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2Laboratoire d’Hydrodynamique (LadHyX), UMR 7646 CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France

We consider the one dimensional dynamics of a particle in a potential V which has at least one
unstable equilibrium position at x = xc. The particle starts from a given position with an initial
velocity which depends on a control parameter p. The potential shape also depends on p. For a
critical value pc of p, the particle reaches the unstable position of the potential. We show that the
time spent close to the unstable point scales as − log(|p− pc|) when p → pc both in the stable case
when the particle does not reach xc and in the unstable case where the particle crosses xc .

I. NOTATIONS AND PHYSICAL CONFIGURATION

Let consider the following conservative dynamics:

ẍ = f(x, p) = −∂xV (x, p) (1)

where p is some control parameter. Dots represent time derivatives. V (x, p) is a potential which for some p has at
least one unstable position in xc. In the simplest case, this means that f(xc, p) = 0 and ∂xf(xc, p) > 0. The particle
starts from x0 < xc, with a positive initial velocity which depends on p. When p < pc the particle does not reach
xc and turns back at x = xmax(p). For p > pc, the particle crosses xc. We want to find how the time spent in the
vicinity of xc depends on p− pc.
We set u = xc − x, ϵ = pc − p. At lowest order in u and ϵ, equation (1) writes:

ü = u∂xf |c + ϵ∂pf |c (2)

Since ∂xf(xc, pc) = ∂xf |c > 0, in the following we write: γ =
√
∂xf |c.

II. STABLE CASE, p < pc

Let first consider the case when the particle does not reach xc. In this case, we know that xc−xmax = umin ∝
√
pc − p

(see the main text).

A. Forcing independent of p

When f is independent of p, equation (2) simplifies to:

ü = u∂xf |c (3)

whose solutions are of the form:

u(t) = u0e
γt + u1e

−γt

where u0 and u1 are some constants that depend on the initial conditions. Since we are considering a stable trajectory,
there exists a point at which the particle turns around and moves away from xc. To simplify notations, this time is
taken as the origin of times. Then, we have

u(0) = umin

u̇(0) = 0
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Which gives the solution of (3):

u(t) =
umin

2
(eγt + e−γt) = umin cosh(γt)

Let U be an arbitrary distance from xc reached at t = T . U reads:

U = umin cosh(γT )

When p → pc, since umin ∝
√
pc − p (showed in the main text), umin → 0 and so cosh(γT ) → ∞. In this limit:

cosh(γT ) ∼ eγT . And so:

γT ∝ − log (umin) ∝ − log (pc − p) (4)

As p gets closer and closer to pc, the time spent close to xc diverges as − log(pc − p). Let’s now consider the case
where the potential also depends on the control parameter p.

B. General expression

If now the potential also depends on p, we have to introduce a new variable v such that v = u+ ϵ
∂pf |c
∂xf |c = u+ ϵC.

v is a solution of equation (3):

v̈ = v∂xf |c (5)

with the following initial conditions:

v(0) = vmin = umin + ϵC

v̇(0) = 0

As previously, the solution reads:

v(t, p) = vmin cosh(γt)

Using the definition of v and the fact that vmin = umin + ϵC we get:

u(t, p) = umin cosh(γt) + ϵC cosh(γt)− ϵC

As before, we fix U , an arbitrary distance from xc, reached at T .

U = umin cosh(γT ) + ϵC cosh(γT )− ϵC

Since we still have umin ∝
√
ϵ and so, at lowest order in ϵ, when p → pc, since γT → ∞:

γT ∝ − log umin

We get again the same divergence of T : γT ∝ − log(pc − p).

III. UNSTABLE CASE, p > pc

When p > pc, the particle crosses xc. We then choose as the origin of times the moment where x = xc, which
corresponds to u = 0 and to the minimum of u̇, written u̇min. We first look for the scaling of u̇min with ϵ.

By conservation of energy we get:

1

2
ẋ2 + V (x, p) =

1

2
ẋ2
0

where V is redefined so that V (x0) = 0. Let define g(p) such that ẋ0 =
√

2g(p). The previous equation rewrites:

1

2
ẋ2 = g(p)− V (x, p)
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Since xc is a maximum of V , ẋ is minimum at x = xc and reads:

1

2
ẋ2
min = g(p)− V (xc, p)

We develop the right hand side at lowest order in ϵ taking advantage of the fact that g(pc) = V (xc, pc). We get:

1

2
ẋ2
min = −ϵ(g′(pc)− ∂pV (xc, pc))

And so:

ẋmin = u̇min =
√

−2ϵ(g′(pc)− ∂pV (xc, pc)) ∝
√
p− pc (6)

Now, equation (5) still holds in the unstable case with the new initial conditions

v(0) = u(0) + ϵC = ϵC

v̇(0) = u̇(0) = u̇min

Using the same trick as in the previous section we obtain the general solution in this case:

u(t, p) = ϵC cosh(γt) +
u̇min

γ
sinh(γt)− ϵC (7)

As before, let’s take U , an arbitrary distance from the critical point which is reached at time T .

U = ϵC cosh(γT ) +
u̇min

γ
sinh(γT )− ϵC (8)

When ϵ → 0, since u̇min ∝
√
−ϵ, as previously, we get:

U ∝ u̇min

γ
eγT (9)

and we recover:

γT ∝ − log (p− pc) (10)


