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ABSTRACT

In this work, we are interested in gradient sparse + low patch-
rank signal recovery for image structure-texture decomposi-
tion. We locally model the structure as gradient-sparse and
the texture as of low patch-rank. Moreover, we propose a rule
based upon theoretical results of sparse + low-rank matrix re-
covery in order to automatically tune our model depending on
the local content and we numerically validate this proposition.

Index Terms— Image decomposition, texture, optimiza-
tion, gradient-sparsity, low patch-rank

1. INTRODUCTION

The problem of decomposing an image into a structure/cartoon
component and a texture component has been a longstanding
area of research, with an extensive number of applications
such as image restoration, pattern recognition, deraining and
astromical imaging. The problem is typically given as fol-
lows: given an image f, find a decomposition f = u + v
such that u is a is piecewise-smooth approximation of the
image, called the structure or cartoon component, and v is
zero-mean, oscillating and locally patterned, called the tex-
ture component. The problem is notoriously ill-posed as there
are twice more unknowns than known variables and it is dif-
ficult to define with precision what should be included in the
structural component and in the texture component.

The problem of structure-texture decomposition (STD) is
often formulated as an optimization problem of the form

min pRy(u) + 7Rz (v), ¢))
f=u+v

where ;1 and v are the tuning parameters. For the charac-
terization of the structure component, most models use the
total variation [[1] since it characterizes well the piecewise
smoothness of the structure component. It is defined by
Ry (u)=||ul|z, = |[Vul|,. While the choice of the character-
ization of the structural component has remained relatively
unchanged across most proposed STD models, many options
exist when it comes to the texture component. Stemming
from sparse decomposition methods that uses dictionary

learning techniques, texture regularizers based upon the nu-
clear norm have gained some popularity [12 3} 4]].

Historically the first STD models, variational-based mod-
els typically use the total variation to characterize the struc-
tural component and use a functional space norm to constrain
the textural component, such as the L2-norm [1], G-norm
[5, 6], L1-norm [7]] and H-norm [8, |9]. While theoretically
well-founded and able to capture the oscillating nature of tex-
ture, these norms are either difficult to implement or cannot
capture textures with a small magnitude. In [4] the authors
proposed a self-example and unsupervised learning approach
where the STD functional is optimized using a neural net-
work.

In the category of sparsity-prior and low-rank prior, the
texture is considered to be sparsely represented in appropriate
dictionary, which is either fixed or learned. One of the ear-
liest approach on the subject was to consider that texture can
be sparsely represented in a suitable given transformation (e.g
discrete cosine transform (DCT), Gabor transform) [[10} [11]].
While very successful in some applications, the issue with this
approach is that many textures that arise in practical applica-
tions cannot be modeled by DCT or other related dictionary.
More recently, this approach was extended to use convolu-
tional sparse coding instead [[12]], where convolutional filters
are learned beforehand. However, this method is dependent
on the resolution thus the learned convolutional filters should
be trained accordingly.

The approach that we focus on in this paper is Schaef-
fer and Osher’s low-patch rank (LPR) model [2] in which the
texture is considered to be of low patch-rank. That is to say
that given a patch map P : R"*™ — RP* XN (with overlap),
where p X p is the dimension of the patches and N the num-
ber of extracted patches from the image, rank(P(v)) should
be relatively small. Conceptually, this expresses the idea that
patches of textures should reside in a common small vector
space. However, as rank-minimization is well known to be
a NP-hard problem, we minimize instead the nuclear norm,
which is known to enforce low rank: Ry(v) = [|P(v)], =

> 0i(P(v)). As such, the (LPR) model is written as

min 4 [Vl +7 [P@), 2)
f=u+v



where 11 and v are the tuning parameters. This optimiza-
tion problem can be solved using the Alternating Direction
Method of Multiplier (ADMM) [13]. While the LPR model
is more capable of extracting ideal textures from an image
with well-paterned texture than previous models, the fact that
it uses the nuclear norm to capture the low rank of patches of
the texture globally is an issue, notably when the given im-
age contains many different texture patterns. More recently,
Ono et al. [3] proposed a blockwise low-rank texture model
(BNN) to counteract against this issue with LPR.

However, while all the proposed methods up to now pro-
duce more or less acceptable results, they are all difficult to
tune in order to achieve the required result since the tuning pa-
rameters can greatly vary between images in order to obtain
the required STD.

Contributions: First, we present a localized version of
the low patch-rank model. Second, using the fact that this
model can be viewed as a gradient-sparse + low patch-rank
interpretation of structure/texture decomposition, we propose
a method to automatically tune model parameters based upon
recent results from sparse+low-rank matrix recovery theory.
Finally, we validate experimentally our proposed method.

2. LOCAL LPR DECOMPOSITION WITH
AUTOMATIC PARAMETER SELECTION

2.1. Localized LPR

In order to add localization of texture into the LPR model, we
introduce the following subdivision with overlap of the image

Q)1 Q(f)1.4m
(()nl,ml)(f) = y (3)
Q(f)gn1 (@)1

where o is the size of the overlap between adjacent blocks,
(n1,my) is the dimensions of the subdivision blocks Q(f); ;.
To simplify notations, we set f; ; = Q(f);; (and similarly
U, j, V3 ). Our model can be written as

q1,92
min Y pig llwigllpy + i 1P, @
f=utv ij=1

where {u}{;% and {y}{};%] are the regularization parame-
ters of the model. Furthermore, we set Q! as the reconstruc-
tion mapping from the subdivision, where we use interpola-

tion between frames to reconstruct overlapping regions.

2.2. Gradient-Sparse + Low Patch rank recovery

With their increase in number, it is not possible anymore to
set manually the local regularization parameters. We propose
a novel method to automatically adjust the regularization pa-
rameters, which adapts to the local content in the image. The

method is largely inspired from the problem of sparse + low-
rank recovery of compressive sensing. Given a s-sparse ma-
trix o € R™ such that ||al|, = #{i,j | 4;; # 0} < s,a
low-rank matrix & € R™ such that rank(7) < r and a lin-
ear map A : R® — R™, the aim of sparse + low-rank re-
covery is to recover the couple (u,v) from a measurement
b = A(u + v). Recent works [[14] [15]] have shown that the
couple (@, ¥) can be recovered under some conditions via the
minimization problem:

min - pfully + 7 [ofl, (5)

u,v

b=.A(7u+v)

when % = cii, where c is a specified constant.

In [[16], Chandrasekaran et al showed that the sparse+Ilow
rank matrix recovery problem could be solved with A=1d if
the support space of the sparse component and the row-+column
space of the low-rank component are disjoint. Tanner and
Vary’s work [14] on the subject showed that if the incoher-
ence between the sparse component and the low rank (LR)
component (y in the original paper) and the operator A veri-
fies a restricted isometry property (i.e. A behaves almost like

an isometry on sparse + LR objects with incoherence), then
the couple (4, v) can be recovered from , with % = \/% .
In a more general context, when the unknown is the concate-
nation (u, v) of a sparse vector and a LR matrix, it was shown
in [[15]] that, for operators having the restricted isometry prop-
erty (without incoherence between components, thus mostly
specializing to random observation operators), the choice
of & = \/E is optimal for the family of low rank+sparse
problems. In Section we propose to use this choice of
parameters as a basis for automatic parameter selection in our
localized LPR model. Indeed, in the LPR model the texture
is interpreted as being of low patch rank and the structural
component is constrained by the total variation which forces
it to be gradient-sparse. Hence, the LPR model is a gradient-
sparse + low-patch rank recovery problem, with A = Id.

To test the validity of this prior, we conducted numerical
experiments using synthetic 64 x 64 images where we control
the gradient sparsity of the structure and the patch-rank of
the texture (Fig. [I). The gradient sparsity is controlled by
drawing a circle with a chosen radius, whereas the texture was
synthesized using Fourier, Gaussian or Hadamard basis in the
patch space. We then plot the relative error of reconstruction
of li with £ = c\/g , where s is the gradient-sparsity of the
structure and r the patch-rank of the texture. We observe that
for a given category of texture, a fixed ¢ permits to minimize
the recovery error.

2.3. Local LPR with adaptive parameter tuning

Since the gradient-sparsity of the structure component and the
patch-rank of the texture component cannot be distinguished
beforehand, we propose to approximate them during the iter-
ative steps of the ADMM and update the tuning parameters as
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Fig. 1: Recovery relative error of the structure component
with different gradient-sparsity s and patch-rank r via the
LPR model with tuning parameters y = % and v = #
(a) Fourier texture, (b) Hadamard, (c) Gaussian basis, (d) Ex-
ample of a synthetic test image.

follows:
1
% and PYZ,] ~ T
INEZRIR rank (P (v;;))

where 4 and © are an approximation of the structural compo-
nent and textural components and c is a constant that we can
set manually. In practice, the rank and gradient-sparsity are
estimated by enumerating the top 90% gradients and patch-
singular values, denoted by |||, .., and rank(-)es+ respec-
tively. While our experimental data (fig. [I) suggests setting
¢ =~ 0.4 for the optimal decomposition, in practice we tend
to overestimate the true underlying gradient-sparsity of the
structure component and patch-rank of the texture component
for natural image and thus c is set slightly higher in practice,
e.g in the range [0.6,0.8]. With this technique, we narrow
down the number of required parameters to tune from gq,, X ¢,
to a single parameter and each tuning parameter adapts to the
local content in the image. In order to use the ADMM, we
need to compute the proximal operator of the total variation,
which can be quickly solved using FISTA [[17] and the proxi-
mal operator of the nuclear norm, which is known as the sin-
gular value thresholding (SVT) operator [18]:

prox)_s(2) = SVT(z,8) = Umax(D — BLOYWT, (7)

(6)

Hi,j =~

where = UDV7 is the singular value decomposition of
[19] and the maximum is taken elementwise.

3. RESULTS AND DISCUSSION

We present some decomposition results (fig. [2), comparing
our method to Low Patch Rank and Block Norm Normaliza-
tion. The source code of our method can be found in the git

Algorithm 1 (Our proposed method)

ul = f,0°=0,9°=0
1

MO . = ¢ 70 . =
b
bl Vil P

while not converged do

uﬁ;‘l = prox “?,_7‘ (Q(f _ ,Uk _ yk)iﬂ')
e
k.
vyt =PTHSVI(P(f —uft —yh)ij, 20))

g+l = b (uk+1 4okt )
if £ = 0 mod M then

k+1 c
Ni,j = 77 k+1
’ ||vui,j Ho,est
k+1 1
VT = ———
b A /rank(v,ﬁ}rl)est
end if
end while

repository [20]. In our experiment, the patch operator P was
parameterized with a patch size p = 5 and the subdivision Q
of the image was performed with (ny,m;) = (64,64) and
an overlap o = 16. Finally, our tuning parameter was set to
¢ = 0.65 for every image and in order to achieve comparative
results with our method, we tuned the LPR and BNN models
such that the output textural components are of similar mag-
nitude by requiring | ||Vother|ly — ||[Vproposedll | < 0.1.

As seen in our results, our method achieves better than
state of the art decompositions (the original LPR and BNN),
i.e. for the same amount of texture, our structure component
is sharper. While BNN captures well stripes-like textures, we
observed that this tends to force a lot of structural details such
as facial features into the textural component. Furthermore,
compared with other methods, our method requires very little
tuning since setting any ¢ € [0.6,0.8] achieves a good image
decomposition for 512 x 512 images. To illustrate the robust-
ness of our method: in Fig. [2] our method was performed
with ¢ = 0.65 whereas the other methods required changes of
up to 60% and 53% in the parametrization for LPR and BNN,
respectively. Furthermore, as our method is performed locally
simultaneously, we can significantly accelerate the process by
parallelizing the computing using a graphic processing unit.

However, there are still some unknowns which have yet
to be investigated. From a theoretical point of view, the
gradient-sparse + low patch-rank recovery problem has yet
to be studied. Fundamentally, in the sparse + low rank re-
covery problem, sparse and LR matrices cannot be recovered
by (3) when they are not sufficiently incoherent one to the
other and it isn’t yet clear how this translates on the type of
structure and texture that can be recovered using the LPR
model. Moreover, the convergence of the scheme we used to
update our parameters should be explored further.

Up to now, tuning decomposition models has remained
largely try-and-error and our tuning method could also bene-
fit other sparsity/low rank prior based decomposition models
such as BNN in order to reach an optimal decomposition.



Fig. 2: Comparison between different methods. From left to right: original image, LPR, BNN and our proposed method.
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