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Breaking dynamics of bubbles in turbulence produce a wide range of bubble sizes, which mediates
gas transfer, in particular at the ocean/atmosphere interface. At the scales close to the stability
limit of bubbles torn away by inertial forces, a typical geometry that induces bubble break-up is the
uni-axial straining flow. In this configuration, the bubble shapes and their limit of stability have
been studied theoretically and numerically near their equilibrium. Using numerical simulations, we
investigate the bubble dynamics and break-up in such flows, starting from initial shapes far from
equilibrium. We show that the break-up threshold is significantly smaller than the previous linear
predictions and evidence that the break-up threshold depends on both the Reynolds number at the
bubble size, and the initial bubble shape (ellipsoids). To rationalize the bubble dynamics and the
observed thresholds, we propose a reduced model for the oblate/prolate oscillations (second Rayleigh
mode) based on an effective potential that depends on the control parameters and the initial bubble
shape. Our model successfully reproduces bubble oscillations, the maximal deformation below the
threshold and the bubble lifetime above the threshold.

I. INTRODUCTION

The evolution of bubbles and droplets in turbulent flows has important fundamental and practical applications.
Bubbles drive low solubility gas exchanges, such as CO2, at the ocean-atmosphere interface [1–4] and play a major
role in nuclear reactors and chemical reactions [5]. Due to the inherent complexity of turbulent flows, identifying the
key flow ingredients leading to break-up remains challenging both experimentally and numerically [6–8]. In inertial
flows, bubble fate is primarily controlled by the ratio between the inertial forces and the capillary forces, namely the
Weber number, We. A Weber number of order unity separates stable (low We) from unstable (large We) bubbles.
The effect of viscosity, on its side is quantified by the Reynolds number that balances inertia with viscous effects.
Experimental measurements of bubble break-up in turbulence have reported a broad range of critical Weber number,
questioning the nature of the transition and the threshold definition. In simplified flow geometries, one can perform
rigorous stability analysis, to understand the physical mechanism at play. Stagnation point flows, for instance, have
been studied to model bubble deformations and break-up in turbulence [9, 10]. By investigating the stationary shapes

and their linear stability, it has been shown that below a critical Weber number, WeSc , a stable and an unstable

stationary solutions coexist. At WeSc , the two solutions merge and no stationary solution remains beyond WeSc : any
bubble will surely break [11–14]. However, this transition, called a saddle node bifurcation, only defines an upper
bound for the critical Weber number Wec that separates breaking from non breaking bubbles in a given experimental
or numerical setup. In sub-critical transitions, the knowledge of WeSc is insufficient to predict the dynamics in realistic
conditions since finite amplitude perturbation can lead to a state change well below the critical value of global stability
loss. Such transitions have been evidenced for instance in parallel flows [15], open flows [16] or in spatially extended
systems [17] such as dissipative solitons [18, 19], and in viscous drop break-up [20, 21]. A dynamical description of
bubble deformations far from the stable states is therefore still lacking.

The relevance of stationary extensional flows for bubble break-up in turbulence has been brought back into the
spotlight by recent experimental studies, showing that the turbulence is frozen during the break-up process [22],
and that extensional flows are among the relevant geometries for bubble break-up [23]. In this paper, we thus
investigate numerically the dynamics of a bubble in a uni-axial straining flow, starting from initial shapes far from
their equilibrium position. We demonstrate that the initial condition strongly affects the bubble fate and evidence
the sub-critical nature of the transition to break-up. We then characterize the effective critical Weber number, as
a function of Reynolds number and initial bubble shapes (spheroids). We also show that the whole dynamics can
be reduced to a peculiar non-linear 1D oscillator whose parameters depend on the initial bubble shape, the Weber
number and the Reynolds number. Eventually, we successfully reproduce the bubble temporal deformations and the
behavior close to the critical Weber number.
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FIG. 1. a) Scheme of a bubble at the center of a uni-axial straining flow. (Oz) is the axis of symmetry. Arrows show typical
streamlines in the absence of bubble. b) Enlargement around a bubble experiencing its maximum deformation at Re = 400
and We = 7.3 ≈ Wec(Re = 400). The blue line denotes the bubble interface, black lines, isocontours of the stream function.

II. NUMERICAL SET-UP

We inject a spherical bubble of diameter D into a uniaxial straining flow u(z, r) = Ezez − 1
2Erer, where E is

the typical shear amplitude, ez and er are unit vectors of the axi-symmetric coordinate system (z, r) (see figure 1).
Density and viscosity ratios are 850 and 55 respectively, close to air-water ratios. Physically, this numerical experiment
corresponds to a bubble quickly transported or suddenly submitted to a new straining region. Both phases are assumed
incompressible and non condensible. The bubble dynamics is controlled by two dimensionless numbers, the Weber
number

We =
ρE2D3

γ
, (1)

which compares inertia and capillary forces, and the Reynolds number

Re =
ED2

ν
, (2)

which compares inertia and viscous force, with ρ and ν the liquid density and the kinematic viscosity respectively and
γ the surface tension between the two phases. One could use alternatively to the Reynolds number, the Ohnesorge
number Oh = ν

√
ρ/(Dγ) which thus does not include the straining rate but only the material and geometrical

properties of the bubble. While the Ohnesorge number plays an important role in the final stage of a fluid break-
up [24, 25], it is more pertinent in our configuration to use dimensionless numbers that involve the inertia of the flow.
We perform numerical simulations of the Navier-Stokes equations for two incompressible fluids, using the free open
source software Basilisk [26–29]. The interface is described using a geometric Volume Of Fluid method combined with
a second-order sharp interface reconstruction and we use Adaptive Meshgrid Refinement (AMR). We consider a half
domain to enforce left-right symmetry: the numerical domain is a square of size L = 10R0, ie z ∈ [0, L] and r ∈ [0, L],
with R0 the initial bubble radius. We perform the numerical simulations in two steps, with a minimal grid size of
L/29 and L/210 respectively, corresponding to 51.2 and 102.4 points per bubble equivalent radius. The rational of
these numerical resolutions and the numerical convergence study can be found in Supplemental Material [30]. First
we create a stationary stagnation point flow without a bubble, called precursor, using Dirichlet boundary conditions
for the velocity field at r = L (inflow) and Neumann condition at z = L (outflow), and conversely for the pressure.
Starting from a fluid at rest, the velocity field converges to the straining flow, with an error on the total kinetic energy
density smaller than 1% of the theoretical value, 11ρE2L2/48. Note that, since the straining flow is vorticity free,
we can use the same setup to simulate both viscous and inviscid flows. We extract the final stationary state and
inject a bubble of radius R0 = L/10 at the stagnation point (r = z = 0), by changing only density and viscosity.
The boundary conditions at the bubble interface are initially not fulfilled, nevertheless the code adapts in a few time
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FIG. 2. a) Critical Weber number versus Re (crosses) with an error inferior to 10−2. The solid black line is the inviscid value
We∞c . The blue curve has expression We∞c exp(−100/(We∞c Re)). Open circles and dashed line are WeSc (Re) and its inviscid
limit as computed by Sierra-Ausin et al. [14] and Miksis [11] respectively. The inset shows the viscous correction to We∞c . The
dotted line follows 100/Re. b) Critical Weber number versus the ellipsoid shape parameter a0, for inviscid simulations. The
blue curve is a polynomial fit of degree 2 with a maximum at a0 = 1. Initial (black) and critical (red) shapes are represented
for every a0.

steps to restore a solution, which corresponds to a much shorter time than all physical time scales considered in the
following. This bubble injection method has been successfully used to study bubble dynamics in other flows [31, 32].
For each Reynolds number, ranging from 10 to 800, we vary the Weber number. We also perform series of inviscid
simulations.

Figure 1b shows an enlargement around a bubble at Re = 400 and We = 7.3, experiencing its maximum deformation.
Bubble interface is the blue line. The flow field, visualized by the isocontours of the stream function (black lines),
smoothly goes around the bubble. We also evidence in this figure a recirculation air flow inside the bubble.

III. AN INITIAL VALUE PROBLEM.

At low Weber number, the bubble first elongates and then relaxes to its equilibrium shape, either via damped
oscillations (for Re typically larger than 100), or monotonic relaxation (Re < 50). For sufficiently large We the bubble
elongates along the z direction and breaks. We denote by Wec the critical Weber number which separates breaking
from non breaking configurations. We measure Wec as a function of Re using a bisection method. The result is
shown in figure 2a. The critical Weber number converges to the inviscid value (solid line), We∞c at large Reynolds
number, with a viscous correction, We∞c −Wec, following 1/Re (inset plot). We observe that reducing Re for a fixed
We allows the bubble to pass from a stable to an unstable configuration. Indeed, viscosity plays a destabilizing role
through viscous shear at the interface. The static critical Weber number WeSc has previously been investigating by
several authors from quasi-static deformations [11, 12] or linear stability analysis [14]. The recent computation of
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FIG. 3. a) & b) Several typical temporal evolution of x at Re = 400. Simulation data are in color, the model (4) is superimposed
(black dotted line). a) An initially spherical bubble at low We. b) Three evolutions close to Wec(a0), for a stable sphere (blue
line), an unstable sphere (grey line) and a stable ellipsoid (orange line, a0 = 0.8).

WeSc as a function of the Reynolds number from [14] is shown in figure 2a (open circles) together with the inviscid

limit from [11] (dashed line). The critical Weber number Wec we measure is significantly smaller than WeSc . Indeed,

in practice, the threshold WeSc would be observed for quasi-static deformations of bubbles, henceforth neglecting
inertial effects. Starting from an initially spherical bubble, inertia cannot in fact be neglected. Above the break-up
threshold, Wec < We < WeSc , there still exists a stable shape surrounded by a finite basin of attraction, but the
initial condition, i.e. the initial shape which is deformed compared to the stable shape, leads to the escape from this
basin, and therefore, to break-up. The observed break-up transition is henceforth a sub-critical bifurcation. For such
bifurcations, the response to an initial finite perturbation is dramatic, and the dynamics cannot be investigated using
only linear stability analysis [16]. For viscous suspended drops in extensional flows at low Reynolds number, similar
sub-critical break-ups have been evidenced experimentally and numerically [20, 21, 33, 34]. However, for bubbles, to
the best of our knowledge, the sub-critical nature of the transition has not yet been reported.

To test the sensitivity to the initial conditions, we also consider ellipsoids of revolution of the same volume, 4/3πR3
0,

with a local radius R(θ), in a inviscid flow (see figure 1 for the definition of θ). The semi axis a0 = R(π/2)/R0 sets
the whole initial shape from volume conservation, with prolate shapes corresponding to a0 < 1 and oblate shapes to
a0 > 1.
The critical Weber number (fig. 2b) dramatically depends on the initial bubble shape, as expected for a sub-critical

transition. The critical Weber number is maximum for the sphere, and decreases for both oblate and prolate shapes as
the additional surface energy takes part in the break-up process. Near the maximum in a0 = 1, we expect a quadratic
dependency of Wec with the distance to the sphere |1− a0|, as shown by the parabolic fit (blue line) in figure 2b.

To quantify the bubble deformation dynamics, we introduce the second Rayleigh mode of oscillation [35]:

x = 2

∫ π/2

0

R(θ)

R0
Y 0
2 (cos θ) sin θdθ (3)

where Y 0
2 is the spherical harmonics of principal number ℓ = 2 and secondary number m = 0, corresponding to

oblate-prolate oscillations at an angular frequency ω2 = (12γ/(ρR3
0))

1/2. The modes ℓ = 2 are known to capture
accurately most of bubble deformations [31, 36, 37]. Here, due to symmetries, only the mode m = 0 is present.

Figure 3 illustrates the various dynamics of mode 2. Far fromWec the mode amplitude x exhibits damped oscillations
and converges to a finite value x∞, corresponding to a non spherical stable shape, as shown in 3a for an initially
spherical bubble at Re = 400. The same behaviour is also observed for different initial conditions. Figure 3b
illustrates the dynamics near the critical threshold. Slightly below the critical Weber number Wec, for an initially
spherical bubble (blue curve), the amplitude first approaches a plateau with a maximum value, xmax close to its
critical value xc and eventually converges to a stable shape. Just above the threshold (grey curve), the dynamics is
initially indistinguishable from the stable case, until the amplitude grows exponentially and finally decays abruptly,
right before break-up. For a different initial shape, as illustrated in figure 3b with a0 = 0.8 (orange curve), we observe
the same behaviour, however the critical deformation xc at threshold increases. These curves are symptomatic of a
sub-critical transition with a stable and a unstable equilibrium positions, in which the stability depends on both the
control parameters (We and Re) and the initial conditions.



5

0

5

10

V
(x

)

×10 2a)

b)

x∞

xmax

0.5 0.0 0.5 1.0 1.5

x

10

5

0

5

10

V
(x

)

×10 2
0.00

0.25

0.50

0.75

1.00

W
e/
W
e c

50

100

200

400

800

R
e

FIG. 4. a) Evolution of the potential V , defined in (4), with We for initially spherical bubbles at Re = 400. The range of
explored x values have a more intense color. Stable equilibrium positions are denoted by red diamonds (red dashed lines in a
and b). The maximum values, xmax, are denoted by black stars (same in 3a, 3b). b) Evolution of V with Re for a fixed of
We = 5.

IV. REDUCED MODEL

We assume that the whole bubble dynamics can be described by a damped non linear oscillator for x of the form:

ẍ+ λẋ = −∇V (x, ...), (4)

where V (x, ...) is an effective potential that may depend on all control parameters (We, Re and a0). Time is made

dimensionless using the mode angular frequency ω2. λ = 20
√

2/3Oh, with Oh =
√
We/Re, the Ohnesorge number,

is the theoretical linear damping factor as computed by Lamb [38]. This theoretical expression perfectly captures
dissipation in our complete dataset. The case of a harmonic potential was investigated by Kang and Leal [39]. Here,
we look for a stationary polynomial potential, V , of degree 3, the minimum degree allowing to have two equilibrium
positions. To do so we minimize, for every simulation, the mismatch between left and right hand side of equation (4),
that is to say the quantity:

I =

∫
(ẍ+ λẋ− p0 − p1x− p2x

2)2dt (5)

by optimizing p0, p1 and p2. This model perfectly describes the temporal evolution of x, both far from Wec (see black
dotted line in figure 3a) and close to Wec (figure 3b). The effective potential V depends on both We, as illustrated
in figure 4a for Re = 400, where blue curves correspond to We → 0 and yellow curves to We → Wec, as well as on Re
(see figure 4b) and a0 (data not shown). For a given Re, as Weber increases, the stable equilibrium (red diamonds)
shifts to the right, in agreement with the literature [11, 14, 39]. Concomitantly, as We increases, the initial velocity,

ẋ0 ∝
√
We, increases and the energy barrier decreases, leading to the critical case where xmax = xc and We = Wec

(yellow curve). Increasing We further more would lead to the merging of the two equilibrium positions at We = WeSc ,
corresponding to the global stability loss.

Conversely, for a fixed We, as Re decreases, the equilibrium position shifts to the positive values and the energy
barrier decreases, as illustrated in figure 4b for We = 5. Both effects are consistent with the destabilizing role of
viscosity which leads to a decrease of Wec with Re, as can be seen on figure 2.
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FIG. 5. Evolution of the coefficients of the three parameters defined in (5) with Re and We for initially spherical bubbles.
Colored circles correspond to finite Re simulations and black crosses to inviscid simulations. a) Constant coefficient p0 as a
function of We. p0 evolves linearly with We. b) Evolution of p0 with Re. The dotted black line is the average inviscid value.
We recover a more efficient forcing at small Re, compatible with a 1/Re scaling (solid black line). c) Evolution of the linear
coefficient p1 with Re. The black dotted line is the prediction of the pulsation from Kang and Leal [39] found from a linear
development. d) Evolution of the quadratic coefficient p2 with We.

Figures 5 show the evolution of the three coefficients p0, p1 and p2 of equation (5) with We and Re, for initially
spherical bubbles. Circles denote finite Reynolds number simulations while black crosses are for inviscid simulations.
For all Re, the constant forcing p0, depends linearly on We (figure 5a), as was found theoretically in the inviscid case
by Kang and Leal [39]. However, there was no theoretical prediction for the Re-dependency. Figure 5b shows that
p0 decreases with Re, in agreement with the destabilizing effect of viscosity and converges to its inviscid value (black
dotted line). The shape is compatible with a 1/Re decay (solid black line), reminiscent of the Reynolds dependency
of Wec. The linear coefficient p1 is found to always be negative (figure 5c): the linear restoring force is positive,
and −p1 is the oscillator angular frequency. We found a weak dependency of p1 with Re from 100 to 800. For the
lowest Reynolds number Re = 50, the value of p1 is under-determined, as the oscillations are overdamped. As We
increases, the angular frequency |p1| decreases, as can be visualized on figures 3. For small We, the dynamics is well
approximated by a linear oscillator, and we recover the theoretical prediction from Kang and Leal [39] (black dotted
line). They show, by developing the dynamics around the equilibrium position, that the linear dependency of the
pulsation with We comes from the coupling of mode 2 with the mode 4. The nonlinear coefficient p2 is found to
be always positive, in agreement with the existence of an unstable equilibrium position for x. p2 is of order 1, and
exhibits non monotonic evolution with the Weber number (figure 5d). However, p2 values may be underdetermined
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& e) Similar plots for the evolution of the slope with Re and a0.

for small and moderate values of We, for which the dynamics is mostly linear. We did not find a clear dependency of
p2 with Re.

V. DYNAMICS CLOSE TO THE CRITICAL POINT.

We now use this effective potential V description for the dynamics of x, to quantify the evolution of the maximal
deformation as We → Wec. For the sake of simplicity, we consider the limit of negligible dissipation, in which energy
is conserved:

1

2
ẋ2
0 + V (x0,We) =

1

2
ẋ2 + V (x,We), (6)

With the initial condition ẋ0 =
√
2We. Without any loss of generality we set V (x0,We) = 0 for all We. We define

maxx = xmax. At this point ẋmax = 0, so that xmax is solution of:

We = V (xmax,We). (7)
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respectively. d) & e) Similar plots for the evolution of the slope β with Re and a0.

Since ∂xV |xc = 0, developing (7) around the unstable position xc, at the lowest orders in Wec −We and xc − xmax

gives:

Wec + (We−Wec) = Vc + (We−Wec)∂WeV |c +
1

2
(xc − xmax)

2∂xxV |c (8)

where Vc = V (xc,Wec) and |c = |xc,Wec . Since, by definition, Wec = Vc we get:

(xc − xmax)
2 = A(Wec −We) (9)

with A = 2(∂WeV |c − 1)/∂xxV |c Figures 4a and4b show that ∂xxV |c is always negative, indeed xc is a maximum, and
that ∂WeV |c < 0. This ensures that A > 0 so that xc − xmax writes:

xc − xmax =
√
A(Wec −We) (10)

To give a simpler description of the shapes close to the critical point, we introduce the deformation parameter
D = 1−R(π/2, t)/R(0, t) with D < 0 for oblate shapes, D > 0 for prolate shapes and D → 1 for an infinitely long gas
filament along z. Figure 6 shows D for both the inviscid ellipsoids (triangles) and the spheres at finite Re (circles).
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For We → 0, the bubble is insensitive to the surrounding flow and Dmax → D0 = 1 − a30 when a0 ≤ 1. Conversely,
for We → Wec the maximum deformation converges to a critical value Dc, which depends on both Re and a0. We
find that both the initial bubble deformation and the Reynolds number increases the critical deformation Dc, with a
slight difference between oblate and prolate shapes for the same distance to the sphere |1−a0|. The total deformation
being mainly given by the amplitude x, we expect D to follow:

Dc −Dmax = α
√
1−We/Wec, (11)

as We approaches Wec. For each Re and a0 values, we fit the two parameters α and Dc of equation (11). All data sets
collapse on the same master curve as represented in the inset of figure 6a for sphere, showing that equation (11) also
holds for non conservative systems (finite Re). Figures 6b and 6c show the evolution of Dc with Re and a0 respectively,
while 6d and 6e present the evolution of the slope. In both 6b and 6d, the black dotted line (which corresponds to
a0 = 1 in 6c and 6e) represents inviscid values. Dc increases with Re and decreases with the distance to the sphere.
These dependencies are reminiscent of the evolution of Wec with both Re and a0. Indeed, since larger deformations
need to be reached in order to break for larger Re or distance to the sphere, Wec increases. The deformation Dc varies
strongly with a0, which implies that bubble faith is highly dependent on bubble history. The critical shapes show
that bubbles are more deformed at criticality when the initial shape is not spherical (see figure 2b), revealing the
importance of inertial effect in the breakup process. We also conclude that there is no absolute maximum deformation
after which the bubble breaks.

Similar developments can be performed to model the lifetime slightly above the critical Weber number. Indeed,
when We → Wec, the bubble lifetime is dominated by the time spent close to the unstable shape. We show in the
Supplemental Material [30] that this time can be expressed as:

ET = ET (2We)− β log(We/Wec − 1) (12)

where ET (2We) and β are two constants, and We > Wec. Figure 7a shows the dimensionless lifetime, ET , as a
function of the distance to the critical point. In the limit of large Weber number, for all cases, the lifetime converges
to the advection time 1/E. Near We = Wec, the lifetime diverges logarithmically. After adjusting the two constants
of equation (12) for each dataset, all the data collapse onto a single curve, as shown on the inset plot of figure 7a for
initially spherical bubbles. Figures 7b and 7c show that ET (2We) ≈ 1 a value that is independent on both Re and
a0. On the contrary, the slope β increases as the initial shape gets away from the sphere (see figure 7e) ans slightly
increases with Re (7d).

VI. CONCLUSION AND PERSPECTIVES

In this paper, we evidence that bubbles can break in a uniaxial straining flow, even when there still exists a stable
equilibrium position. The threshold at which break-up occurs depends on both the Reynolds number and the initial
bubble shape. Since, in real configurations bubbles dynamics are rarely quasi-static, these results have practical
important consequences: history matters. The critical Weber number at which bubbles break should always be
considered together with a set of initial conditions or at least understood in a statistical sense. In turbulent flows for
instance, the probability that a bubble encounters a large pressure or velocity fluctuation that breaks it depends on
its size, but all bubbles can break.

Taking advantage of the dynamical system approach, we show that bubble dynamics can be described by a simple
one dimensional oscillator which depends on We, Re and on the initial bubble shape. This model successfully captures
the maximum deformation and the lifetime close to critical conditions.

In a turbulent flow, a bubble will be immersed in a succession of various flow geometries of random duration. The
relevance of the uni-axial strain flow has been shown by the experimental work of Masuk et al. [23], who measured the
relative orientation between the bubble principal axis of deformation and the velocity gradient tensor at the bubble
scale (see figure 5 of [23]). From their measurements, two main flow geometries were identified : the slip of a bubble
with respect to the surrounding flow and the straining flow that elongates (respectively compresses) the bubble.

The persistence time of each flow geometry can be estimated, considering turbulent scaling laws for bubbles within
the inertial range. A lower bound of the typical correlation time of velocity fluctuations at the bubble scale is
given by the eulerian correlation time, namely the eddy turn-over time, tc(d) ∼ ϵ−1/3d2/3, where ϵ is the energy

dissipation rate. This time can be compared to the bubble capillary period T2 = π/(2
√
6)
√
ρd3/γ of the dynamics.

We have the relation tc/T2 ∝ 4
√
3/π We

−1/2
t , where Wet is the Weber number at the bubble scale, usually defined

by Wet = 2ρϵ2/3d5/3/γ. In practice, as long as Wet < 4.8, tc/T2 > 1, and the flow is correlated over more than one
period of oscillation and can be considered as frozen. In this regime, corresponding to all bubbles near the critical
stability threshold, the dynamics described in this article may hold. One main perspective of this work will then be
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to model turbulence as a succession of stationary uni-axial straining flows of given orientation and strain rate. One
could then evaluate the bubble deformation experienced in a given flow configuration, and iterate the process using
a newly found initial shape and a randomly picked flow configuration until the dynamical critical Weber number is
exceeded. This approach could be used to provide a versatile statistical framework for bubble break-up.
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