Generator Matrices by Solving Integer Linear Programs - Archive ouverte HAL
Chapitre D'ouvrage Année : 2024

Generator Matrices by Solving Integer Linear Programs

Loïs Paulin
  • Fonction : Auteur
  • PersonId : 753500
  • IdHAL : lois-paulin
David Coeurjolly
Nicolas Bonneel
Jean-Claude Iehl
Victor Ostromoukhov
Alexander Keller
  • Fonction : Auteur

Résumé

In quasi-Monte Carlo methods, generating high-dimensional low discrepancy sequences by generator matrices is a popular and efficient approach. Historically, constructing or finding such generator matrices has been a hard problem. In particular, it is challenging to take advantage of the intrinsic structure of a given numerical problem to design samplers of low discrepancy in certain subsets of dimensions. To address this issue, we devise a greedy algorithm allowing us to translate desired net properties into linear constraints on the generator matrix entries. Solving the resulting integer linear program yields generator matrices that satisfy the desired net properties. We demonstrate that our method finds generator matrices in challenging settings, offering low discrepancy sequences beyond the limitations of classic constructions.
Fichier principal
Vignette du fichier
2302.13943.pdf (55.43 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04009160 , version 1 (01-03-2023)
hal-04009160 , version 2 (27-10-2023)

Identifiants

Citer

Loïs Paulin, David Coeurjolly, Nicolas Bonneel, Jean-Claude Iehl, Victor Ostromoukhov, et al.. Generator Matrices by Solving Integer Linear Programs. Monte Carlo and Quasi-Monte Carlo Methods, 460, Springer International Publishing, pp.525-541, 2024, Springer Proceedings in Mathematics & Statistics, 978-3-031-59761-9. ⟨10.1007/978-3-031-59762-6_26⟩. ⟨hal-04009160v2⟩
61 Consultations
20 Téléchargements

Altmetric

Partager

More