Bubble breakup reduced to a one-dimensional nonlinear oscillator - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Review Fluids Année : 2023

Bubble breakup reduced to a one-dimensional nonlinear oscillator

Résumé

Breaking dynamics of bubbles in turbulence produce a wide range of bubble sizes, which mediates gas transfer, in particular at the ocean/atmosphere interface. At the scales close to the stability limit of bubbles torn away by inertial forces, a typical geometry that induces bubble break-up is the uni-axial straining flow. In this configuration, the bubble shapes and their limit of stability have been studied theoretically and numerically near their equilibrium. Using numerical simulations, we investigate the bubble dynamics and break-up in such flows, starting from initial shapes far from equilibrium. We show that the break-up threshold is significantly smaller than the previous linear predictions and evidence that the break-up threshold depends on both the Reynolds number at the bubble size, and the initial bubble shape (ellipsoids). To rationalize the bubble dynamics and the observed thresholds, we propose a reduced model for the oblate/prolate oscillations (second Rayleigh mode) based on an effective potential that depends on the control parameters and the initial bubble shape. Our model successfully reproduces bubble oscillations, the maximal deformation below the threshold and the bubble lifetime above the threshold.

Mots clés

Fichier principal
Vignette du fichier
bubble_stagnation.pdf (1.44 Mo) Télécharger le fichier
cvgStudy.pdf (258.73 Ko) Télécharger le fichier
lifetime.pdf (191.75 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04232278 , version 1 (18-01-2024)

Licence

Paternité

Identifiants

Citer

Aliénor Rivière, Laurent Duchemin, Christophe Josserand, Stéphane Perrard. Bubble breakup reduced to a one-dimensional nonlinear oscillator. Physical Review Fluids, 2023, 8 (9), pp.094004. ⟨10.1103/PhysRevFluids.8.094004⟩. ⟨hal-04232278⟩
10 Consultations
27 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More