Time spent close to an unstable point

Aliénor Rivière ${ }^{1}$,* Laurent Duchemin ${ }^{1}$, Christophe Josserand ${ }^{2}$, and Stéphane Perrard ${ }^{1}$
${ }^{1}$ PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, 75005, Paris, France and
${ }^{2}$ Laboratoire d'Hydrodynamique (LadHyX), UMR 7646 CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France

Abstract

We consider the one dimensional dynamics of a particle in a potential V which has at least one unstable equilibrium position at $x=x_{c}$. The particle starts from a given position with an initial velocity which depends on a control parameter p. The potential shape also depends on p. For a critical value p_{c} of p, the particle reaches the unstable position of the potential. We show that the time spent close to the unstable point scales as $-\log \left(\left|p-p_{c}\right|\right)$ when $p \rightarrow p_{c}$ both in the stable case when the particle does not reach x_{c} and in the unstable case where the particle crosses x_{c}.

I. NOTATIONS AND PHYSICAL CONFIGURATION

Let consider the following conservative dynamics:

$$
\begin{equation*}
\ddot{x}=f(x, p)=-\partial_{x} V(x, p) \tag{1}
\end{equation*}
$$

where p is some control parameter. Dots represent time derivatives. $V(x, p)$ is a potential which for some p has at least one unstable position in x_{c}. In the simplest case, this means that $f\left(x_{c}, p\right)=0$ and $\partial_{x} f\left(x_{c}, p\right)>0$. The particle starts from $x_{0}<x_{c}$, with a positive initial velocity which depends on p. When $p<p_{c}$ the particle does not reach x_{c} and turns back at $x=x_{\max }(p)$. For $p>p_{c}$, the particle crosses x_{c}. We want to find how the time spent in the vicinity of x_{c} depends on $p-p_{c}$.

We set $u=x_{c}-x, \epsilon=p_{c}-p$. At lowest order in u and ϵ, equation (1) writes:

$$
\begin{equation*}
\ddot{u}=\left.u \partial_{x} f\right|_{c}+\left.\epsilon \partial_{p} f\right|_{c} \tag{2}
\end{equation*}
$$

Since $\partial_{x} f\left(x_{c}, p_{c}\right)=\left.\partial_{x} f\right|_{c}>0$, in the following we write: $\gamma=\sqrt{\left.\partial_{x} f\right|_{c}}$.

II. STABLE CASE, $p<p_{c}$

Let first consider the case when the particle does not reach x_{c}. In this case, we know that $x_{c}-x_{\text {max }}=u_{\min } \propto \sqrt{p_{c}-p}$ (see the main text).

A. Forcing independent of p

When f is independent of p, equation (2) simplifies to:

$$
\begin{equation*}
\ddot{u}=\left.u \partial_{x} f\right|_{c} \tag{3}
\end{equation*}
$$

whose solutions are of the form:

$$
u(t)=u_{0} e^{\gamma t}+u_{1} e^{-\gamma t}
$$

where u_{0} and u_{1} are some constants that depend on the initial conditions. Since we are considering a stable trajectory, there exists a point at which the particle turns around and moves away from x_{c}. To simplify notations, this time is taken as the origin of times. Then, we have

$$
\begin{aligned}
& u(0)=u_{\min } \\
& \dot{u}(0)=0
\end{aligned}
$$

[^0]Which gives the solution of (3):

$$
u(t)=\frac{u_{\min }}{2}\left(e^{\gamma t}+e^{-\gamma t}\right)=u_{\min } \cosh (\gamma t)
$$

Let U be an arbitrary distance from x_{c} reached at $t=T . U$ reads:

$$
U=u_{\min } \cosh (\gamma T)
$$

When $p \rightarrow p_{c}$, since $u_{\min } \propto \sqrt{p_{c}-p}$ (showed in the main text), $u_{\text {min }} \rightarrow 0$ and so $\cosh (\gamma T) \rightarrow \infty$. In this limit: $\cosh (\gamma T) \sim e^{\gamma T}$. And so:

$$
\begin{equation*}
\gamma T \propto-\log \left(u_{\min }\right) \propto-\log \left(p_{c}-p\right) \tag{4}
\end{equation*}
$$

As p gets closer and closer to p_{c}, the time spent close to x_{c} diverges as $-\log \left(p_{c}-p\right)$. Let's now consider the case where the potential also depends on the control parameter p.

B. General expression

If now the potential also depends on p, we have to introduce a new variable v such that $v=u+\epsilon \frac{\left.\partial_{p} f\right|_{c}}{\left.\partial_{x} f\right|_{c}}=u+\epsilon C$. v is a solution of equation (3):

$$
\begin{equation*}
\ddot{v}=\left.v \partial_{x} f\right|_{c} \tag{5}
\end{equation*}
$$

with the following initial conditions:

$$
\begin{aligned}
& v(0)=v_{\min }=u_{\min }+\epsilon C \\
& \dot{v}(0)=0
\end{aligned}
$$

As previously, the solution reads:

$$
v(t, p)=v_{\min } \cosh (\gamma t)
$$

Using the definition of v and the fact that $v_{\min }=u_{\min }+\epsilon C$ we get:

$$
u(t, p)=u_{\min } \cosh (\gamma t)+\epsilon C \cosh (\gamma t)-\epsilon C
$$

As before, we fix U, an arbitrary distance from x_{c}, reached at T.

$$
U=u_{\min } \cosh (\gamma T)+\epsilon C \cosh (\gamma T)-\epsilon C
$$

Since we still have $u_{\min } \propto \sqrt{\epsilon}$ and so, at lowest order in ϵ, when $p \rightarrow p_{c}$, since $\gamma T \rightarrow \infty$:

$$
\gamma T \propto-\log u_{\min }
$$

We get again the same divergence of $T: \gamma T \propto-\log \left(p_{c}-p\right)$.

III. UNSTABLE CASE, $p>p_{c}$

When $p>p_{c}$, the particle crosses x_{c}. We then choose as the origin of times the moment where $x=x_{c}$, which corresponds to $u=0$ and to the minimum of \dot{u}, written $\dot{u}_{\min }$. We first look for the scaling of $\dot{u}_{\min }$ with ϵ.

By conservation of energy we get:

$$
\frac{1}{2} \dot{x}^{2}+V(x, p)=\frac{1}{2} \dot{x}_{0}^{2}
$$

where V is redefined so that $V\left(x_{0}\right)=0$. Let define $g(p)$ such that $\dot{x}_{0}=\sqrt{2 g(p)}$. The previous equation rewrites:

$$
\frac{1}{2} \dot{x}^{2}=g(p)-V(x, p)
$$

Since x_{c} is a maximum of V, \dot{x} is minimum at $x=x_{c}$ and reads:

$$
\frac{1}{2} \dot{x}_{\min }^{2}=g(p)-V\left(x_{c}, p\right)
$$

We develop the right hand side at lowest order in ϵ taking advantage of the fact that $g\left(p_{c}\right)=V\left(x_{c}, p_{c}\right)$. We get:

$$
\frac{1}{2} \dot{x}_{\min }^{2}=-\epsilon\left(g^{\prime}\left(p_{c}\right)-\partial_{p} V\left(x_{c}, p_{c}\right)\right)
$$

And so:

$$
\begin{equation*}
\dot{x}_{\min }=\dot{u}_{\min }=\sqrt{-2 \epsilon\left(g^{\prime}\left(p_{c}\right)-\partial_{p} V\left(x_{c}, p_{c}\right)\right)} \propto \sqrt{p-p_{c}} \tag{6}
\end{equation*}
$$

Now, equation (5) still holds in the unstable case with the new initial conditions

$$
\begin{aligned}
& v(0)=u(0)+\epsilon C=\epsilon C \\
& \dot{v}(0)=\dot{u}(0)=\dot{u}_{\min }
\end{aligned}
$$

Using the same trick as in the previous section we obtain the general solution in this case:

$$
\begin{equation*}
u(t, p)=\epsilon C \cosh (\gamma t)+\frac{\dot{u}_{\min }}{\gamma} \sinh (\gamma t)-\epsilon C \tag{7}
\end{equation*}
$$

As before, let's take U, an arbitrary distance from the critical point which is reached at time T.

$$
\begin{equation*}
U=\epsilon C \cosh (\gamma T)+\frac{\dot{u}_{\min }}{\gamma} \sinh (\gamma T)-\epsilon C \tag{8}
\end{equation*}
$$

When $\epsilon \rightarrow 0$, since $\dot{u}_{\min } \propto \sqrt{-\epsilon}$, as previously, we get:

$$
\begin{equation*}
U \propto \frac{\dot{u}_{\min }}{\gamma} e^{\gamma T} \tag{9}
\end{equation*}
$$

and we recover:

$$
\begin{equation*}
\gamma T \propto-\log \left(p-p_{c}\right) \tag{10}
\end{equation*}
$$

[^0]: * alienor.riviere@espci.fr

