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Abstract. This work introduces a ultra-fast object detection method
named FLA-CNN for detecting objects in a scene from a planar LIDAR
signal, using convolutional Neural Networks (CNN). Compared with re-
cent methods using CNN on 2D/3D lidar scene representation, detection
is done using the raw 1D lidar distance signal instead of its projection on
a 2D space, but is still using convolutional neural networks. Algorithm
has been successfully tested for RoboCup scene analysis in Middle Size
League, detecting goal posts, field boundary corners and other robots.
Compared with state of the art techniques based on CNN such as using
Yolo-V3 for analysing Lidar maps, FLA-CNN is 2000 times more efficient
with a higher Average Precision (AP), leading to a computation time of
of 0.025ms, allowing it to be implemented in a standard CPU or Digital
Signal Processor (DSP) in ultra low-power embedded systems.

Keywords: Lidar processing, Scene analysis, Convolutional Neural Net-
works, Low-power

1 Introduction

Mobile autonomous robots in unknown or changing environment need to take
decisions based on the surrounding scene analysis. For this task, two types of
sensors are mainly used : cameras and LIDAR. This latter is an interesting
exteroceptive sensor in robotics providing reliable maps of the surrounding envi-
ronment, with a better precision in object positioning than using only cameras.
This interesting feature greatly helps to ensure a high level of safety in human-
robots interactions.

This paper focuses on autonomous robot soccer scene analysis, including
robots, humans, goals (posts), and field boundary using a planar Lidar, but
with limited computing capabilities, and at least without using a GPU (such as
for image processing). Chosen Lidar is a Pepperl+Fuchs R2000 UHD one gen-
erating a 1D sequence of 1440 distance measurements at each scan of the scene,
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50 times per second, with a maximum range of 60 m. Application of this paper
is analysis of RoboCup Middle Size League scenes. RoboCup is an international
competition where robot teams play soccer autonomously. Its main objective
in the future is to won against a professional, human soccer team by 2050. In
the Middle Size League (MSL), teams are composed of five robots playing au-
tonomously on a 22 m by 14 m soccer field with a real soccer ball.

Having limited computing capabilities have a deep impact on the algorithms
that can be used in a robot. Most scene analysis algorithms are using 2D or even
3D representations of the scene, leading to huge computation time on limited
computing systems. This paper aims at introducing a novel algorithm for a LI-
DAR scene analysis, using state of the art CNN with end to end learning, but
without using a 2D representation of the scene. Instead of that CNN is applied
to the raw 1D lidar signal, using the 1440 distance data of each LIDAR rotation
as input tensor. This algorithm is called Fast Lidar Analysis using Convolutional
Neural Network (FLA-CNN). It achieves an excellent precision while having a
very low detection time and a low power consumption, making it usable for mo-
bile robots with CPU or DSP for real time detection, without requiring a GPU.

This work is divided into 3 parts :

– In section 2, an overview of scene analysis techniques using cameras or LI-
DAR is presented, focusing on their advantages and disadvantages.

– In section 3, Fast Lidar Analysis using Convolutional Neural Network (FLA-
CNN) algorithm is introduced, allowing to analyse scenes with low latency
and computing power requirements.

– In section 4, application to the RoboCup scene analysis is presented, with a
focus on dataset creation and labeling, training process, and a discussion on
results and performance.

2 State of the art in robot scene analysis

Deep neural networks, and particularly convolutional neural networks are consid-
ered as state of the art models for feature extraction due to their great ability to
learn their features and classifiers from data into an end to end learning process.
However, their main drawback is to require high computing capabilities, making
them difficult to implement in an embedded computer or microcontroller. More-
over, using these algorithms for controlling fast robots in real time, requires a fast
processing time considering the speed of the robots (up to 6 m/s in Middle Size
League) corresponding to at least 30 frame per second (FPS). Combining these
two aspects, high frame rate and embedded processing, is the key for efficient
embedded robot control.

2.1 Object detection based on images

Camera is one of the most used sensor in robotics combined with processing for
scene analysis. Among the most efficient ones are detectors based on CNN, hav-
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ing one stage or two stages. Both of them have interesting performances in terms
of accuracy, but are relatively slow [1, 2]. [1] gives an interesting comparison of
these detectors on Coco dataset : using an Intel i7-8700 CPU and an NVIDIA
GeForce RTX 2080Ti 12GB GPU on 640×960 images, Average Precision (AP)
reaches 32.4 on the most accurate models (i.e. Faster RCNN Res2Net101), but
at the price of a computation time of 63 ms. Reaching a computation speed of 30
FPS requires to use Mobile Net Models at the price of a loss in accuracy (mAP
= 24.3).

An interesting result in [1] is that two stages models [3–8] are more accurate
than one stage ones such as YOLO [9–11], even if the main trend is nowadays to
use these latter. Fig. 1) shows a result of scene analysis on a 360 degrees image
using YOLOv3. This image has been recorded using an omnidirectional camera
and transformed to a panorama image because Yolo algorithms are not rotation
invariant and cannot be applied directly to omnidirectional images. Models have
been proposed to cope with this issue [12, 13] but are more resource consuming.

Fig. 1. YOLOv3 for object detection running on a GPU with omnidirectional camera.

In conclusion, cameras are potentially rich sensors but requires a high pro-
cessing power for extracting segmenting the scene at a high FPS rate, making
them difficult to use on embedded CPU or micro-controllers. Considering stereo-
vision cameras would also be interesting, but it would require more computing
power making them out of scope on proposed application to MSL robots.

2.2 Object detection based on 2D Map lidar images

An alternative to the use of cameras, is to use 2D or 3D lidars. An example of
2D map obtained using a Pepperl+Fuchs R2000 lidar is presented in Figure 2.
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Fig. 2. 2D Map Image created with 1D Lidar signal

This kind of 2D image can be analysed using image processing algorithms
for detecting shapes or objects. However, doing that would lead to the same
drawbacks as for image processing : important computation time and computer
power requirement.

Considering the strong constraints of embedded systems in terms of limi-
tations in computing power and the need for high FPS, another approach is
proposed in this paper, using CNN on th raw 1D-Lidar signal.

3 Contribution : Fast Lidar Analysis using Convolutional
Neural Network (FLA-CNN)

In this paper, Fast Lidar Analysis using Convolutional Neural Network (FLA-
CNN) is introduced. It aims at analysing 1D raw lidar distance data using a
state of the art deep learning model predicting corners of a RoboCup field and
posts of a RoboCup goal. FLA-CNN design has been inspired by YOLO : its
design is being presented in details.

Notation We use P = (Pd, Pθ, Pconf , Pclass) ∈ ℜ4 to denote a ground-truth
points, where Pd, Pθ are the distance and its corresponding angle in robot refer-
ential, Pd ∈ [0, 60] and Pθ ∈ [0, 2π]. Pconf is the confidence score of an existing
object and Pclass is the index of the corresponding class name to the detected
object. Similarly P̂ = (P̂d, P̂θ, P̂conf , P̂class) ∈ ℜ4 denotes a predicted object.

3.1 CNN Architecture

FLA-CNN network can be divided into two parts: feature extractor neural net-
work (FNN) (Eq. 1) and object regression network (ORN) (Eq. 2).

F = FNN(D) (1)
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T = ORN(F ) (2)

where D ∈ R1440 is the input tensor featuring the measured distance for each
angle during a full rotation. F denotes a feature vector and T denotes a list of
predicted points that represents the objects in 1D signal in transformed notation
(the relationship between T and P will be defined soon – Eq. 11). Figure 5 shows
the overall the FLA-CNN architecture, while below we describe each stage in
some depth.

Feature extractor network FNN: The feature extractor network, takes an
input vector D and outputs a list of features T. This stage is composed with
2 layers, each layer apply a convolution 1D, batch normalisation, max pooling
and leaky relu as an activation function. The first layer takes as input the 1D
signal(D), the second layer takes as input the output of the first layer. This
network extract features from signal, only one layer is not capable to identify
the signal for that reason we added the second layer that will complete the
recognition stage.

Fig. 3. Model network For object detection using 1D lidar signal detection

The convolution 1D is faster than 2D one, decreasing drastically computa-
tional complexity, making it suitable for running on mobile devices, embedded
systems, and on some microcontrollers and DSP.

In each convolutional layer, the forward propagation is expressed as follows :

xl
k = blk +

Nl−1∑
i=1

conv1D(wl−1
ik , sl−1

i ) (3)
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where xl
k is defined as the input, blk is defined as the bias of the kth neuron at

layer l, sl−1
i is the output of the ith neuron at layer l-1, wl−1

ik is the kernel from
the ith neuron at layer l-1 to the kth neuron at layer l.

The output of the convolutional layer is followed by a batch normalisation
layer for fixing means and variances. Learning is done using stochastic optimi-
sation due to the memory limits, for reducing over-fitting and training time.
Normalisation process is expressed as follows, where B is a mini-batch of size m
of the whole training dataset. The mean and variance of B could be expressed
as :

µB =
1

m

m∑
i=1

xi (4)

σB2 =
1

m

m∑
i=1

(xi − µB)2 (5)

For a layer of the network with d-dimensional input, x = (x(1), ..., x(d)), each
dimension of its input is then normalized (i.e. re-centered and re-scaled) sepa-
rately,

x̂k
i =

xk
i − µk

B√
σk2

B2 + ϵ
(6)

where k ∈ [1, 1440] and i ∈ [1,m]; µ
(k)
B and σ

(k)2

B are the per-dimension mean
and variance, respectively.

ϵ is added in the denominator for numerical stability and is an arbitrarily
small constant we used ϵ = 1e−6. The resulting normalized activation x̂(k) have
zero mean and unit variance, if ϵ is not taken into account. To restore the rep-
resentation power of the network, a transformation step then follows as

yki = γkxk
i + βk (7)

Object regression network Following the FNN, a separate MLP is applied to
each feature vector F to produce a transformed version of object points predic-
tions, noted T < Nθ, Nd, 3 +Nclasses >, a 3-dimensional matrix where Nθ = 10
is the numbers of angular cells (size of each cell is 0.63 radian). Nd = 10 is the
numbers of radial cells (size of each cell is 6 meter). First and second indexes
correspond to the location (θ, d) in the prediction polar grid, and last index
corresponds to the intra-cell predicted position and classification of the point in
the considered polar grid cell with the following information : TCellθ the pre-
dicted point angle in the considered cell, TCelld the predicted distance in the
considered cell, TCellConf the probability that an object exist in the considered
cell and TCellClassi the probability that the object belongs to the ith class.
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Exact coordinates of the object in the signal can be obtained using the fol-
lowing equations :

Pd = (d+ Sig(TCelld))Sd (8)

Pθ = (θ + Sig(TCellθ))Sθ (9)

Pconf = Sig(TCellConf )) (10)

Pclassi = softmax(TCellClassi) (11)

where Sig(·) is the logistic (sigmoid) activation function is defined by :

sig(x) =
1

1 + e−x
(12)

where Softmax() is the normalized exponential function is defined by :

softmax(z)i =
ezi∑k
j=1 e

zj
for i=1...k and z = (z1...zk) ∈ ℜk (13)

where Sd is the radial grid size Sd = max(d)
Nd

and where Sθ is the angular grid size Sθ = 2π
Nθ

A flatten layer has been added between the FNN and OPN, and all the feature
vectors obtained with the CNN 2 layers in the FNN are transformed to one vector
that will be the input for the final multi layer perceptron. The number of neurons
in the last MLP layer must be equal to (Nd ∗ Nθ ∗ (N c + 3), where Nθ is the
number of grid bellowing to x, Nd is the number of grid bellowing to y axis and 5
represent the predictions coordinates (T̂ = (T̂Celld, T̂Cellθ, T̂CellConf , T̂CellClassi)
∈ ℜ5) where N c is the class numbers.

4 Application to the RoboCup scene analysis

4.1 Data set creation and labelling

Data uses in this work have been recorded using Robot Club Toulon (RCT)
robots participating to RoboCup Middle Size League, using a Pepperl+Fuchs
1D lidar delivering 1440 distance measurements per rotation (angular resolution
is 0.25°), 50 times per second with a maximum range of 60m. Its precision is ap-
proximately ±1cm. This work aims at detecting field boundary corners and goal
posts. These information are sufficient for computing position of our robot in the
field using distance and angles of each detected post, and developing strategies
for playing soccer and shooting with precision.

Signal labelling application has been designed for labelling 1D lidar signal
easily, with labels having the same format as the model output discussed in
(3.1). This labelling tool uses data files containing timestamped Lidar data that
is decoded and extracted to create one lidar file for every lidar sample, each file
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name containing the timestamp of the lidar acquisition. Each file file contains
1440 lines and 2 columns, first one for the distance and second one for the lidar
angle in robot referential.

In a LIDAR scene recorded in our RoboCup field, four points can be con-
sidered as field boundary corners, and two of them can be considered as posts
(our dataset has been recorded with only one goal in the scene). Creating labels
directly on the 1D signal is difficult and would lead to many faults in the dataset
: using a 2D representation, only for labeling 1D signal, is a better way to easily
find and label field corners and posts in the scene (Figure 4.1).

Fig. 4. LIDAR data signal labeling : 1D signal (left) and 2D map (right).

For transforming each 1D lidar sample to a 2D map, following transformation
is used, where d is the measured distance, θ the measurement angle, and (x,y)
the cartesian position of the obstacle in the robot referential :

x = cos(θ) ∗ d (14)

y = sin(θ) ∗ d (15)

Once the map is created, object class is selected manually, and cartesian map
coordinates are transformed back to polar coordinates for labeling a specific point
in the 1D signal. As shown in (Figure 4.1), 4 points have been labelled in pink
for the boundary corners, and 2 points have been labelled in blue for the posts.
Inverse transformation (from cartesian to polar point) is expressed as follows :

d =
√
x2 + y2 (16)

θ = 2arctan(
y

x+ d
) (17)

This process is repeated for every lidar Sample, after each annotation for
each sample an xml file is created that contain distance, angle and the class
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name of each object which is represented by a point on the 2D Map. Once the
labeling process is finished, a new dataset with a unique .txt file containing lidar
1D data and its corresponding .xml file for the labels is generated.

4.2 Training

FLA-CNN has been trained from scratch on our dataset, as model has been
fully customised for our application. During training, model prediction has been
optimised by minimising the loss function (Eq.18). Output of our model is a
tensor of dimansion < Nd = 10×Nθ = 10× (3+NClasses) = 5) >, since we have
2 objects classes (goals and corners) to detect, so that every grid may contain
1 or in some cases 2 objects. Anchors boxes for multiple detection in the same
grid cell are not used, since object bounding boxes have same size always in the
2D map.

Proposed loss function is a sum of squared errors between the different com-
ponents of the predictions and the ground truth. First term is related to angle
and distance only when there is an object. 1obji is equal to 1 when there is an
object in the grid cell i, and to 0 if there is no object. Second and third terms are
related to prediction confidence when there is an object 1obji and when there is

no object 1noobji . λpredobj = 3 is higher than λprednoobj = 2.5 to focus on objects.
Fourth term is related to the probability that an object belongs to each one of
the classes.

.

loss = λcord

∑S2

i=0 1
obj
i [(P i

θ − P̂θ
i
)2 + (P i

d − P̂d
i
)2]

+ λpred obj

∑S2

i=0 1
obj
i (P i

conf − P̂ i
conf )

2

+ λpred noobj

∑S2

i=0 1
noobj
i (P i

conf − P̂ i
conf )

2

+
∑S2

i=0

∑k
j=1 1

obj
i (P classij − P̂ classij)

2

(18)

Network has been trained on 336 samples of 1440 elements. 200 epochs have
been iterated, with a batch size of 8. Optimiser used is adam, with a learning
rate = 1e−4, decay= 0.005 and beta = 0.99. To avoid overfitting issues, training
has been stopped when loss function was increasing for 10 epochs. Only the best
weights of the last 10 epochs will be saved.

5 Results

The dataset that we created in section 4 is devided in 2 parts, 80% for training
and 20% for the evaluation, we used the AUC of the ROC curve to evaluate our
detection results, ROC curve is a graph showing the performance of a detection
model at all detection thresholds. This curve plots two parameters : True Positive
Rate (TPR) (Eq. 19) and False Positive Rate (FPR) (Eq. 20)
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TPR =
TP

TP + FN
(19)

FPR =
FP

FP + TN
(20)

Fig. 5. Model evaluation with Roc curve

The ROC curve (Fig .5) that we obtain on the evaluation dataset for different
threeshold starting with 0 ending with 1 with a step of 0.1, for our model the
AUC = 0.94 which is an excellent result in term of precision.

We used other metric to evaluate the detection results which is the mean
absolute error between the predictions of our model and the ground truth of the
evaluation dataset (Fig.5), the maximum error of the distance is 0.17cm, and
the maximum angular error is 0.05 radian (2 degree).

The detection results are shown above, the model predicts the distance and
angle of each object that below to pink and blue on the signal and using the
transformation discussed in (3) we are showing the correspondent object position
in the 2D MAP.
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Fig. 6. Model predictions for different samples : : 1D signal (left) and 2D map (right).

6 Conclusion

This work introduces a ultra-fast object detection method named FLA-CNN for
detecting objects in a scene from a planar LIDAR signal, using convolutional
Neural Networks (CNN). Compared with recent methods using CNN on 2D/3D
lidar scene representation, detection is done using the raw 1D lidar distance sig-
nal instead of its projection on a 2D space, but is still using convolutional neural
networks.

Algorithm has been successfully tested for RoboCup scene analysis in Mid-
dle Size League, detecting goal posts, field boundary corners and other robots.
Prediction inferences are computed in 25 µs with 94% of mAP. Thanks to the
reduced size of the proposed CNN processing directly 1D lidar signal instead of
converting it to a 2D image, implementing it in an embedded system is possible
and doesn’t require a high computational power such as a GPU, but can be
achieved in a DSP or a microcontroller for real time detection in mobile robots.

In term of precision and speed our model achieve the better results compared
to the start of art methods that we tested ourselves as explained as follows :

Method Input size mAP time(ms) computing system
SSD 321x321x3 45.4 61 GPU (GTX 1080)
SSD 513x513x3 50.4 125 GPU (GTX 1080)
YOLO v3 416x416x3 55.3 29 GPU (GTX 1080)
YOLO v3 608x608x3 57.9 51 GPU (GTX 1080)
Faster RCNN 1000x600x3 73.2 142 GPU (GTX 1080)
Ours (FLA-CNN) 1440x1 94 0.025 CPU (i5-9500)
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Even if proposed results are preliminary and require a large database with
many objects and labels to detect for a full validation of the proposed algorithm,
first results are promising and clearly show that converting a 1D lidar data into
a 2D map leads to dramatically increase computation power requirement.
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