Adaptive parameter selection for gradient-sparse + low patch-rank recovery: application to image decomposition
Résumé
In this work, we are interested in gradient sparse + low patchrank signal recovery for image structure-texture decomposition. We locally model the structure as gradient-sparse and the texture as of low patch-rank. Moreover, we propose a rule based upon theoretical results of sparse + low-rank matrix recovery in order to automatically tune our model depending on the local content and we numerically validate this proposition.
Fichier principal
Adaptive_parameter_selection_image_decomposition.pdf (4.85 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Licence |