd

q;1

are defined as follows:

• B̂q;1f̂(ξ) =
∑

n≥0 an q
−n(n−1)/2 ξn, and this is what we call the (first order) formal

q-Borel transform of f̂ ;
• Hd

q;1 denotes the C-vector space of germs of analytic functions at ξ = 0 ∈ C that
can be continued into an analytic function φ possessing a q-exponential growth
of order one at the infinity in some sector V d

ε in the following sense:

(2.3) ∃A > 0, φ(ξ) = O (eq(Aξ)) as |ξ| → ∞ with ξ ∈ V d
ε .

In this case, the Gq-sum of f̂ related to the direction d is, by definition, the q-Laplace
transform of φ in the following manner: φ = Cd ◦ B̂dq;1f̂ , Sdq;1f̂ = Ldq;1φ, and

(2.4) Ldq;1φ(x) =

∫ ∞eid
0

φ(ξ)

eq(ξ/x)

dξ

ξ
,

where x belongs to some domain D̃R (R > 0) of the Riemann surface C̃∗.
Furthermore, if there exists a finite subset S ⊂ [0, 2π] such that f̂ ∈ C{x}dq;1 for any

d ∈ ([0, 2π] \ S), we will say that f̂ is Gq-summable and simply write f̂ ∈ C{x}q;1.

In view of [19, Proposition 4.3.1 & Théorème 5.3], one has the following result.

Proposition 2.2. Let d ∈ R.

(1) Given f̂ ∈ C{x}dq;1 and h ∈ C{x}, one has h f̂ ∈ C{x}dq;1 and Sdq;1(h f̂) = hSdq;1f̂ .

(2) Any generic q-Gevrey power series is Gq-summable.

2.2. Space of Gq-summable series C{x}q;(1,2). In order to simplify the presentation,
we will only recall the defnition of the double-level Gq-summable series ; for the more
general definition, see [9].

Definition 2.3. A power series f̂ =
∑

n≥0 anx
n is said to be Gq-summable of double-

level (1, 2) in a given direction d and one writes f̂ ∈ C{x}dq;(1,2), if B̂q;1f̂ ∈ Hd
q;2 and

Ldq;2 ◦ Cd ◦ B̂q;1f̂ ∈ H̃d
q;2, where Hd

q;2, Ldq;2 and H̃d
q;2 are defined as follows:

• Hd
q;2 = Hd

q1/2;1
and Ldq;2 = Ld

q1/2;1
, that are obtained by replacing q with q1/2(=

√
q) in (2.3) and (2.4), respectively;

• H̃d
q;2 denotes the C-vector space of analytic functions φ in some sector V d

ε (ε > 0

being arbitrary) such that φ(ξ) = O(1) as ξ → 0 in V d
ε and that the condition in

(2.3) is fulfilled for q1/2 instead of q.

If this is the case, the corresponding Gq-sum of f̂ , Sdq;(1,2)f̂ , is defined as follows: φ0 =

Cd ◦ B̂dq;1f̂ , φd1 = Cd ◦ Ldq;2φ0, and Sdq;(1,2)f̂ = Ldq;2φd1.

Furthermore, if f̂ ∈ C{x}dq;(1,2) for any value of d in [0, 2π] but eventually excepted

one finite number, we will say that f̂ is Gq-summable of level (1, 2) and simply write

f̂ ∈ C{x}q;(1,2).

By considering [9, Lemme 2.4.1 & Théorème 2.4.3], one gets the following statement.
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Proposition 2.4. Given any d ∈ R, the set C{x}dq;(1,2) constitutes a C{x}-module con-

taining C{x}dq;1 as a sub-module.

2.3. Generic q-Gevrey series in terms of q-Euler series. It is easy to see that every
convergent power series is a generic q-Gevrey series. The q-Euler series Êq given in (1.3)
can be seen as one of the simplest generic q-Gevrey series whose radius of convergence
is zero. Indeed, a directe calculation shows that

(2.5) (xσq + 1)Êq(x) = 1 .

To any a ∈ C∗ will be associated the family (Ê
(a,α)
q )α∈Z≥0

of the so-called generalized

q-Euler series as follows: Ê(a,0)
q (x) = −1

a
Êq(−

x

a
), and

(2.6) Ê(a,α)
q (x) =

1

α!
∂αa Ê

(a,0)
q (x)

for α ≥ 1. It follows that Êq = Ê
(−1,0)
q . Furthermore, for any λ ∈ C∗, one gets from

considering (2.6) that

(2.7) Ê(a/λ,α)
q (x) = λα+1 Ê(a,α)

q (λx) .

Theorem 2.5. A power series f̂ ∈ C[[x]] is a generic q-Gevrey series if, and only if,
there exist m ∈ Z≥0, {f0, f1, ..., fm} ⊂ C{x}, {a1, ..., am} ⊂ C∗ and {α1, ..., αm} ⊂ Z≥0

such that the following equality holds in C[[x]]:

(2.8) f̂ = f0 + f1 Ê
(a1,α1)
q + ...+ fm Ê

(am,αm)
q .

The proof of Theorem 2.5, which is closely linked to [4, Theorem 4.20], will be given
in §3.4. Let’s emphasize that this result plays a central role in the proof of Theorem 1.1.
Indeed, thanks to this result, it will suffice to verify the theorem for a pair of generalized
q-Euler series.

3. Generic q-Gevrey series in terms of the generalized q-Euler series

This section aims to prove Theorem 2.5 by first establishing properties for every family

of generalized q-Euler series {Ê(a/qk,α)
q }k,α∈Z≥0

. In §3.1, we will begin by examining the

functional equation satisfied by each generalized q-Euler series Ê
(a,α)
q , noting that it is

Gq-summable in any direction that does contain the point with affix a. Furthermore,
it will be shown that every Gq-sum is bounded in any sector of finite openness; see
Remark 3.2.

In §3.2, we will consider the linear relationships that exist among any finite family

{Ê(a,α)
q } where a ∈ a0q

Z and α ∈ (α0 + Z). After that, in §3.3, we will explain how to
construct a q-difference operator associated with a given linear combination of general-
ized q-Euler series; see Theorem 3.5. In this way, we will provide a new characterization
for a power series to be generic q-Gevrey, thereby proving Theorem 2.5.
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3.1. Functional equations and Gq-sums of the generalized q-Euler series. One

recalls that the q-Euler series Êq, which is precisely Ê
(−1,0)
q , satisfies the q-difference

equation given in (2.5). This result can be extended to any generalized q-Euler series

Ê
(a,α)
q .

Lemma 3.1. For any (a, α) ∈ C∗ × Z≥0, the generalized q-Euler series Ê
(a,α)
q defined

in (2.6) satisfies the q-difference equation

(3.1) (xσq − a)α+1 Ê(a,α)
q (x) = 1 ,

and is Gq-summable for any direction d such that a /∈ (0,∞eid). Furthermore, its
associated Gq-sum is defined as follows:

(3.2) Sdq;1Ê(a,α)
q (x) = Ldq;1

(
1

(ξ − a)α+1

)
(x)

for all x ∈ C̃∗.
Moreover, the following identity holds in C̃∗:

(3.3) Sdq;1Ê(a,α)
q (x) =

1

α!
∂αa Sdq;1Ê(a,0)

q (x) .

Proof. First, we shall prove (3.1) by induction on α. Replacing x with
(
−x
a

)
in (2.5)

yields that (
−x
a
σq + 1

)
Êq(−

x

a
) = 1.

With Ê(a,0)
q (x) = −1

a
Êq(−

x

a
) we find (3.1) for α = 0. Furthermore, let k ≥ 1, and

suppose that (xσq−a)k Ê
(a,k−1)
q = 1, where α = k−1. Expand this equation as follows:

k∑
j=0

(
k

j

)
(−a)k−j(xσq)

jÊ(a,k−1)
q (x) = 1 .

By taking the differentiation with respect to a in both sides in the above, using the

identities (k − j)
(
k

j

)
=

(k − j)k!

j!(k − j)!
= k

(
k − 1

j

)
yields that

−k
k−1∑
j=0

(
k − 1

j

)
(−a)k−j−1 (xσq)

jÊ(a,k−1)
q (x)+

k∑
j=0

(
k

j

)
(−a)k−j (xσq)

j∂aÊ
(a,k−1)
q (x) = 0

or, equivalently,

−k(xσq − a)k−1Ê(a,k−1)
q (x) + (xσq − a)k∂aÊ

(a,k−1)
q (x) = 0 .

By (2.6), one knows that ∂aÊ
(a,k−1)
q = k Ê(a,k)

q . One gets from the above that

(xσq − a)k Ê(a,k)
q (x) = (xσq − a)k−1Ê(a,k−1)

q (x) .

Multiplying both sides by the operator (xσq − a) and using (xσq − a)k Ê
(a,k−1)
q = 1

implies (3.1) for α = k.
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By [5, Equation (2.1)] with µ = 1, we find

(3.4) B̂q;1 xj σmq = q−j(j−1)/2ξj σm−jq B̂q;1

for all (j,m) ∈ Z≥0 × Z. When j = m = 1, one gets that B̂q;1(xσq) = ξ B̂q;1.

Thus, by applying the q-Borel transform B̂q;1 to both sides of (3.1), it follows that

(ξ − a)α+1B̂q;1Ê(a,α)
q = 1, i.e.

(3.5) B̂q;1Ê(a,α)
q =

1

(ξ − a)α+1
.

The right-hand side tends to 0 as |ξ| goes to ∞. Hence, for any direction d such that

a /∈ (0,∞eid), 1

(ξ − a)α+1
∈ Hd

q;1. This implies the Gq-sum of Ê
(a,α)
q as being stated in

(3.2).

Given any couple of compact sets K ⊂ C̃∗ and J ⊂ C∗, the integral (3.2) is uniformly
convergent for (x, a) ∈ K × J , provided that J ∩ (0,∞ eid) = ∅. Thus, one can consider
the differentiation with respect to a under the integral sign. In view of the elementary

identity ∂αa
1

ξ − a
=

α!

(ξ − a)α+1
, one deduces easily (3.3) from (3.2). This finishes the

proof of Lemma 3.1. �

By following [19, Théorème 3.3 & Définition 2.1.1], one knows that every Gq-sum

Sdq;1Ê
(a,α)
q admits the power series Ê

(a,α)
q as a q-Gevrey asymptotic expansion of the first

order in the direction d. It will be helpful to notice the following remark, due to the fact

that |eq(t)| = eq(|t|) e−(arg(t))2/(2 ln q); see (2.1) for the definition of eq.

Remark 3.2. Let a, α and d be as in Lemma 3.1. The Gq-sum function Sdq;1Ê
(a,α)
q is

well-defined and analytic over the whole Riemann surface C̃∗, and satisfies the following
inequality for all x ∈ C̃∗:

(3.6)
∣∣∣Sdq;1Ê(a,α)

q (x)
∣∣∣ ≤ |a|−α−1

d e(arg(eid/x))2/(2 ln q) ,

where |a|d denotes the distance from a to the half-line (0,∞eid) in the complex plane.

To see (3.6), one can notice that∣∣∣Sdq;1Ê(a,α)
q (x)

∣∣∣ ≤ ∫ ∞
0

1

|ξeid − a|α+1 |eq(ξeid/x)|
dξ

ξ

≤ e(arg(eid/x))2/(2 ln q)

|a|α+1
d

∫ ∞
0

1

eq(ξ/|x|)
dξ

ξ
,

where the last integral is simply L0
q;11(|x|) = 1.

In what follows, we will make use of the following notation:

(3.7) ∀k ≥ 0, Ê(a,−k−1)
q = (−a)k

k∑
j=0

(
k

j

)
qj(j−1)/2

(
−x
a

)j
.

Particularly, it follows that Ê
(a,−1)
q = 1.
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Note that when k < 0, we do not recover E
(a,−k−1)
q . On the other hand, the notation

fits to obtain the following lemma.

Lemma 3.3. Let (a, α, k) ∈ C∗ × Z≥0 × Z≥0. Then:

(3.8) (xσq − a)k Ê(a,α)
q = Ê(a,α−k)

q .

Proof. First, assume that α ≥ k. By applying (3.1), both sides of the equation in (3.8)
are power series solutions of the linear q-difference equation (xσq−a)α−k+1y = 1. Thus,

their difference satisfies the homogeneous equation (xσq − a)α−k+1y = 0, for which zero
is the only power series solution. This implies (3.8).

Next, when k > α, we set k′ = k − α− 1 > 0, noticing that

(3.9) (xσq − a)k Ê(a,α)
q = (xσq − a)k

′
(

(xσq − a)α+1 Ê(a,α)
q

)
= (xσq − a)k

′ · 1 .

Since (xσq)
j · 1 = qj(j−1)/2 xj σjq · 1 = qj(j−1)/2 xj for all j ∈ Z, the last term in (3.9)

becomes:

(xσq − a)k
′ · 1 =

k′∑
j=0

(
k′

j

)
(−a)k

′−j qj(j−1)/2 xj .

Thus, comparing (3.9) with (3.7) yields (3.8). �

3.2. Linear dependence of the generalized q-Euler series. We shall start with the
following elementary result on binomial coefficients.

Lemma 3.4. If ε = 0 or 1, then:

(3.10)

k+1−ε∑
`=j

(−1)j+`
(
k + 1

`+ ε

)(
`

j

)
= ε

for any integers k and j such that 0 ≤ j ≤ k.

Proof. Let Ck,j(ε) be the left-hand side of (3.10). One has

Ck,j(0) =

k+1∑
`=j

(−1)j+`
(
k + 1

`

)(
`

j

)
=

(
k + 1

j

) k+1∑
`=j

(−1)j+`
(
k + 1− j
`− j

)

=

(
k + 1

j

) k+1−j∑
r=0

(−1)r
(
k + 1− j

r

)
.

Since 0 = (1− 1)k+1−j =

k+1−j∑
r=0

(−1)r
(
k + 1− j

r

)
, one obtains that (3.10) for ε = 0.

Consider the case of ε = 1. It is easy to see that Cj,j(1) = 1. Let j ≤ k. Since

Ck+1,j(1) =

k∑
`=j

(−1)j+`
(
k + 2

`+ 1

)(
`

j

)
+ (−1)j+k+1

(
k + 2

k + 2

)(
k + 1

j

)
,
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using the equalities

(
k + 2

`+ 1

)
=

(
k + 1

`+ 1

)
+

(
k + 1

`

)
and

(
k + 2

k + 2

)
=

(
k + 1

k + 1

)
gives that

Ck+1,j(1) =
k∑
`=j

(−1)j+`
(
k + 1

`+ 1

)(
`

j

)

+
k∑
`=j

(−1)j+`
(
k + 1

`

)(
`

j

)
+ (−1)j+k+1

(
k + 1

k + 1

)(
k + 1

j

)
.

Thus, Ck+1,j(1) = Ck,j(1) +Ck,j(0) = Ck,j(1) for 0 ≤ j ≤ k. In this way, one gets (3.10)
for ε = 1. �

Theorem 3.5. Let (a, α, k) ∈ C∗ × Z≥0 × Z≥0. One has

(3.11) Ê(a/qk,α)
q = q−k(k−2α−3)/2

(a
x

)k k∑
j=0

(
k

j

) (
1

a

)j
Ê(a,α−j)
q

and

Ê(a,α)
q = qk(k−2α−3)/2

(x
a

)k α∑
`=0

(
k + `− 1

k − 1

) (
−q

k

a

)`
Ê(a/qk,α−`)
q

+

(
−1

a

)α+1 k−1∑
j=0

qj(j−1)/2

(
α+ j

α

) (x
a

)j
.

(3.12)

Proof. Replacing λ with qk in (2.7) yields that Ê
(a/qk,α)
q = q(α+1)k σkq Ê

(a,α)
q . By mul-

tiplying this last equation by qk(k−1)/2 xk and observing that (xσq)
k = qk(k−1)/2 xk σkq ,

one finds that

(3.13) (xσq)
k Ê(a,α)

q = qk(k−2α−3)/2 xk Ê(a/qk,α)
q .

On the other hand, by using the identity

(xσq)
k = ((xσq − a) + a))k =

k∑
j=0

(
k

j

)
ak−j (xσq − a)j ,

one deduces from gathering (3.13) together with (3.8) the identity stated in (3.11).
Now, let α = 0 into (3.11), and separe j = 0 and j = ` + 1 > 0 in the summation.

This implies that

(3.14) Ê(a/qk,0)
q = q−k(k−3)/2

(a
x

)k (
Ê(a,0)
q +Ak

)
,

where A0 = 0 and for k ≥ 1:

Ak =
k−1∑
`=0

(
k

`+ 1

) (
1

a

)`+1

Ê(a,−`−1)
q .
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Assume k > 0, and apply (3.7) for each term Ê
(a,−`−1)
q in the above. One gets that

Ak =
1

a

k−1∑
`=0

∑̀
j=0

(−1)`
(

k

`+ 1

)(
`

j

)
qj(j−1)/2

(
−x
a

)j
,

or, equivalently,

Ak =
1

a

k−1∑
j=0

k−1∑
`=j

(−1)j+`
(

k

`+ 1

)(
`

j

)
qj(j−1)/2

(x
a

)j
.

By considering (3.10) for ε = 1 and (k − 1) instead of k, it follows that

Ak =
1

a

k−1∑
j=0

qj(j−1)/2
(x
a

)j
.

So, (3.14) can be put into the following form:

(3.15) Ê(a,0)
q (x) = qk(k−3)/2

(x
a

)k
Ê(a/qk,0)
q (x)− 1

a

k−1∑
j=0

qj(j−1)/2
(x
a

)j
,

which is really (3.12) for α = 0.

To obtain (3.12) for α > 0, we will apply the definition of Ê
(a,α)
q in (2.6), considering

the α-th differential of Ê
(a,0)
q with the help of (3.15). Indeed, given a couple of non-

negative integers (`, j), one has

∂`a
(
a−j−1

)
= (−1)` (j + 1) (j + 2) ... (j + `) a−j−`−1

and, in addition, using (2.6) implies that ∂`aÊ
(a/qj ,0)
q = `! Ê

(a/qj ,`)
q q−j `. Thus, by taking

the α-th differential with respect to a for both sides of (3.15), it follows that

α! Ê(a,α)
q = qk(k−3)/2

(x
a

)k α∑
`=0

(
α

`

)
(k + `− 1)!

(k − 1)!

(
−1

a

)`
(α− `)! q−k(α−`) Ê(a/qk,α−`)

q

−
k−1∑
j=0

qj(j−1)/2 xj (−1)α
(j + α)!

j!
a−j−α−1 .

By dividing by α! in the above, one gets the expression given in (3.12). �

Corollary 3.6. Let a ∈ C∗, m ∈ Z>0, (k1, ..., km) ∈ Zm≥0, (α1, ..., αm) ∈ Zm≥0, and let

(f1, ..., fm) ∈ (C{x})m. If k = max(k1, ..., km), a′ = a/qk and α = max(α1, ..., αm), then

one can find (H,h0, h1, ..., hα) ∈ (C{x})α+2 such that

(3.16)

m∑
j=1

fj Ê
(a/qkj ,αj)
q = H +

α∑
j=0

hj Ê
(a′,α−j)
q .

Proof. This comes directly from applying (3.12). �
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3.3. Generic irregular singular q-difference operators coming from combining
several generalized q-Euler series. For simplicity, let D0 = C∗ ⊕ (xC{x}), let Dn

be the set of the n-th order q-operators ∆ given in (1.2) for n ≥ 1, and define

(3.17) D = ∪n≥0Dn .

We call a generic irrgular singular q-difference operator any element ∆ ∈ Dn with n ≥ 1.
By following [19, Prop. 5.1.4], each operator ∆ ∈ Dn can be factorized as follows:

(3.18) ∆ = h0 (xσq − a1)h1 ... (xσq − an)hn ,

where aj ∈ C∗ and hj ∈ D0. Let c 7→ c̄ be the natural map from C∗ to the multiplcative
elliptic curve C∗/qZ. Define the set of (generalized) indices of monodromy IM(∆) as
follows: IM(h) = ∅ for h ∈ D0, and

(3.19) IM(∆) = {ā1, ā2, ..., ān} ⊂ C∗/qZ

for ∆ ∈ Dn, n ≥ 1. One knows that IM(∆) consitutes a set of analytic invariants of ∆;
for instance, see [19, §5.1.7]. In addition, given (∆1,∆2) ∈ Dn1 ×Dn2 , one has

(3.20) ∆1 ∆2 ∈ Dn1+n2 , IM(∆1 ∆2) = IM(∆1) ∪ IM(∆2) .

Furthermore, for any pair (∆, h) ∈ Dn × (C{x} \ {0}) (n ≥ 1), if ∆[h] denotes the

conjugation of ∆ by h, i.e. ∆[h] = (σnq h)−1 ∆h, where (σnq h)−1(x) =
1

h(qn x)
, one has

the following properties:

(3.21) ∆[h] ∈ Dn , IM(∆[h]) = IM(∆)

and

(3.22) ∆ (h y) = σnq h∆[h]y .

Lemma 3.7. Given (a, n,∆) ∈ C × Z>0 × Dn, there exist b0, b1, ..., bn ∈ C{x} such
that the following expression holds:

(3.23) ∆ = b0 (xσq − a)n + b1 (xσq − a)n−1 + ...+ bn .

Proof. Let a0, ..., an be the coefficients of ∆ as given in (1.2). By writing xσq =

(xσq − a) + a, applying the binomial expansion for (xσq)
k yields that

(xσq)
k =

k∑
j=0

(
k

j

)
ak−j (xσq − a)j .

Putting this into (1.2) yields that

∆ =

n∑
k=0

an−k

k∑
j=0

(
k

j

)
ak−j (xσq − a)j .

Therefore, if

(3.24) bj =

j∑
`=0

(
n− `
n− j

)
aj−` a` (0 ≤ j ≤ n) ,

one gets immediately (3.23) and finishes the proof of Lemma 3.7. �
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Remark 3.8. The above relations in (3.24) lead us to the following elementary identity:

(3.25) ∀a ∈ C , C{x}[xσq] = C{x}[xσq − a] .

Theorem 3.9. Let (a, α,m) ∈ C∗×Z≥0×Z>0, and let (f̂ , ĝ, h0, h1, ..., hα,Λ) ∈ C[[x]]×
C[[x]]× (C{x})α+1 ×Dm to be such that

(3.26) f̂ = ĝ +
α∑
`=0

hα−` Ê
(a,`)
q , Λ ĝ ∈ C{x} .

One supposes that ā /∈ IM(Λ) and h0 6= 0. Then, there exists ∆ ∈ Dn such that
0 ≤ n ≤ 1

2 (α+ 1) (α+ 2),

(3.27) ∆ Λf̂ ∈ C{x}, IM(∆) = {ā} .

Proof. By considering (3.22), one knows that

Λ(hα−` Ê
(a,`)
q ) = σmq hα−` Λ[hα−`]Ê(a,`)

q

for ` from 0 to α. Applying Lemma 3.7 to Λ[hα−`] gives that

(3.28) Λ[hα−`] =

m∑
j=0

bα−`,j (xσq − a)m−j , bα−`,j ∈ C{x} .

From now on, define

(3.29) h`,j = bα−`,m−j σ
m
q hα−` , Ŷ`,j = (xσq − a)j Ê(a,`)

q .

In view of (3.1), it follows that Ŷ`,j ∈ C{x} when j > `. Moreover, using (3.8) gives

that Ŷ`,j = Ŷ`−j,0 = Ê
(a,`−j)
q if j ≤ `. So, applying Λ to f̂ in (3.26) and gathering (3.28)

together with (3.29) implies that

Λf̂ = H0 +

α∑
`=0

∑̀
j=0

h`,j Ê
(a,`−j)
q , H0 ∈ C{x} .

Letting h∗k =
α−k∑
j=0

hj+k,j , it follows from the above that

(3.30) Λf̂ = H0 +

α∑
k=0

h∗k Ê
(a,k)
q , H0 , h

∗
k ∈ C{x} .

In what follows, we will construct a family of q-difference operators to successively

remove from (3.30) the divergent power series Ê
(a,0)
q , Ê

(a,1)
q , ..., Ê

(a,α)
q . For doing this,

define

(3.31) ∆0 =

{ (
(xσq − a)α+1

)[1/h∗α]
if h∗α 6= 0;

1 if h∗α = 0.

By applying (3.22) to (∆, h) =
(
(xσq − a)α+1, 1/h∗α

)
, it follows from considering (3.1)

that, in any case where h∗α = 0 or not,

∆0(h∗α Ê
(a,α)
q ) = σα+1

q h∗α (xσq − a)α+1 Ê(a,α)
q = σα+1

q h∗α .



ON THE PRODUCT OF TWO GENERIC q-GEVREY SERIES 13

In this way, one obtains from (3.30) that

(3.32) ∆0 Λf̂ = H1 +

α−1∑
k=0

∆0

(
h∗k Ê

(a,k)
q

)
,

where H1 = ∆0H0 + σα+1
q h∗α and where

α−1∑
k=0

... = 0 when α = 0. Consequently, letting

∆ = ∆0 gives (3.27) if α = 0.
If α > 0, again by applying (3.22), one has

∆0 (h∗k Ê
(a,k)
q ) = σα+1

q h∗k ∆
[h∗k]
0 Ê(a,k)

q

for 0 ≤ k < α. One deduces from (3.32) that

(3.33) ∆0 Λf̂ = H1 +
α−1∑
k=0

σα+1
q h∗k ∆

[h∗k]
0 Ê(a,k)

q .

By expanding each operator ∆
[h∗k]
0 in C{x}[xσq−a] (see Lemma 3.7) and observing that

(xσq − a)j Ê
(a,k)
q = Ê

(a,k−j)
q for k ≥ j (see (3.8)), one can put (3.33) into the following

form:

(3.34) ∆0 Λf̂ = H∗1 +
α−1∑
k=0

h∗∗k Ê(a,k)
q , H∗1 , h

∗∗
k ∈ C{x} .

It is to be noted that the divergent series Ê
(a,α)
q does not appear in the right-hand

side of the equation in (3.34). By a similar process as what done for the transformation
from (3.30) into (3.34), one can define a series of operators ∆1, ∆2, ..., ∆α possessing
the following properties:

(1) either ∆k ∈ Dk+1 and IM(∆k) = {ā} or ∆k = 1;

(2) letting ∆ = ∆α ...∆1 ∆0, one has ∆ Λf̂ ∈ C{x}.
Since the order of ∆ equals at most to the following sum:

α∑
k=0

(α+ 1− k) =
1

2
(α+ 1)(α+ 2) ,

one gets (3.27) and finishes the proof of Theorem 3.9. �

3.4. Characterisation of generic q-Gevrey series and proof of Theorem 2.5.
As in [4], let K be the set of rational functions bounded at zero, and let Eq;1 be the
set of all entire functions admitting at most a q-exponential growth of order 1 at the
infinity. It follows that

(3.35) Eq;1 = ∩d∈[0,2π]Hd
q;1 = B̂q;1(C{x}) .

Let ?q;1 be the bilinear map from C[[ξ]] × C[[ξ]] to C[[ξ]] such that ξm ?q;1 ξ
n =

q−mn ξm+n for all (m,n) ∈ Z2
≥0. Thus, the C-vector space C[[ξ]] is equiped with two
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multiplications that are the usual one and the so-called q-convolution product ?q;1. Fur-

thermore, the following identity holds for any (f̂ , ĝ) ∈ C[[x]]× C[[x]]:

(3.36) B̂q;1(f̂ ĝ) = B̂q;1f̂ ?q;1 B̂q;1ĝ .
By following [4, §4], one defines the (K,Eq;1)-bimodule H ⊂ C{ξ} ⊂ C[[ξ]] by the

relation H = ∪n≥0Hn, where H0 = K and, for any integer n ≥ 0,

H2n+1 = Eq;1 ?q;1 H2n , H2n+2 = KH2n+1 .

By [4, Theorem 4.20], one knows that φ ∈ H if and only if

(3.37) φ = r0 + φ0 + φ1 ?q;1
1

(ξ − a1)α1+1
+ ...+ φn ?q;1

1

(ξ − an)αn+1
,

where r0 ∈ K, φj ∈ Eq;1, aj ∈ C∗ and αj ∈ Z≥0. By noticing that both K and Eq;1 are
stable by σq and that, in addition, either the multiplication or the q-convolution product
is compatible with σq, one finds that H is a q-difference (K,Eq;1)-bimodule such that

(3.38) φ ∈ H ⇐⇒ σq φ ∈ H .

Lemma 3.10. Given any f̂ ∈ C[[x]], one has B̂q;1f̂ ∈ H if and only if f̂ can be put into
the form of (2.8).

Proof. First of all, suppose f̂ be as in (2.8). By considering (3.36), one finds that

(3.39) B̂q;1f̂ = B̂q;1f0 + B̂q;1f1 ?q;1 B̂q;1Ê(a1,α1)
q + ...+ B̂q;1fn ?q;1 B̂q;1Ê(an,αn)

q .

Furthermore, by applying (3.5), one has B̂q;1Ê
(aj ,αj)
q =

1

(ξ − aj)αj+1 . Thus, letting

φ = B̂q;1f̂ , r0 = 0 and φj = B̂q;1fj for 0 ≤ j ≤ n, one deduces (3.37) from (3.39). This

implies that B̂q;1f̂ ∈ H.

Next, suppose B̂q;1f̂ ∈ H, and assume (3.37) hold for φ = B̂q;1f̂ . By making use of
the fractional decomposition of r0, one can suppose that

r0 = P +

m∑
`=1

µ`−1∑
k=0

c`,k
(ξ − b`)k+1

, P ∈ C[ξ] , c`,k ∈ C, b` ∈ C∗ .

Therefore, by following (3.5), there exists Q ∈ C[x] such that

r0 = B̂q;1

(
Q+

m∑
`=1

µ`−1∑
k=0

c`,k Ê
(b`,k)
q

)
.

Thus, by a similar way as what done in the above, one gets (2.8) from considering (3.37),
using (3.36) at the same time. We omit the detail. �

Proof of Theorem 2.5. Let f̂ = c0 + c1 x + c2 x
2 + ... ∈ C[[x]]. We will proceed in two

steps.
On the one hand, suppose f̂ be a generic q-Gevrey series, that is to say, there exists

∆ ∈ D such that ∆f̂ ∈ C{x}. Set φ = B̂q;1f̂ , ĝ = f̂ − c0, and observe that ∆ĝ =

∆f̂ −∆c0 ∈ C{x}. Now, consider the q-Borel transform Bq defined in [4, p. 382], which

is the linear application xC[[x]] → C[[ξ]] such that Bq(x
n+1) = q−n(n−1)/2 ξn for all
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n ∈ Z≥0. If γ = Bq ĝ, one finds that γ = B̂q;1
(

(f̂ − c0)/x
)

. By taking into account the

relation f̂ = c0 + x
(

(f̂ − c0)/x
)

, applying B̂q;1 to f̂ and using (3.36) gives that

φ = c0 + B̂q;1x ?q;1 B̂q;1

(
f̂ − c0

x

)
= c0 + ξ ?q;1 γ .

Thus, the q-Borel transforms φ and γ are linked as follows:

(3.40) φ = c0 + ξ σ−1
q γ .

By applying [4, Proposition 4.24], one knows that γ ∈ H. This together with consid-

ering both (3.38) and (3.40) implies that φ ∈ H. By Lemma 3.10, it follows that f̂ can
be put into the form as in (2.8).

On the other hand, suppose f̂ be such that the relation in (2.8) holds, i.e.

f̂ = f0 + f1 Ê
(a1,α1)
q + ...+ fm Ê

(am,αm)
q .

Let µ be the number of different elements contained in the subset {ā1, ..., ām} of the

elliptic curve C∗/qZ. If µ = 0, then f̂ = f0 ∈ C{x}. As the convergent power series f̂
is a generic q-Gevrey series, one can finish the proof of Theorem 2.5 by induction on µ,
using Theorem 3.9. �

4. The product of two generalized q-Euler series

This section aims to prove one special case of Theorem 1.1 for two generalized q-Euler
series. Namely, we shall establish the following statement.

Theorem 4.1. Given (a, b) ∈ C∗ × C∗, one has Ê
(a,0)
q Ê

(b,0)
q ∈ C{x}q;(1,2). Moreover,

for any d ∈ R such that {a, b} ∩ (0,∞eid) = ∅, one has

(4.1) Sdq;(1,2)(Ê
(a,0)
q Ê(b,0)

q ) = Sdq;1(Ê(a,0)
q )Sdq;1(Ê(b,0)

q ) .

The proof of Theorem 4.1 will be given in §4.4. To do that, we will start with a
remarkable relation for special values of the Gq-sum functions of two generalized q-Euler
series. This will permit us to obtain the Gq-summability of their product, after having
considered their q-Borel transform and a first q-Laplace transform.

4.1. Special values of a combination of two generalized q-Euler series. By fol-
lowing (3.2), one knows that, given d ∈ R and α ∈ Z≥0, the associated sum-function

Sdq;1(Ê
(a,α)
q ) represents an analytic function with respect to the parameter a ∈ C∗, pro-

vided that a /∈ (0, eid). In Lemma 4.3 below, we shall consider sum-functions at some
special points related to the parameter a. To simplify, we will make use of the following
conventional hypothesis.

Hypothesis 4.2. The triplet (a, b, d) ∈ C∗ × C∗ × R satisfies the following conditions:

(4.2) {arg(a), arg(b)} ⊂ (d, d+ 2π) .

Note that (4.2) above implies {a, b} ∩ (0,∞eid) = ∅.
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Lemma 4.3. Let (a, b, d) ∈ C∗ × C∗ × R to be such that (0,∞eid) ∩ {a, b} = ∅ and that
(4.2) holds, and let eq be as in (2.1). Then, the following equality holds for any ` ∈ Z:

(4.3) aSdq;1Ê(a,0)
q (

√
q a b eπi`) + bSdq;1Ê(b,0)

q (
√
q a b eπi`) = −1 + 2πiRdq;`(a, b) ,

where

(4.4) Rdq;`(a, b) =



−
−1∑

j=`+1

1

eq(
√
b/(q a) e(`−2j)πi)

for ` < −1 ;

0 for ` = −1 ;
`+1∑
j=1

1

eq(
√
b/(q a) e(`−2j)πi)

for ` > −1 .

Proof. Let c =
√
q a b, c` = c eπi`, a = |a| eia′ , b = |b| eib′ , and let denote by A` the left-

hand side of (4.3). By raplacing (a, α, x) with (a, 0, c`) and (b, 0, c`) in (3.2) respectively,
it follows from using (2.4) that

(4.5) A` = Ldq;1
(

a

ξ − a
+

b

ξ − b

)
(c`) = I1,` + I2,`,

where

I1,` =

∫ ∞eid
0

1

(ξ/a)− 1

1

eq(ξ/c`)

dξ

ξ
, I2,` =

∫ ∞eid
0

1

(ξ/b)− 1

1

eq(ξ/c`)

dξ

ξ
.

Letting t =
ξ

a
and t =

ξ

b
respectively in I1,` and I2,` in the above gives that

(4.6) I1,` =

∫ ∞ei(d−a′)
0

1

t− 1

1

eq(a t/c`)

dt

t

and

(4.7) I2,` =

∫ ∞ei(d−b′)
0

1

t− 1

1

eq(b t/c`)

dt

t
.

By considering (2.1), one knows that eq(x) = eq(1/(qx)). Thus, the integral in (4.6) can
be rewritten as follows:

I1,` =

∫ ∞ei(d−a′)
0

1

t− 1

1

eq(c`/(q a t))

dt

t
=

∫ ∞ei(a′−d)
0

t

1− t
1

eq(c` t/(q a))

dt

t
,

the last integral being obtained by changing t with 1/t. By using the fractional decom-

position
t

1− t
=

1

1− t
− 1 and the relation Ldq;1(1) = 1, one finds that

(4.8) I1,` = −1 +

∫ ∞ei(a′−d)
0

1

1− t
1

eq(c` t/(q a))

dt

t
.

Consider the case ` = −1, and set c′ = c−1, i.e. c′ = c e−πi. By taking into account

the hypothesis made on the triplet (a′, b′, d), one finds that
b

c′
=

c′

q a
e2πi. Thus, replacing
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(`, t) with (−1, t e−2πi) in (4.7) yields that

I2,−1 =

∫ ∞ei(d−b′+2π)

0

1

t− 1

1

eq(c′ t/(q a))

dt

t
.

Gathering this together with (4.8) and (4.5) yields that

(4.9) A−1 = −1 +

(∫ ∞ei(a′−d)
0

−
∫ ∞ei(d−b′+2π)

0

)
1

1− t
1

eq(c′ t/(q a))

dt

t
.

Furthermore, in view of the relation {a′−d, d−b′+2π} ⊂ (0, 2π), the integration-contour

composed of the half-lines (0,∞ei(d−b′+2π)) and (0,∞ei(a′−d)) does not contain any pole
t = 1 = e2πji, where j ∈ Z. So, by applying Cauchy Theorem, one gets from (4.9) that
A−1 = −1, as being expected in (4.3) for ` = −1.

Now, suppose ` > −1, and observe that
b

c`
=

c`
q a

e−2`πi. Similarly, it follows from

combining (4.8) together with (4.7) and (4.5) that

(4.10) A` = −1 +

(∫ ∞ei(a′−d)
0

−
∫ ∞ei(d−b′−2`π)

0

)
1

1− t
1

eq(c` t/(q a))

dt

t
.

By applying the Residue Theorem, one obtains from (4.10) that

A` = −1 + 2π i

`+1∑
j=1

1

eq(c` e−2jπi/(q a))
= −1 + 2π i

`+1∑
j=1

1

eq(c e(`−2j)πi/(q a))
.

This is exactly what is stated in (4.3) combined with (4.4) for ` > 0.
The case ` < −1 can be treated in a similar way, again using (4.10). Thus, one finishes

the proof of Lemma 4.3. �

4.2. The q-Borel transform of the product of two generalized q-Euler series.

In view of Lemma 3.1, we shall only consider any product of the form Ê
(a,0)
q Ê

(b,0)
q , whose

differentiations with respect to a and/or to b may lead us to every product Ê
(a,α)
q Ê

(b,β)
q

for all non-negative integers α and β.

Lemma 4.4. For any (a, b) ∈ C∗2, the product series Ê
(a,0)
q Ê

(b,0)
q satisfies the following

q-difference equations:

(4.11) (xσq − a)(xσq − b)(x2 σq − ab)y = qx2 − ab .

Proof. This comes from considering (3.1). Indeed, letting α = 0 in (3.1) gives that

(xσq − a)Ê(a,0)
q (x) = 1 ,

or, equivalently, x Ê
(a,0)
q (qx) = 1 + a Ê

(a,0)
q (x). This implies that

x2 Ê(a,0)
q (qx) Ê(b,0)

q (qx) = (1 + a Ê(a,0)
q (x))(1 + b Ê(b,0)

q (x)) ,

which can be put into the following form:

(x2 σq − a b)
(
Ê(a,0)
q Ê(b,0)

q

)
(x) = 1 + a Ê(a,0)

q (x) + b Ê(b,0)
q (x) .
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Thus, (4.11) is obtained by applying the q-difference operator (xσq−a)(xσq−b) to both
sides of the above equation. �

Lemma 4.5. Given (a, b) ∈ C∗ × C∗, if φ0(a, b; ξ) = B̂q;1
(
Ê

(a,0)
q Ê

(b,0)
q

)
, then:

(4.12) φ0(a, b; ξ) = − 1

ab

∑
n≥0

(
1 +

a qn

ξ − a qn
+

b qn

ξ − b qn

)
q−n

2

(
ξ2

ab

)n
.

Consequently, φ0(a, b; ξ) ∈ Hd
q;2 for any d ∈ R such that {a, b} ∩ (0,∞eid) = ∅.

Proof. For simplicity, we will write φ0(ξ) instead of φ0(a, b; ξ). By considering (3.4) for

j = m = 1, applying the q-Borel transform B̂q;1 to both sides of (4.11) yields that

(ξ − a)(ξ − b)(q−1 ξ2 σ−1
q − ab)φ0(ξ) = ξ2 − ab .

In other words, φ0 satisfies the following q-difference equation:

(4.13) (1−X)u(ξ) = v(ξ) ,

where X =
ξ2

abq
σ−1
q and v(ξ) =

ab− ξ2

ab(ξ − a)(ξ − b)
. By observing that

ξ2 − ab = (ξ − a)(ξ − b) + a(ξ − b) + b(ξ − a),

one obtains that

(4.14) v(ξ) = − 1

ab

(
1 +

a

ξ − a
+

b

ξ − b

)
.

Now, put (4.13) into the form u = v + Xu, and iterate this last relation. It follows
that

u(ξ) = (1 +X + ...+XN−1)v(ξ) +XNu(ξ)

for any positive integer N . By considering the equality Xn =

(
ξ2

ab

)n
q−n

2
σ−nq for all

n ∈ Z, one deduces from (4.14) that

Xnv(ξ) = −q
−n2

ξ2n

(ab)n+1

(
1 +

a qn

ξ − a qn
+

b qn

ξ − b qn

)
.

In this way, one can put (4.13) into the following form:

u(ξ) = −
N−1∑
n=0

q−n
2
ξ2n

(ab)n+1

(
1 +

a qn

ξ − a qn
+

b qn

ξ − b qn

)
+
q−N

2
ξ2N

(ab)N
u

(
ξ

qN

)
.

Letting N →∞, one arrives at the following expression deduced from (4.13):

(4.15) u0(ξ) = −
∑
n≥0

q−n
2
ξ2n

(ab)n+1

(
1 +

a qn

ξ − a qn
+

b qn

ξ − b qn

)
,

that is well-defined and analytic in C \
(
a qZ≥0 ∪ b qZ≥0

)
.

By using the fact that φ0 is the unique analytic function at ξ = 0 that satisfies the
functional equation in (4.13), one finds that φ0 = u0. This gives (4.12), using (4.15).
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To see the growth at the infinity of φ0, let V = V d
ε to be any sector that does not

contain neither a nor b, and set

(4.16) |a|V = min
ξ∈V
|ξ − a| , |b|V = min

ξ∈V
|ξ − b| .

By taking into account the fact that∣∣∣∣1 +
a qn

ξ − a qn
+

b qn

ξ − b qn

∣∣∣∣ ≤ 1 +
|a|
|a|V

+
|b|
|b|V

for all ξ ∈ V , one gets from (4.12) that, as ξ tends to ∞ in V d
ε ,

(4.17) φ0(ξ) = O(F (ξ)) where F (ξ) =
∑
n≥0

q−n
2

(
ξ2

ab

)n
.

Notice that F = B̂q;2f̂ , where f̂(x) =
∑
n≥0

(
x2

√
q ab

)n
. By applying [19, Proposition 3.1.4]

for q1/2 instead of q, one find that F has a q1/2-exponential growth of order one at the
infinity. Thus, one finishes the proof of Lemma 4.5. �

4.3. Towards the summability of the product of two generalized q-Euler se-
ries. The next step is to consider the second order q-Laplace transform of the function
φ0(a, b; ξ) as follows.

Lemma 4.6. Let a, b, φ0(a, b; ξ) and d be as in Lemma 4.5, assume the relation in

(4.2), define ζda,b = q1/4
√
a b e−πi with

(4.18) Λda,b = ζda,b e
πiZ and Λd∗a,b = Λda,b \ {ζda,b} ,

and set φd1(a, b; ζ) = Ldq;2(φ0(a, b; ξ))(ζ).

(1) The function φd1(a, b; ζ) is well-defined and analytic in C̃∗ \ Λd∗a,b, possessing a

simple pole at each point of Λd∗a,b and satisfying the following equality for all

ζ ∈ C̃∗ \ Λd∗a,b:

(4.19) (q−1/2ζ2 − ab)φd1(a, b; ζ) = 1 + aSdq;2(Ê
(a,0)

q1/2
)(ζ) + bSdq;2(Ê

(b,0)

q1/2
)(ζ) ,

where Sdq;2 = Ldq;2 ◦ Cd ◦ B̂q;2 = Sd
q1/2;1

.

(2) Given any d′ ∈ R and ε > 0, one can find C > 0 such that

(4.20) |φd1(a, b; ζ)| ≤ C

|ζ2 −√q a b|

for all ζ ∈ V d′
ε with ζ2 6= √q a b.

(3) One has φd1(a, b; ζ) ∈ H̃d′
q;2 for all d′ ∈ R \

(
1

2
(arg(a) + arg(b))− π + πZ∗

)
.

Proof. (1) Remember that φ0(a, b; ξ) is solution to the functional equation stated in
(4.13), which together with (4.14) implies that

(4.21)

(
1− ξ2

a b q
σ−1
q

)
φ0(a, b; ξ) = − 1

a b

(
1 +

a

ξ − a
+

b

ξ − b

)
.
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From now on, let q′ = q1/2. By definition, one knows that Ldq;2 = Ldq′;1. A direct
computation shows that

Ldq′;1(ξ2 σ−1
q ) = Ldq′;1

(
q′ (ξ σ−1

q′ )2
)

= q′ ζ2 Ldq′;1 .

Thus, applying Ldq;2 to both side of (4.21) yields that

(4.22)

(
1− ζ2

a b q′

)
φd1(a, b; ζ) = − 1

a b
Ldq′;1

(
1 +

a

ξ − a
+

b

ξ − b

)
(ζ) .

Note that Ldq′;1(1) = 1. In view of (3.2) with α = 0, it follows from (4.22) that(
1− ζ2

a b q′

)
φd1(a, b; ζ) = − 1

a b

(
1 + aSdq′;1Ê

(a,0)
q′ (ζ) + bSdq′;1Ê

(b,0)
q′ (ζ)

)
.

Since Sd
q1/2;1

= Sdq;2, one deduces thus the equality stated in (4.19).

By noticing that ζ2 =
√
q a b if and only if ζ ∈ Λda,b (see (4.18)), one deduces from

(4.19) that φd1 is well-defined and analytic in C̃∗ \Λda,b, eventually admitting simple poles

in Λda,b. Furthermore, if one replaces q with q1/2 in Lemma 4.3, one can easily deduce

from (4.4) that, given ` ∈ Z, one has

1 + aSdq;2(Ê
(a,0)

q1/2
)(ζda,b e

`πi) + bSdq;2(Ê
(b,0)

q1/2
)(ζda,b e

`πi) = 0

if and only if ` = −1. This implies that φd1(a, b; ζ) is well-defined and analytic at ζda,b
and really admits simple poles in the complementary set Λd∗a,b.

(2) With regard to the relation expected in (4.20), one can make use of direct esti-
mates on the q′-Laplace transforms appeared in (4.22), observing that both Gq-sums

Sdq′;1(Ê
(a,0)
q′ ) and Sdq′;1(Ê

(b,0)
q′ ) are bounded in any sector V d′

ε of the Riemann surface C̃∗
(see (3.6)).

(3) This comes immediately from combining the relation in (4.20) with the fact that
φd1(a, b; ζ) is well-defined and analytic at ζda,b. �

Remark 4.7. By taking into account the condition stated in (4.2), one has

(4.23) d /∈
(

1

2
(arg(a) + arg(b))− π + πZ∗

)
.

This together with Lemma 4.6 (3) implies that φd1(a, b; ζ) ∈ H̃d
q;2.

4.4. Proof of Theorem 4.1. Before starting the proof, we will establish one result
about the product of two q-exponential functions given as in (2.1).

Lemma 4.8. Let eq as in (2.1), and let (ξ1, ξ2) ∈ C̃∗ × C̃∗ and (ζ1, ζ2) ∈ C̃∗ × C̃∗. If

(4.24) ζ1 = q−1/4

√
ξ1

ξ2
, ζ2 = q1/4

√
ξ1ξ2 ,

then the following identity holds for any x ∈ C̃∗:

(4.25) eq

(
ξ1

x

)
eq

(
ξ2

x

)
=

1

2
eq1/2(ζ1) eq1/2

(
ζ2

x

)
.
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Proof. By applying the logarithm application to both sides of (4.25), considering (2.1)
together with (4.24) implies that (4.25) is equivalent to the following one:(

log

(
q1/2 ξ1

x

))2

+

(
log

(
q1/2 ξ2

x

))2

=
1

2

(
log

(
ξ1

ξ2

))2

+
1

2

(
log

(
q ξ1 ξ2

x2

))2

.

This can be obtained by direct computation, noticing that

(logA)2 + (logB)2 =
1

2

((
log

(
A

B

))2

+ (log(AB))2

)

for all A, B ∈ C̃∗. Thus, one fnishes the proof of Lemma 4.8. �

Proof of Theorem 4.1. Through the whole proof, fix d ∈ R such that {a, b}∩ (0,∞eid) =
∅, also assuming the convention stated in (4.2).

By gathering Lemmas 4.5 and 4.6 together with Remark 4.7, one finds that the

product Ê
(a,0)
q Ê

(b,0)
q belongs to the space C{x}dq;(1,2). For simplify, we will make use

of the following notation: fd(c;x) = Sdq;1Ê
(c,0)
q (x) for c = a or b, and fd(a, b;x) =

Sdq;(1,2)Ê
(a,0)
q Ê

(b,0)
q (x). In this way, the relation stated in (4.1) of Theorem 4.1, that is

what we shall prove, can be expressed as follows:

(4.26) fd(a, b;x) = fd(a;x) fd(b;x) .

One the one hand, by applying Definition 2.3 and Lemma 4.6, it follows that, for all
x ∈ C̃∗,

(4.27) fd(a, b;x) =

∫ ∞eid
0

φd1(a, b; ζ)

eq1/2(ζ/x)

dζ

ζ
,

where φd1(a, b; ζ) is given as in (4.19). On the other hand, by letting (a, α) = (a, 0) or
(b, 0) in (3.2), one can write

(4.28) fd(a;x) fd(b;x) =

∫ ∞eid
0

∫ ∞eid
0

1

(ξ1 − a)(ξ2 − b)
1

eq(ξ1/x) eq(ξ2/x)

dξ1 dξ2

ξ1 ξ2

for all x ∈ C̃∗.
Let Φ : (ξ1, ξ2) 7→ (ζ1, ζ2) be the homeomorphism from (0,∞eid) × (0,∞eid) onto

(0,+∞) × (0,∞ eid) defined by (4.24). By noticing ξ1 = ζ1 ζ2 and ξ2 =
q−1/2 ζ2

ζ1
, the

corresponding Jacobian is as follows:∣∣∣∣∂(ξ1, ξ2)

∂(ζ1, ζ2)

∣∣∣∣ =

∣∣∣∣ ζ2 ζ1

−q−1/2 ζ2/ζ
2
1 q−1/2/ζ1

∣∣∣∣ = 2 q−1/2 ζ2

ζ1
.

Thus, one gets that

dξ1 dξ2

ξ1 ξ2
= 2 q−1/2 ζ2

ζ1
× dζ1 dζ2

ξ1 ξ2
= 2

dζ1 dζ2

ζ1 ζ2
,
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what together with (4.25) allows us to transform (4.28) into the following form:

(4.29) fd(a;x) fd(b;x) =

∫ ∞ eid

0

∫ +∞

0

η(ζ1, ζ2)

eq1/2(ζ1) eq1/2(ζ2/x)

dζ1 dζ2

ζ1 ζ2
,

where

η(ζ1, ζ2) =
ζ1

(ζ1 ζ2 − a)(q−1/2 ζ2 − b ζ1)
.

Therefore, letting

(4.30) H(ζ2) =

∫ +∞

0

η(ζ1, ζ2)

eq1/2(ζ1)

dζ1

ζ1
,

the relation in (4.29) can be expressed as follows:

(4.31) fd(a;x) fd(b;x) =

∫ ∞ eid

0

H2(ζ2)

e1/2(ζ2/x)

dζ2

ζ2
.

Note that the following fractional decomposition with respect to ζ1 holds:

(4.32) η(ζ1, ζ2) =
1

q−1/2 ζ2
2 − a b

(
a

ζ2 ζ1 − a
+

ζ2

ζ2 − q1/2 b ζ1

)
.

Letting (4.32) into (4.30) yields that

(4.33) H(ζ2) =
1

q−1/2 ζ2
2 − ab

(I1(ζ2) + I2(ζ2)) ,

where

(4.34) I1(ζ2) = a

∫ +∞

0

1

(ζ2 ζ1 − a) eq1/2(ζ1)

dζ1

ζ1

and

(4.35) I2(ζ2) =

∫ +∞

0

ζ2

(ζ2 − q1/2 b ζ1) eq1/2(ζ1)

dζ1

ζ1
.

Putting ζ1 = ξ/ζ2 into (4.34) implies that

(4.36) I1(ζ2) = a

∫ ∞eid
0

1

(ξ − a) eq1/2(ξ/ζ2)

dξ

ξ
= aSd

q1/2;1
(Ê

(a,0)

q1/2
)(ζ2) .

Besides, by noticing that

ζ2

ζ2 − q1/2 b ζ1
= 1 +

q1/2 b ζ1

ζ2 − q1/2 b ζ1
= 1 +

b

q−1/2 ζ2/ζ1 − b
and that eq1/2(ζ2/(q

1/2 ξ)) = eq1/2(ξ/ζ2), letting ζ1 = ζ2/(q
1/2 ξ) into (4.35) yields that

(4.37) I2(ζ2) = 1 + b

∫ ∞ eid

0

1

(ξ − b) eq1/2(ξ/ζ2)

dξ

ξ
= 1 + bSd

q1/2;1
(Ê

(b,0)

q1/2
)(ζ2) .

Hence, it follows from combining (4.33) with (4.36) and (4.37) that

(4.38) H2(ζ2) =
1

q−1/2 ζ2
2 − a b

(
1 + aSd

q1/2;1
(Ê

(a,0)

q1/2
)(ζ2) + bSd

q1/2;1
(Ê

(b,0)

q1/2
)(ζ2)

)
.
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Considering both (4.19) and (4.38) implies that H2 = φd1. Finally, comparing (4.27) and
(4.31) allows us to finishe the proof of Theorem 4.1. �

5. Proof of Theorem 1.1

This section aims to proving Theorem 1.1, by using Theorem 4.1 together with The-
orem 2.5. For doing that, we will establish a generalization of Theorem 4.1 for any

product power series of the form Ê
(a,α)
q Ê

(b,β)
q ; see Theorem 5.7.

5.1. Differentiating with respect to the parameters in the first Borel-plane.
The binomial coefficients

(
m
k

)
are usually defined for non-negative integers m and k. In

what follows, it will be convenient to make use of the following extension:

(5.1)

(
m

k

)
=

{
1 for m ∈ Z<0 and k = 0,
0 for m ∈ Z<0 and k > 0.

Lemma 5.1. Given any (a, b, α, β) ∈ C∗ × C∗ × Z≥0 × Z≥0, one has

(5.2) B̂q;1
(
Ê(a,α)
q Ê(b,β)

q

)
(ξ) =

(−1)α+β

aα+1 bβ+1

∑
n≥0

Cn(a, b; ξ) q−n
2

(
ξ2

a b

)n
,

where the sequence {Cn(a, b; ξ)}n≥0 is defined as follows:

Cn(a, b; ξ) = −
(
n+ α

α

)(
n+ β

β

)
+

(
n+ β

β

) α+1∑
`=1

(
α− `+ n

α− `+ 1

) (
a qn

a qn − ξ

)`

+

(
n+ α

α

) β+1∑
`=1

(
β − `+ n

β − `+ 1

) (
b qn

b qn − ξ

)`
.(5.3)

Proof. By taking into account Lemma 4.5 and the fact that the q-Borel transform com-
mutes with the derivation for the parameters, considering (2.6) yields that

(5.4) B̂q;1
(
Ê(a,α)
q Ê(b,β)

q

)
(ξ) =

1

α!β!
∂α,βa,b φ0(a, b; ξ) .

Moreover, is is easy to see that (4.12) can be put into the following form:

(5.5) φ0(a, b; ξ) =
∑
n≥0

(
− 1

(a b)n+1
+

qn

an bn+1 (a qn − ξ)
+

qn

an bn+1(b qn − ξ)

)
q−n

2
ξ2n .

Since

∂α,βa,b

1

(a b)n+1
=

(−1)α+β

(a b)n+1

(n+ α)!

n! aα
(n+ β)!

n! bβ
,

one finds that

(5.6)
1

α!β!
∂α,βa,b

1

(a b)n+1
=

(−1)α+β

a b

(
n+α
α

) (
n+β
β

)
aα bβ

1

(a b)n
.

Besides, by noticing that

∂α,βa,b

1

an bn+1 (a qn − ξ)
=

(−1)β

bn+1

(n+ β)!

n! bβ
∂αa

1

an (a qn − ξ)
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and

∂αa
1

an (a qn − ξ)
=

(−1)α

an (a qn − ξ)

α∑
k=0

(
α

k

)
(n+ k − 1)!

(n− 1)! ak
(α− k)! q(α−k)n

(a qn − ξ)α−k
,

one gets that

(5.7)
1

α!β!
∂α,βa,b

1

an bn+1 (a qn − ξ)
=

(−1)α+β

a b

(
n+β
β

)
bβ

α∑
k=0

(
n+k−1

k

)
q(α−k)n

ak−1 (a qn − ξ)α−k+1

1

(a b)n
.

Letting ` = α− k + 1 into the summation of the right-hand side of (5.7) yields that

(5.8)
1

α!β!
∂α,βa,b

1

an bn+1 (a qn − ξ)
=

(−1)α+β

a b

(
n+β
β

)
bβ

α+1∑
`=1

(
α+n−`
α+1−`

)
q(`−1)n

aα−` (a qn − ξ)`
1

(a b)n
.

Similarly, one can find that

(5.9)
1

α!β!
∂α,βa,b

1

an+1 bn (b qn − ξ)
=

(−1)α+β

a b

(
n+α
α

)
aα

β+1∑
`=1

(
β+n−`
β+1−`

)
q(`−1)n

bβ−` (b qn − ξ)`
1

(a b)n
.

By gathering (5.6), (5.8) and (5.9), considering both (5.4) and (5.5) implies (5.2). �

In what follows, we will write

(5.10) φα,β0 (a, b; ξ) = B̂q;1
(
Ê(a,α)
q Ê(b,β)

q

)
(ξ) .

Proposition 5.2. Let (a, b) ∈ C∗ × C∗, (α, β) ∈ Z≥0 × Z≥0, and let d ∈ R be such that

{a, b} ∩ (0,∞eid) = ∅. One has φα,β0 (a, b; ξ) ∈ Hd
q;2.

Proof. Both Ê
(a,α)
q and Ê

(b,β)
q belonging to the q-Gevrey space C[[x]]q;1, the q-Borel

transform φα,β0 (a, b; ξ) given in (5.10) represents a germ of analytic function at the origin

of the complex plane. In order to prove that φα,β0 (a, b; ξ) ∈ Hd
q;2, let ε > 0, suppose

V = V d
ε be such that {a, b} ∩ V = ∅, and consider the positive constants |a|V and |b|V

defined in (4.16). Set

c = max(|a|, |b|) , γ = max(α, β) , δ = min(|a|V , |b|V ) .

By using
z qn

z qn − ξ
=

z

z − q−n ξ
for z = a or b, one can notice that

(5.11) max

(
sup
ξ∈V

∣∣∣∣ a qn

a qn − ξ

∣∣∣∣ , sup
ξ∈V

∣∣∣∣ b qn

b qn − ξ

∣∣∣∣
)
≤ c

δ

for all integer n.
In what follows, we will suppose that γ > 0, the case of γ = 0 being already known

with α = β = 0. As

(
n

k

)
≤ nk for any non-negative integers n and k, one deduces from

combining (5.3) and (5.11) that for any ξ ∈ V ,

|Cn(a, b; ξ)| ≤ (n+ γ)2γ + 2(n+ γ)2γ
γ+1∑
`=1

( c
δ

)`
.
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This together with the expression given in (5.2) implies that there exists C > 0 such
that

(5.12)
∣∣∣φα,β0 (a, b; ξ)

∣∣∣ ≤ C ∑
n≥0

(n+ γ)2γ q−n
2

(
|ξ|2

|a| |b|

)n
for all ξ ∈ V . So, by comparing (5.12) with (4.17), considering the same argument as

what used at the end of the proof of Lemma 4.5 implies that φα,β0 (a, b; ξ) ∈ Hd
q;2. �

5.2. Fractional decomposition arround a pole in the second Borel-plane. Given

(a, b) ∈ C∗×C∗ and (α, β) ∈ Z≥0×Z≥0, we define
{
Pα,βj

}
0≤j≤α+β

⊂ C[X,Y ] as follows:

(5.13) ∂α,βa,b

1

q−1/2ζ2 − a b
=

1

q−1/2ζ2 − a b

α+β∑
j=0

Pα,βj (a, b)

(q−1/2ζ2 − a b)j
.

Il will be convenient to write Pα,βj = 0 when j > α+ β or j < 0. A direct computation

shows that P 0,0
0 = 1, P 0,0

j = 0 for j > 0, and Pα,β0 = 0 for α+ β > 0; moreover,

Pα+1,β
j (a, b) = ∂aP

α,β
j (a, b) + jbPα,βj−1(a, b) , Pα,β+1

j (a, b) = ∂bP
α,β
j (a, b) + jaPα,βj−1(a, b) .

Lemma 5.3. Let φd1(a, b; ζ) be as in Lemma 4.6. One has

(5.14) ∂α,βa,b φ
d
1(a, b; ζ) =

1

q−1/2ζ2 − a b

α+β∑
j=0

Fj(ζ)

(q−1/2ζ2 − a b)j
,

where

Fj(ζ) = Pα,βj (a, b) +
α∑
k=j

α!

k!

(
k P k−1,β

j (a, b) + aP k,βj (a, b)
)
Sdq;2(Ê

(a,α−k)

q1/2
)(ζ)

+

β∑
k=j

β!

k!

(
k Pα,k−1

j (a, b) + b Pα,kj (a, b)
)
Sdq;2(Ê

(b,β−k)

q1/2
)(ζ) .(5.15)

Proof. By (4.19), it follows that

(5.16) φd1(a, b; ζ) =
1

q−1/2ζ2 − ab

(
1 + aSdq;2(Ê

(a,0)

q1/2
)(ζ) + bSdq;2(Ê

(b,0)

q1/2
)(ζ)

)
.

We will consider the expression of φd1(a, b; ζ) given in (5.16), taking the differential ∂α,βa,b

of the members of its right-hand side. Since

∂α,βa,b

aSdq;2(Ê
(a,0)

q1/2
)(ζ)

q−1/2ζ2 − a b
= α! ∂βb

α∑
k=0

1

k!
∂ka

(
a

q−1/2ζ2 − a b

)
1

(α− k)!
∂α−ka Sdq;2(Ê

(a,0)

q1/2
)(ζ) ,

using (3.3) gives that

(5.17) ∂α,βa,b

aSdq;2(Ê
(a,0)

q1/2
)(ζ)

q−1/2ζ2 − a b
=

α∑
k=0

α!

k!
∂k,βa,b

(
a

q−1/2ζ2 − a b

)
Sdq;2(Ê

(a,α−k)

q1/2
)(ζ) .
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Similarly, one has

(5.18) ∂α,βa,b

bSdq;2(Ê
(b,0)

q1/2
)(ζ)

q−1/2ζ2 − a b
=

β∑
k=0

β!

k!
∂α,ka,b

(
b

q−1/2ζ2 − a b

)
Sdq;2(Ê

(b,β−k)

q1/2
)(ζ) .

In view of (5.17) and (5.18), taking the differential ∂α,βa,b on both sides of (5.16) yields

that

∂α,βa,b φ
d
1(a, b; ζ) =∂α,βa,b

1

q−1/2ζ2 − a b
+

α∑
k=0

α!

k!
∂k,βa,b

(
a

q−1/2ζ2 − a b

)
Sdq;2(Ê

(a,α−k)

q1/2
)(ζ)

+

β∑
k=0

β!

k!
∂α,ka,b

(
b

q−1/2ζ2 − a b

)
Sdq;2(Ê

(b,β−k)

q1/2
)(ζ) .(5.19)

Since

∂k,βa,b
a

q−1/2ζ2 − a b
= k ∂k−1,β

a,b

1

q−1/2ζ2 − a b
+ a ∂k,βa,b

1

q−1/2ζ2 − a b
,

replacing (α, β) with (k, β) or (k − 1, β) in (5.13) yields

(5.20) ∂k,βa,b
a

q−1/2ζ2 − a b
=

1

q−1/2ζ2 − a b

k+β∑
j=0

k P k−1,β
j (a, b) + aP k,βj (a, b)

(q−1/2ζ2 − a b)j
.

Similarly, one has

(5.21) ∂α,ka,b

b

q−1/2ζ2 − a b
=

1

q−1/2ζ2 − a b

α+k∑
j=0

b Pα,kj (a, b) + k Pα,k−1
j (a, b)

(q−1/2ζ2 − a b)j
.

Therefore, putting (5.13), (5.20) and (5.21) into (5.19) yields (5.14). �

As before, let (a, b, d) ∈ C∗×C∗×R be such that {a, b}∩ (0,∞eid) = ∅. By following
Proposition 5.2, if

(5.22) φd;α,β
1 (a, b; ζ) =

∫ ∞eid
0

φα,β0 (a, b; ξ)

eq1/2(ξ/ζ)

dξ

ξ
,

then φd;α,β
1 (a, b; ζ) represents an analytic function for all ζ ∈ C̃∗ such that |ζ| < q1/4

√
|a b|.

Theorem 5.4. Let φd;α,β
1 (a, b; ζ) as in (5.22), d′ ∈ R, and consider the set Λda,b given in

(4.18). The following assertions hold.

(1) If (0,∞eid′) ∩ Λda,b = ∅, there exist ε > 0 and C > 0 such that

(5.23) ∀ζ ∈ V d′
ε ,

∣∣∣φd;α,β
1 (a, b; ζ)

∣∣∣ ≤ C

|ζ2 −√q a b|
.

(2) Otherwise, one has (0,∞eid′)∩Λda,b = {c} and there exist a finite set {λ0, ..., λα+β} ⊂
C and an analytic function ψ in V d′

π/2 possessing the following properties.
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(a) For any ζ ∈ V d′

π/2 \ {c}, one has

(5.24) φd;α,β
1 (a, b; ζ) =

α+β∑
j=0

λj
(ζ − c)j+1

+ ψ(ζ) .

(b) Given any ε ∈ (0, π2 ), ψ remains bounded in V d′
ε and one has ψ(ζ) = O(1

ζ )

as ζ →∞ in V d′
ε .

Proof. Since φα,β0 (a, b; ξ) = ∂α,βa,b φ0(a, b; ξ), equation in (5.22) takes the following form:

φd;α,β
1 (a, b; ζ) =

∫ ∞eid
0

∂α,βa,b φ0(a, b; ξ)

eq1/2(ξ/ζ)

dξ

ξ
.

This implies that

(5.25) φd;α,β
1 (a, b; ζ) = ∂α,βa,b φ

d
1(a, b; ζ) ,

what allows one to make use of the expression given in (5.14) for ∂α,βa,b φ
d
1(a, b; ζ). Fur-

thermore, considering the relation stated in (3.6) implies that everyone of the members

of both Gq-sums families
{
Sdq;2(Ê

(a,k)

q1/2
)
}

0≤k≤α
and

{
Sdq;2(Ê

(b,k)

q1/2
)
}

0≤k≤β
is bounded over

any sector V d′
ε with ε > 0. Thus, one obtains from (5.15) that there exists a constant

C1 > 0, depending of a, b, α, β and V d′
ε , such that

(5.26) ∀ζ ∈ V d′
ε , max

0≤j≤α+β
|Fj(ζ)| ≤ C1 .

(1) If (0,∞eid′) ∩ Λda,b = ∅, one has q−1/2ζ2 − a b 6= 0 for all ζ ∈ (0,∞ eid
′
). Let

ε > 0 be enough small in such way that q−1/2ζ2 − a b 6= 0 for all ζ ∈ V d′
2ε , and define

δ = infζ∈V d′ε
|ζ2 − √q a b|. By letting C =

√
q (1 + δ + ... + δα+β)C1 and taking into

account (5.26), one deduces (5.23) from (5.14).

(2) By hypothesis, c is the only root of q−1/2ζ2 − a b = 0 in the half-line (0,∞eid′).
One the one hand, gathering (5.26) together with (5.14) implies that, for any ε > 0, one
has

(5.27) φd;α,β
1 (a, b; ζ) = O(

1

ζ2
) , V d′

ε 3 ζ →∞ .

One the other hand, letting q−1/2ζ2−a b = q−1/2 (ζ−c)(ζ+c) into (5.14) and considering
the Taylor expansion of each function Fj(ζ) at ζ = c yields the fractional decomposition
as (5.24), where ψ remains analytic and bounded in every relatively-compact subset of

V d′

π/2. Note that

α+β∑
j=0

λj
(ζ − c)j+1

= O(
1

ζ
) as ζ → ∞. With the help of (5.27), one finds

that ψ = O(1
ζ ) as ζ →∞. This finishes the proof of Theorem 5.5. �

The expression given in (5.14) for the function φα,β1 (a, b; ζ) shows that it may have a

singularity at any square-root of
√
q a b in C̃∗. The following result says that it remains

well-defined and analytic at ζ = q1/4
√
a b e−πi. This generalizes Lemma 4.6 (1) in which

one had α = β = 0.
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Remark 5.5. Let (a, b, d) ∈ C∗ × C∗ × R to be such that (4.2) holds. Given any

couple (α, β) ∈ Z≥0 × Z≥0, the associated function φd;α,β
1 (a, b; ζ) remains analytic at

ζ = q1/4
√
a b e−πi.

This will be deduced from Lemma 5.6 ; for more details, see the end of the proof of
Theorem 5.7 given in §5.3 below.

5.3. One generalization of Theorem 4.1. In order to generalize Theorem 4.1 for

Ê
(a,α)
q Ê

(b,β)
q , we shall establish the following result.

Lemma 5.6. Let δ ∈ R, N ∈ Z>0, {c1, ..., cN} ⊂ (0,∞eδ), {λ1, ..., λN} ⊂ C, {µ1, ..., µN} ⊂
Z≥0, and let ψ ∈ H̃δ

q;1. Set

(5.28) φ(ξ) =
N∑
j=1

λj
(ξ − cj)µj+1 + ψ(ξ) .

If (cj , µj) 6= (ck, µk) for all (j, k) such that j 6= k, then the following conditions are
equivalent.

(1) λj = 0 for 1 ≤ j ≤ N .

(2) φ ∈ H̃δ
q;1.

(3) There exist δ− < δ < δ+ such that φ ∈
(
H̃δ−
q;1 ∩ H̃δ+

q;1

)
and, moreover, the identity

Lδ−q;1φ = Lδ+q;1φ holds.

Proof. The equivalence (1) ⇔ (2) and implication (2) ⇒ (3) being trivial, it suffices to
prove (3) ⇒ (2) or (3) ⇒ (1). This can be done by applying Residue Theorem to the

contour integral
(
Lδ−q;1φ− Lδ

+

q;1φ
)

. Indeed, one deduces from considering (5.28) that

(5.29) Lδ−q;1φ(x)− Lδ+q;1φ(x) = 2πi

N∑
j=0

λj
µj !

∂
µj
ξ

(
1

ξ eq(ξ/x)

)∣∣∣∣
ξ=cj

.

Since ξ eq(
ξ

x
) =

x

q
eq(

qξ

x
), one can observe that

1

ξ eq(ξ/x)
=

q

x
√

2π ln q
eP (ξ) , where P (ξ) =

(log(q3/2 ξ/x))2

2 ln q
.

If one defines the sequence {Pk} by the relation

(5.30) ∂kξ

(
1

ξ eq(ξ/x)

)
=

Pk(ξ)

ξ eq(ξ/x)
,

then P0 = 1 and Pk+1 = P ′ Pk + P ′k for all k ≥ 0. One can find that

(5.31) Pk(ξ) =
Qk(log(q3/2 ξ/x))

(2(ln q) ξ)k
, Qk ∈ C[X] , degQk = k .

Thus, the relation in (5.29) yields that

(5.32) Lδ−q;1φ(x)− Lδ+q;1φ(x) = 2πi
N∑
j=0

λj Qµj (log(q3/2 cj/x))

µj ! (2(ln q))µj c
µj+1
j eq(cj/x)

.
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Assume x→ 0, and consider the different asymptotic scales contained in the right-hand
side of (5.32). One can easily obtain that le left-hand side is null if and only if λj = 0
for all j from 1 to N . This means that (3)⇒ (1). �

Theorem 5.7. Let (a, b, d) ∈ C∗ × C∗ × R be as in Theorem 4.1, and let α, β ∈ Z≥0.

One has Ê
(a,α)
q Ê

(b,β)
q ∈ C{x}dq;(1,2) and

(5.33) Sdq;(1,2)(Ê
(a,α)
q Ê(b,β)

q ) = Sdq;1(Ê(a,α)
q )Sdq;1(Ê(b,β)

q ) .

Proof. Let d′ ∈ R be as in Theorem 5.4 (1), and define

(5.34) fd
′,d;α,β(a, b;x) =

∫ ∞eid′
0

φd;α,β
1 (a, b; ζ)

eq1/2(ζ/x)

dζ

ζ

and

(5.35) fd
′,d(a, b;x) =

∫ ∞eid′
0

φd1(a, b; ζ)

eq1/2(ζ/x)

dζ

ζ

for all x ∈ C̃∗. By taking into account both (5.23) and (5.25), one gets that

(5.36) fd
′,d;α,β(a, b; ζ) = ∂α,βa,b f

d′,d(a, b;x) .

Let d̄a,b = 1
2(arg(a) + arg(b)). In view of (4.2), one has d̄a,b ∈ (d, 2π). One remembers

that fd(a, b;x) was defined by means of the ingeral of (4.27). By following Lemma 4.6,

the function φd1(a, b; ζ) is analytic in the sector V
d̄a,b
π/2 . Thus, comparing (4.27) with (5.36)

implies that

(5.37) fd
′,d(a, b;x) = fd(a, b;x)

for any d′ ∈
(
d̄a,b − π

2 , d̄a,b + π
2

)
. Besides, combining (5.37) with (5.35) yields that

(5.38) fd
′,d;α,β(a, b;x) = ∂α,βa,b f

d(a, b;x)

for any d′ ∈
(
d̄a,b − π

2 , d̄a,b
)
∪
(
d̄a,b, d̄a,b + π

2

)
. Thus, applying Lemma 5.6 to the triplet(

q1/2, φd;α,β
1 (a, b; ζ), d̄a,b

)
instead of (q, φ, δ) implies that φd;α,β

1 (a, b; ζ) ∈ H̃d̄a,b
q;2 . One gets

that φd;α,β
1 (a, b; ζ) is analytic at ζ = q1/4

√
a b e−πi, as claimed by Remark 5.5. As by-

product, it follows from combining this with Theorem 5.4 that Ê
(a,α)
q Ê

(b,β)
q ∈ C{x}dq;(1,2).

At the same time, letting d′ = d into (5.36) and using (4.26) yileds (5.33), what permits
us to achieve the proof of Theorem 5.7. �

5.4. End of the proof of Theorem 1.1. Let f̂1 and f̂2 be two generic q-Gevrey series.

In view of the notational convention given in (3.7), one knows that Ê
(a,−1)
q = 1 for any

a ∈ C∗. Thus, by applyinig (2.8) to f̂1 and f̂2, one can find m, n ∈ Z≥0, g0, ..., gm, h0,
..., hn ∈ C{x}, a1, ..., am, b1, ..., bn ∈ C∗ and α1, ..., αm, β1, ..., βn ∈ Z≥0 such that

f̂1 =
m∑
j=0

gj Ê
(aj ,αj)
q , f̂2 =

n∑
k=0

hk Ê
(bk,βk)
q ,
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where α0 = β0 = −1 and where a0 and b0 may be arbitrarily chosen in C∗. This implies
that

(5.39) f̂1 f̂2 =
m∑
j=0

n∑
k=0

gj hk Ê
(aj ,αj)
q Ê(bk,βk)

q .

Set S = {arg(aj) ∈ [0, 2π) : 1 ≤ j ≤ m} ∪ {arg(bk) ∈ [0, 2π) : 1 ≤ k ≤ n}. By taking

into account the fact that C{x}dq;(1,2) constitutes a C{x}-module (see Propositions 2.2

& 2.4), applying Theorem 5.7 to each term of the right-hand side of (5.39) yields that

f̂1 f̂2 is Gq-summable of order (1, 2) in any direction d /∈ S mod 2π. Finally, gathering
(5.39) together with (5.33) allows one to obtain the eqality expected in (1.4), with
S = {δ1, ..., δM}. In this way, we finish the proof of Theorem 1.1.
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[12] J.-P. RAMIS, Les séries k-sommables et leurs applications, Complex Analysis, Microlocal Calculus
and Relativistic Quantum Theory, Lecture Notes in Physics, 126 (1986) 178-199.

[13] J.-P. RAMIS, About the growth of entire functions solutions of linear algebraic q-difference equa-
tions, Ann. Fac. Sci. Toulouse Math. (6) 1 (1992), 53-94.

[14] J.-P. RAMIS and J. SAULOY, The q-analogue of the wild fundamental group. I. Algebraic, analytic
and geometric aspects of complex differential equations and their deformations. Painlevé hierarchies,
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(Grenoble) 49 (1999), no. 1, 227-261.

[20] C. ZHANG, On the positive powers of q-analogs of Euler series, in Recent trends in formal and
analytic solutions of diff. equations, 155-165, Contemp. Math., 782, Amer. Math. Soc., [Providence],
RI, 2023.
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