Time spent close to an unstable point

Aliénor Rivière¹,* Laurent Duchemin¹, Christophe Josserand², and Stéphane Perrard¹ ¹PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, 75005, Paris, France and ²Laboratoire d'Hydrodynamique (LadHyX), UMR 7646 CNRS-Ecole Polytechnique, IP Paris, 91128 Palaiseau, France

We consider the one dimensional dynamics of a particle in a potential V which has at least one unstable equilibrium position at $x = x_c$. The particle starts from a given position with an initial velocity which depends on a control parameter p. The potential shape also depends on p. For a critical value p_c of p, the particle reaches the unstable position of the potential. We show that the time spent close to the unstable point scales as $-\log(|p - p_c|)$ when $p \to p_c$ both in the stable case when the particle does not reach x_c and in the unstable case where the particle crosses x_c .

I. NOTATIONS AND PHYSICAL CONFIGURATION

Let consider the following conservative dynamics:

$$\ddot{x} = f(x, p) = -\partial_x V(x, p) \tag{1}$$

where p is some control parameter. Dots represent time derivatives. V(x,p) is a potential which for some p has at least one unstable position in x_c . In the simplest case, this means that $f(x_c, p) = 0$ and $\partial_x f(x_c, p) > 0$. The particle starts from $x_0 < x_c$, with a positive initial velocity which depends on p. When $p < p_c$ the particle does not reach x_c and turns back at $x = x_{\max}(p)$. For $p > p_c$, the particle crosses x_c . We want to find how the time spent in the vicinity of x_c depends on $p - p_c$.

We set $u = x_c - x$, $\epsilon = p_c - p$. At lowest order in u and ϵ , equation (1) writes:

$$\ddot{u} = u\partial_x f|_c + \epsilon \partial_p f|_c \tag{2}$$

Since $\partial_x f(x_c, p_c) = \partial_x f|_c > 0$, in the following we write: $\gamma = \sqrt{\partial_x f|_c}$.

II. STABLE CASE, $p < p_c$

Let first consider the case when the particle does not reach x_c . In this case, we know that $x_c - x_{\text{max}} = u_{\text{min}} \propto \sqrt{p_c - p}$ (see the main text).

A. Forcing independent of p

When f is independent of p, equation (2) simplifies to:

$$\ddot{u} = u\partial_x f|_c \tag{3}$$

whose solutions are of the form:

$$u(t) = u_0 e^{\gamma t} + u_1 e^{-\gamma t}$$

where u_0 and u_1 are some constants that depend on the initial conditions. Since we are considering a stable trajectory, there exists a point at which the particle turns around and moves away from x_c . To simplify notations, this time is taken as the origin of times. Then, we have

$$u(0) = u_{\min}$$
$$\dot{u}(0) = 0$$

* alienor.riviere@espci.fr

Which gives the solution of (3):

$$u(t) = \frac{u_{\min}}{2} (e^{\gamma t} + e^{-\gamma t}) = u_{\min} \cosh(\gamma t)$$

Let U be an arbitrary distance from x_c reached at t = T. U reads:

$$U = u_{\min} \cosh(\gamma T)$$

When $p \to p_c$, since $u_{\min} \propto \sqrt{p_c - p}$ (showed in the main text), $u_{\min} \to 0$ and so $\cosh(\gamma T) \to \infty$. In this limit: $\cosh(\gamma T) \sim e^{\gamma T}$. And so:

$$\gamma T \propto -\log\left(u_{\min}\right) \propto -\log\left(p_c - p\right) \tag{4}$$

As p gets closer and closer to p_c , the time spent close to x_c diverges as $-\log(p_c - p)$. Let's now consider the case where the potential also depends on the control parameter p.

B. General expression

If now the potential also depends on p, we have to introduce a new variable v such that $v = u + \epsilon \frac{\partial_p f|_c}{\partial_x f|_c} = u + \epsilon C$. v is a solution of equation (3):

$$\ddot{v} = v\partial_x f|_c \tag{5}$$

with the following initial conditions:

$$v(0) = v_{\min} = u_{\min} + \epsilon C$$

 $\dot{v}(0) = 0$

As previously, the solution reads:

$$v(t,p) = v_{\min} \cosh(\gamma t)$$

Using the definition of v and the fact that $v_{\min} = u_{\min} + \epsilon C$ we get:

$$u(t, p) = u_{\min} \cosh(\gamma t) + \epsilon C \cosh(\gamma t) - \epsilon C$$

As before, we fix U, an arbitrary distance from x_c , reached at T.

$$U = u_{\min} \cosh(\gamma T) + \epsilon C \cosh(\gamma T) - \epsilon C$$

Since we still have $u_{\min} \propto \sqrt{\epsilon}$ and so, at lowest order in ϵ , when $p \to p_c$, since $\gamma T \to \infty$:

$$\gamma T \propto -\log u_{\min}$$

We get again the same divergence of $T: \gamma T \propto -\log(p_c - p)$.

III. UNSTABLE CASE, $p > p_c$

When $p > p_c$, the particle crosses x_c . We then choose as the origin of times the moment where $x = x_c$, which corresponds to u = 0 and to the minimum of \dot{u} , written \dot{u}_{\min} . We first look for the scaling of \dot{u}_{\min} with ϵ .

By conservation of energy we get:

$$\frac{1}{2}\dot{x}^2 + V(x,p) = \frac{1}{2}\dot{x}_0^2$$

where V is redefined so that $V(x_0) = 0$. Let define g(p) such that $\dot{x}_0 = \sqrt{2g(p)}$. The previous equation rewrites:

$$\frac{1}{2}\dot{x}^2 = g(p) - V(x,p)$$

Since x_c is a maximum of V, \dot{x} is minimum at $x = x_c$ and reads:

$$\frac{1}{2}\dot{x}_{\min}^2 = g(p) - V(x_c, p)$$

We develop the right hand side at lowest order in ϵ taking advantage of the fact that $g(p_c) = V(x_c, p_c)$. We get:

$$\frac{1}{2}\dot{x}_{\min}^2 = -\epsilon(g'(p_c) - \partial_p V(x_c, p_c))$$

And so:

$$\dot{x}_{\min} = \dot{u}_{\min} = \sqrt{-2\epsilon(g'(p_c) - \partial_p V(x_c, p_c))} \propto \sqrt{p - p_c}$$
(6)

Now, equation (5) still holds in the unstable case with the new initial conditions

$$v(0) = u(0) + \epsilon C = \epsilon C$$
$$\dot{v}(0) = \dot{u}(0) = \dot{u}_{\min}$$

Using the same trick as in the previous section we obtain the general solution in this case:

$$u(t,p) = \epsilon C \cosh(\gamma t) + \frac{\dot{u}_{\min}}{\gamma} \sinh(\gamma t) - \epsilon C \tag{7}$$

As before, let's take U, an arbitrary distance from the critical point which is reached at time T.

$$U = \epsilon C \cosh(\gamma T) + \frac{\dot{u}_{\min}}{\gamma} \sinh(\gamma T) - \epsilon C$$
(8)

When $\epsilon \to 0$, since $\dot{u}_{\min} \propto \sqrt{-\epsilon}$, as previously, we get:

$$U \propto \frac{\dot{u}_{\min}}{\gamma} e^{\gamma T} \tag{9}$$

and we recover:

$$\gamma T \propto -\log\left(p - p_c\right) \tag{10}$$