ADAPTIVE PARAMETER SELECTION FOR GRADIENT-SPARSE + LOW PATCH-RANK RECOVERY: APPLICATION TO IMAGE DECOMPOSITION
Résumé
In this work, we are interested in gradient sparse + low patchrank signal recovery for image structure-texture decomposition. We locally model the structure as gradient-sparse and the texture as of low patch-rank. Moreover, we propose a rule based upon theoretical results of sparse + low-rank matrix recovery in order to automatically tune our model depending on the local content and we numerically validate this proposition.
Domaines
Mathématiques [math]
Fichier principal
Getting_the_most_out_of_the_low_rank_patch_model_for_structure-texture_segmentation.pdf (2.52 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Licence |
Domaine public
|