Ultra-Fast Lidar Scene Analysis Using Convolutional Neural Network - Archive ouverte HAL
Article Dans Une Revue Lecture Notes in Computer Science Année : 2023

Ultra-Fast Lidar Scene Analysis Using Convolutional Neural Network

Résumé

This work introduces a ultra-fast object detection method named FLA-CNN for detecting objects in a scene from a planar LIDAR signal, using convolutional Neural Networks (CNN). Compared with recent methods using CNN on 2D/3D lidar scene representation, detection is done using the raw 1D lidar distance signal instead of its projection on a 2D space, but is still using convolutional neural networks. Algorithm has been successfully tested for RoboCup scene analysis in Middle Size League, detecting goal posts, field boundary corners and other robots. Compared with state of the art techniques based on CNN such as using Yolo-V3 for analysing Lidar maps, FLA-CNN is 2000 times more efficient with a higher Average Precision (AP), leading to a computation time of 0.025ms, allowing it to be implemented in a standard CPU or Digital Signal Processor (DSP) in ultra low-power embedded systems.
Fichier principal
Vignette du fichier
Ultra_Fast_Lidar_Scene_Analysis_using_Convolutional_Neural_Network (1).pdf (1.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04525500 , version 1 (28-03-2024)

Identifiants

Citer

Houssem Moussa, Valentin Gies, Thierry Soriano. Ultra-Fast Lidar Scene Analysis Using Convolutional Neural Network. Lecture Notes in Computer Science, 2023, RoboCup 2022: Robot World Cup XXV, 13561, pp.50-61. ⟨10.1007/978-3-031-28469-4_5⟩. ⟨hal-04525500⟩
146 Consultations
94 Téléchargements

Altmetric

Partager

More