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Generator Matrices by Solving Integer Linear
Programs

Loı̈s Paulin, David Coeurjolly, Nicolas Bonneel, Jean-Claude Iehl, Victor
Ostromoukhov, and Alexander Keller

Abstract In quasi-Monte Carlo methods, generating high-dimensional low discrep-
ancy sequences by generator matrices is a popular and efficient approach. Histori-
cally, constructing or finding such generator matrices has been a hard problem. In
particular, it is challenging to take advantage of the intrinsic structure of a given
numerical problem to design samplers of low discrepancy in certain subsets of di-
mensions. To address this issue, we devise a greedy algorithm allowing us to translate
desired net properties into linear constraints on the generator matrix entries. Solv-
ing the resulting integer linear program yields generator matrices that satisfy the
desired net properties. We demonstrate that our method finds generator matrices in
challenging settings, offering low discrepancy sequences beyond the limitations of
classic constructions.

Key words: Quasi-Monte Carlo methods · Low discrepancy sequences · Digital
(𝑡, 𝑚, 𝑠)-nets and (𝑡, 𝑠)-sequences · Generator matrices · Optimization · Integer
linear programs

1 Introduction

Monte Carlo and quasi-Monte Carlo integration are an important part of many
numerical algorithms, for example, in computational finance and image synthesis.
Problems in these domains often have an intrinsic structure that allows one to benefit
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from a particular uniformity profile imposed on selected subsets of dimensions.
This uniformity may be specified by (𝑡, 𝑚, 𝑠)-net properties, i.e. low discrepancy
properties. A popular way to compute low discrepancy sequences is via generator
matrices. Finding generator matrices that match a specific uniformity profile has
been a challenging problem. Low discrepancy sequences, such as Sobol’, Halton,
and others, use specific matrix constructions to achieve provably strong properties.
However, these constructions represent only a tiny fraction of all possible generator
matrices and hence may not be able to ideally match a desired uniformity profile.
As an example, Joe and Kuo’s work [3] on optimizing the uniformity of all pairs
of dimensions demonstrates that the resulting generator matrices do not reach a
satisfactory 2D uniformity. Methods for optimizing general matrices have been
devised [1]. They often rely on the random generation and selection of generator
matrices. This approach fails when the desired uniformity profiles are too restrictive.
Furthermore, some sets of uniformity profiles are provably infeasible in small prime
bases such as 𝑏 = 2.

We propose a linear algebra-based understanding of the fundamental theorems
of digital nets and their generator matrices. We use this understanding to convert
projective uniformity properties into polynomial and linear constraints on generator
matrix entries. Numerically solving for these constraints allows us to construct
generator matrices with net structures that have not been achieved before. Our
method works in higher prime bases, too, offering one more degree of freedom
to satisfy a specific set of projective net properties.

2 Quasi-Monte Carlo Methods

Quasi-Monte Carlo [7] integration estimates the value of the integral of 𝑓 by∫
[0,1)𝑠

𝑓 (u)𝑑u ≈ 1
𝑁

𝑁−1∑︁
𝑖=0

𝑓 (x𝑖) .

Rather than using independent realizations of uniformly, identically distributed ran-
dom variables, low discrepancy sequences are used to generate deterministic samples
x𝑖 that are much more uniformly distributed over the 𝑠-dimensional unit cube [0, 1)𝑠
than uniform random samples can be.

The uniformity of a point set 𝑃 = {x0, . . . , x𝑁−1} can be measured by the star-
discrepancy [7, p. 14]

𝐷∗
𝑁 (𝑃) := sup

𝐵

�����𝜆𝑠 (𝐵) − 1
𝑁

𝑁−1∑︁
𝑖=0

𝑐𝐵 (x𝑖)
����� ,

where the supremum is taken over all sets 𝐵 of the form 𝐵 =
∏𝑠

𝑖=1 [0, 𝑏𝑖], with
0 ≤ 𝑏𝑖 ≤ 1, 𝜆𝑠 is the Lebesgue measure of 𝐵, and 𝑐𝐵 is the characteristic function
of the set 𝐵 that is one for x𝑖 ∈ 𝐵 and zero otherwise. The star-discrepancy can be
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interpreted as the worst-case integration error of the class of characteristic functions
𝑐𝐵. The more uniformly the points are distributed, the smaller the star-discrepancy
is. Informally, a point set is called low discrepancy if its star-discrepancy is small. For
low-discrepancy sequences of points, the star-discrepancy vanishes in O

(
log𝑠 𝑁

𝑁

)
,

while random points can only achieve a discrepancy of order O
(√︃

log log 𝑁

𝑁

)
.

For functions of bounded variation 𝑉 in the sense of Hardy and Krause, the
Koksma-Hlawka inequality����� 1

𝑁

𝑁−1∑︁
𝑖=0

𝑓 (x𝑖) −
∫
[0,1)𝑠

𝑓 (u)𝑑u

����� ≤ 𝑉 ( 𝑓 ) · 𝐷∗
𝑁 (𝑃) ,

bounds the integration error by the product of variation and star-discrepancy. Even
though in practice many functions may not be of bounded variation, numerical
experiments suggest that increasing the uniformity of the points by decreasing the
discrepancy may lower the integration error.

2.1 Digital (𝒕, 𝒔)-Sequences and (𝒕, 𝒎, 𝒔)-Nets

Deterministic digital (𝑡, 𝑠)-sequences and (𝑡, 𝑚, 𝑠)-nets [7] are low discrepancy
point sequences and sets that can be efficiently generated. Given generator matrices
𝐶1, . . . , 𝐶𝑠 , the algorithm

𝑥
( 𝑗 )
𝑖

=
©«
𝑏−1

...

𝑏−𝑚

ª®®¬
𝑇

· 𝐶 𝑗 ·
©«
𝑖1 (𝑖)
...

𝑖𝑚 (𝑖)

ª®®¬︸         ︷︷         ︸
multiplication in F𝑏

(1)

first multiplies each generator matrix 𝐶 𝑗 by the point index 𝑖 =
∑∞

𝑘=1 𝑖𝑘 (𝑖)𝑏𝑘−1

represented as vector of 𝑚 digits 𝑖𝑘 in the integer base 𝑏. The result of the matrix
multiplication in a finite field F𝑏 is then mapped to the unit interval [0, 1) by a
scalar product with the vector of inverse powers of the base 𝑏. While we work with
prime bases, using a prime power requires mapping the digits to the finite field and
mapping the resulting digits back into the integers [7, Sec. 4.3].

The stratification and hence uniformity properties of this digital construction are
characterized by elementary intervals as given by

Definition 1 (see [7, p. 48]) An interval of the form

𝐸 :=
𝑠∏
𝑗=1

[
𝑎 𝑗𝑏

−𝑑 𝑗 , (𝑎 𝑗 + 1)𝑏−𝑑 𝑗

)
⊆ [0, 1)𝑠 ,
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𝑏 = 2, d = (1, 2) 𝑏 = 2, d = (2, 2) 𝑏 = 3, d = (2, 1)

Fig. 1 Examples of elementary intervals in bases 𝑏 = 2 and 𝑏 = 3 in 𝑠 = 2 dimensions. The vectors
d = (𝑑1, 𝑑2 ) determine the resolutions 𝑏−𝑑 𝑗 along the canonical axes, resulting in the depicted
stratification.

for 0 ≤ 𝑎 𝑗 < 𝑏𝑑 𝑗 and integers 𝑑 𝑗 ≥ 0 is called an elementary interval in base 𝑏.

The elementary intervals (see Fig. 1) are used to characterize the stratification of
point sets as specified in

Definition 2 (see [7, Def. 4.1]) For integers 0 ≤ 𝑡 ≤ 𝑚, a (𝑡, 𝑚, 𝑠)-net in base 𝑏

is a point set of 𝑏𝑚 points in [0, 1)𝑠 such that there are exactly 𝑏𝑡 points in each
elementary interval 𝐸 with volume 𝑏𝑡−𝑚.

Fig. 2 Example of a (0, 3, 2)-net in base 𝑏 = 3. There are 𝑏𝑚 = 33 = 27 points in 𝑠 = 2 dimensions
and each elementary interval (subdividing the 𝑥 and 𝑦 coordinates into 𝑏𝑖 = 3𝑖 , 𝑖 = 1..𝑚, intervals)
contains exactly 𝑏𝑡 = 30 = 1 point.

Fig. 2 illustrates the structure of the elementary intervals for the example of a
(0, 3, 2)-net in base 𝑏 = 3. Note that

∑𝑠
𝑗=1 𝑑 𝑗 = 𝑚 − 𝑡 by the definitions of the

elementary intervals and the (𝑡, 𝑚, 𝑠)-nets. The structure of (𝑡, 𝑚, 𝑠)-nets can be
extended to sequences of points:

Definition 3 (see [7, Def. 4.2]) For an integer 𝑡 ≥ 0, a sequence x0, x1, . . . of points
in [0, 1)𝑠 is a (𝑡, 𝑠)-sequence in base 𝑏 if, for all integers 𝑘 ≥ 0 and 𝑚 > 𝑡, the point
set x𝑘𝑏𝑚 , . . . , x(𝑘+1)𝑏𝑚−1 is a (𝑡, 𝑚, 𝑠)-net in base 𝑏.
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©«
𝑐
(1)
1,1 𝑐

(1)
1,2 𝑐

(1)
1,3

𝑐
(1)
2,1 𝑐

(1)
2,2 𝑐

(1)
2,3

𝑐
(1)
3,1 𝑐

(1)
3,2 𝑐

(1)
3,3

ª®®¬ ·
©«
𝑖1
𝑖2
𝑖3

ª®¬ =
©«
𝑒
(1)
1

𝑒
(1)
2

𝑒
(1)
3

ª®®¬
©«
𝑐
(2)
1,1 𝑐

(2)
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(2)
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1
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𝑐
(1)
1,1 𝑐

(1)
1,2 𝑐

(1)
1,3

𝑐
(2)
1,1 𝑐

(2)
1,2 𝑐

(2)
1,3

𝑐
(2)
2,1 𝑐

(2)
2,2 𝑐

(2)
2,3
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·©«
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ª®¬ =
©«
𝑒
(1)
1

𝑒
(2)
1

𝑒
(2)
2

ª®®¬

Fig. 3 Illustration of the algebraic relationship of generator matrices and elementary intervals. Left:
As highlighted, the first few rows of a generator matrix determine the most significant digits 𝑒𝑘 .
Middle: For the displayed set of elementary intervals, the digit 𝑒 (1)

1 determines the partition along
the first dimension, while 𝑒

(2)
1 and 𝑒

(2)
2 select the partition along the second dimension. Right: If

now det(𝑀k ) ≠ 0, the composite matrix 𝑀k will be a bijection between the elementary intervals
and the index (𝑖1, 𝑖2, 𝑖3 ) .

2.2 Relating Generator Matrices and Elementary Intervals

Fig. 3 illustrates the relationship between generator matrices and elementary in-
tervals: multiplying a generator matrix 𝐶 𝑗 by an index vector (see Equation (1)),
the 𝑘 most significant digits of the result are determined by the first 𝑘 rows of the
generator matrix. Then, a matrix 𝑀k composed of the first 𝑘 𝑗 rows of 𝐶 𝑗 , where
k := (𝑘1, . . . , 𝑘𝑠) ∈ N𝑠

0 and
∑𝑠

𝑗=1 𝑘 𝑗 = 𝑚, defines a mapping from the indices to

elementary intervals of size
(

1
𝑏𝑘1

, . . . , 1
𝑏𝑘𝑠

)
and consequently of volume 1

𝑏𝑚 . If and
only if det(𝑀k) ≠ 0 in the Galois field F𝑏, the mapping will be bijective. Hence the
determinants of the matrices 𝑀k can be used to verify the properties of (0, 𝑚, 𝑠)-nets,
where each elementary interval contains exactly one point.

For 𝑡 > 0, we select k := (𝑘1, . . . , 𝑘𝑠) such that
∑𝑠

𝑗=1 𝑘 𝑗 = 𝑚 − 𝑡. This results
in rectangular matrices 𝑀k defining a mapping between indices and elementary
intervals of volume 1

𝑏𝑚−𝑡 . We want each elementary interval to be the image of exactly
𝑏𝑡 indices, i.e. contain exactly 𝑏𝑡 points. This is equivalent to having dim(ker 𝑀k) = 𝑡

and dim(im 𝑀k) = 𝑚 − 𝑡, because the dimension of the index vector in Equation (1)
is 𝑚. 𝑀k having 𝑚− 𝑡 rows, this means 𝑀k needs to have full rank in the Galois field
F𝑏. As such, the generator matrices 𝐶1, . . . , 𝐶𝑠 define a (𝑡, 𝑚, 𝑠)-net if and only if
∀k = (𝑘1, . . . , 𝑘𝑠) with

∑𝑠
𝑗=1 𝑘 𝑗 = 𝑚 − 𝑡, 𝑀k is of full rank. The same illustration as

in Fig. 3 applies, except that now the 𝑡 least significant digits of the index 𝑖 are not
considered.

With parameters 𝑡 ≥ 0 at hand, some techniques to relax constraints with 𝑡 = 0
within the prior MatBuilder [8] become dispensable as demonstrated by the results
in Sec. 4. A first example is generalized stratification, where for 𝑏𝑚 points and

∀ (𝑘1, . . . , 𝑘𝑠) ∈
{⌊𝑚

𝑠

⌋
,

⌈𝑚
𝑠

⌉}𝑠
with

𝑠∑︁
𝑗=1

𝑘 𝑗 = 𝑚 ,
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⇔ ≠ 0 ⇔ ≠ 0

⇔ ≠ 0

⇔ ≠ 0

⇔ ≠ 0

⇔

⇔

⇔

Stratified (0, 𝑚, 𝑠)−net (𝑡 , 𝑚, 𝑠)−net

det det

det

det

det

full rank

full rank

full rank

Fig. 4 Stratification properties (left) expressed by matrix determinants allow for checking (0, 𝑚, 𝑠)-
net properties (middle) and (𝑡 , 𝑚, 𝑠)-net properties for 𝑡 > 0 (right). The red boxes group sets of
constraints as explained in Sec. 2.2.

all cells of size
∏𝑠

𝑗=1 𝑏
𝑚−𝑘 𝑗 contain exactly 1 point. Note that unless 𝑠 divides 𝑚,

the number of intervals along each axis differs by at most a factor of 𝑏. A second
expendable technique bounded the difference of any two numbers of selected rows
𝑘 𝑗 by a value 𝑚′ ∈ {0, . . . , 𝑚}. Hence, 𝑚′ = 0 realizes property A of the Sobol’
sequence [9], where contiguous blocks of 𝑏𝑠 samples are stratified, and 𝑚′ = 1
amounts to generalized stratification as just characterized before.

Fig. 4 summarizes our set of stratification constraints that are specified by using
matrices composited from generator matrices as described before. Regarding (𝑡, 𝑠)-
sequences, verifying the (𝑡, 𝑚, 𝑠)-net properties for all𝑚 ≥ 𝑡 is equivalent to checking
whether all top-left square sub-matrices generate (𝑡, 𝑚, 𝑠)-nets. This result is stated
in a slightly different manner by

Theorem 1 (see [7, p. 73]) Suppose that the integer 𝑡 ≥ 0 satisfies the following
property: For any integers 𝑚 > 𝑡 and 𝑘1, ..., 𝑘𝑠 ≥ 0 with

∑𝑠
𝑗=1 𝑘 𝑗 = 𝑚 − 𝑡 and any

𝑒
( 𝑗 )
𝑖

∈ F𝑏, the system of 𝑚 − 𝑡 linear equations

𝑚−1∑︁
𝑟=0

𝑐
( 𝑗 )
𝑖,𝑟

𝑧𝑟 = 𝑒
( 𝑗 )
𝑖

for 1 ≤ 𝑖 ≤ 𝑘 𝑗 , 1 ≤ 𝑗 ≤ 𝑠

in the unknowns 𝑧0, . . . , 𝑧𝑚−1 over R has exactly 𝑏𝑡 solutions. Then the sequence x𝑖
generated by Equation (1) is a (𝑡, 𝑠)-sequence in base 𝑏.

Especially (𝑡, 𝑠)-sequences in base 𝑏 = 2, as for example the construction by
Sobol’ [9] are popular, because they can be computed very efficiently using bit-
parallel vector operations for the implementation of the Galois field F2. The small
basis, however, may be limiting, as we claim in
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Theorem 2 There are no more than 𝑏 generator matrices in base 𝑏 such that all
pairs of matrices generate a (0, 2)-sequence.

A constraint graph 𝐺 is a graph with a vertex for each dimension, and with an
edge between two dimensions that can be found in the same sequence constraint. As
(0, 2)-sequences constraints between all pairs of dimension are included in (𝑡, 𝑠)-
sequence constraints, Theorem 2 states that 𝐺 admitting not having any clique of
size greater than 𝑏 and thus admitting a 𝑏 coloring is a necessary condition for the
system of constraints to have solutions. To prove the theorem, we need the following

Lemma 1 In base 𝑏 there are no more than 𝑏 vectors of dimension 2 with a non-zero
first component such that all vectors are pair-wise linearly independent.

Proof Without loss of generality, we can assume that the first component of our
vectors is always 1 as any vector is linearly equivalent to one with the first component
equal to 1. For all 𝑘1 ≠ 𝑘2 the vectors (1, 𝑘0) and (1, 𝑘1) are linearly independent.
There are 𝑏 possible values for the second component. Thus there are no more than
𝑏 vectors of dimension 2 with a non-zero first component such that all vectors are
pair-wise linearly independent. □

With the lemma at hand, we are ready to prove Theorem 2:

Proof Let𝐶1, . . . , 𝐶𝑠 be 𝑠 generator matrices in base 𝑏 such that all pairs of matrices
generate a (0, 2)-sequence. Then all pairs of top-left cornered square submatrices of
size 𝑚 generate a (0, 𝑚, 2)-net. For 𝑚 = 1 this means for 1 ≤ 𝑗 ≤ 𝑠 all 𝑐 ( 𝑗 )1,1 ≠ 0.
For 𝑚 = 2 this means that all the first rows of each matrix must be pair-wise linearly
independent. By Lemma 1, there are no more than 𝑏 linearly independent first rows.
Thus there are no more than 𝑏 matrices in base 𝑏 such that all pairs of matrices
generate a (0, 2)-sequence. □

3 Specifying Generator Matrices by Constraints

The profile language (see Fig. 5) as introduced in [8] allows one to specify generator
matrices by constraints. A profile first selects the dimension 𝑠, prime base 𝑏, and ma-
trix size 𝑚, followed by a list of constraints. Each constraint affects a selected subset
of dimensions, which allows for forging application-specific uniformity properties.
Then the constraints are transformed into an Integer Linear Program (see Fig. 6)
whose solution specifies the 𝑠 generator matrices of size 𝑚 × 𝑚.

We extend the syntax of the profile language to include (𝑡, 𝑚, 𝑠)−net constraints
with arbitrary 𝑡 ≥ 0 as an additional parameter to the net and weak net keywords.
As an example, the profile Overlapping-constraints in Fig. 5 shows the con-
straints to design a progressive net in dimension 6 and base 3 up to 310 points that
is a (0, 10, 2)-net for the first two pairs of dimensions, as close to a (1, 10, 3)-net as
possible for the dimensions {3, 4, 5}, and as close to a (2, 10, 6)-net as possible.
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#One-weak-constraint
s=6
m=10
b=3
weak 1 net 0 1 2 3 4 5

#Overlapping -constraints
s=6
m=10
b=3
net t0 0 1
net t0 1 2
weak 1 net t1 3 4 5
weak 1 net t2 0 1 2 3 4 5

#Generic-proj-LDS
s=6
m=10
b=3
net 0 1
net 1 2
net 2 3
net 3 4
net 4 5
weak 1 net 0 2
weak 1 net 0 3
weak 1 net 0 4
weak 1 net 0 5
weak 1 net 1 3
weak 1 net 1 4
weak 1 net 1 5
weak 1 net 2 4
weak 1 net 2 5
weak 1 net 3 5

Fig. 5 Example profiles to specify generator matrices by constraints: The parameter 𝑠 refers to the
problem dimension, 𝑏 is the prime base, and 𝑚 is the matrix size to generate up to 𝑏𝑚 points. The
remaining lines specify net and hence implicitly stratification constraints on selected dimensions.
The keyword net requires (𝑡 , 𝑚, 𝑠)-net properties on the subsequent set of dimensions, where by
default 𝑡 = 0. Larger 𝑡-parameters are specified explicitly using the keyword t, e.g. t2 ≡ 𝑡 = 2.
The keyword weak indicates that the constraint is not strict, and its relative strength 𝑤𝜈 𝑗

is given
by the value next to the keyword.

3.1 Overlapping Constraints

Theoretical results [7] state that the best possible 𝑡-parameter for a (t,m,s)-net is
𝑡 = 𝑠−𝑏−1. However, many applications exhibit a structure where the uniformity of
a subset of dimensions greatly impacts the integration error. This has already been
observed in the work of Joe and Kuo [3] and L’Ecuyer et al. [6]. As the dimension
of the subsets often is much smaller than the global dimension, the 𝑡-parameter of
the subset of dimensions theoretically can be smaller than the global 𝑡-parameter.
In our profile language (see Fig. 5), it is straightforward to specify such potentially
overlapping constraints, which offers a new way of designing generator matrices.

3.2 Specifying Constraints in Z

Solvers are usually devised to work in Z, however, our constraints are in F𝑏. In order
to take advantage of existing solvers, we need to convert our constraints toZ. InF𝑏 our
constraints are of the form

∑
𝑖 𝑤𝑖𝑥𝑖 ≠ 0. We transform them to 0 <

∑
𝑖 𝑤𝑖𝑥𝑖 + 𝑘𝑏 < 𝑏

with 𝑘 ∈ Z an additional variable to solve for and 0 ≤ 𝑥𝑖 < 𝑏 (see Fig. 6). This way
we emulate the modulo arithmetic of prime base Galois fields. Note that this trick is
limited to prime bases 𝑏.
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3.3 Weak Constraints

Each net constraint on a set of dimensions is actually a set of linear sub-constraints,
one per elementary interval shape. It often happens that constraints cannot be satis-
fied. This can be due to a too small 𝑡-parameter or because of conflicting overlapping
constraints. To alleviate the issue, we introduce weak constraints. All constraints
were crafted such that the determinant of the corresponding matrix 𝑀 is strictly in
the range {1, . . . , 𝑏 − 1}. For the 𝑗-th weak constraint, we now make these bounds
depend on a variable 𝜈 𝑗 ∈ [0, 1] in the following manner:

𝜈 𝑗 ≤
∑︁
𝑖

𝑤𝑖𝑥𝑖 + 𝑘 𝑗𝑏 ≤ (𝑏 − 1)𝜈 𝑗 .

This way, if 𝜈 𝑗 = 0 the constraint becomes
∑

𝑖 𝑤𝑖𝑥𝑖 + 𝑘 𝑗𝑏 = 0 and if 𝜈 𝑗 = 1 the
constraint results to be 0 <

∑
𝑖 𝑤𝑖𝑥𝑖 + 𝑘 𝑗𝑏 < 𝑏 which is equivalent to the original

hard constraint. Maximizing the sum
∑
𝑤𝜈 𝑗

𝜈 𝑗 , where 𝑤𝜈 𝑗
is the weight of constraint

𝑗 , thus maximizes the number of satisfied sub-constraints while allowing some of
them not to be satisfied in case they are infeasible. The complete setup of the Integer
Linear Program is summarized in Fig. 6.

3.4 Polynomial Integer Program

A matrix 𝐴 ∈ F(𝑚−𝑡 )×𝑚
𝑏

has full rank if and only if at least one of the square sub-
matrices 𝐴𝑖 obtained by dropping any 𝑡 columns 𝑖 = (𝑖1, . . . , 𝑖𝑡 ) of 𝐴 has full rank.
This means that at least one such sub-matrix has a non-zero determinant. This can
be represented by the set of polynomial constraints of degree 𝑚 − 𝑡,

∃𝑖 ∈ {(𝑖1, . . . , 𝑖𝑡 ) ∈ N𝑡 | 1 ≤ 𝑖1 < · · · < 𝑖𝑡 ≤ 𝑚} : det(𝐴𝑖) ≠ 0 .

Imposing all 𝑀k to have full rank can thus be expressed as satisfying a set of
polynomial constraints on values of matrices 𝐶 𝑗 .

∀k := (𝑘1, . . . , 𝑘𝑠) ∈ N𝑠 with
∑𝑠

𝑗=1 𝑘 𝑗 = 𝑚 − 𝑡

∃𝑖 ∈ {(𝑖1, . . . , 𝑖𝑡 ) ∈ N𝑡 | 1 ≤ 𝑖1 < · · · < 𝑖𝑡 ≤ 𝑚} : det(𝑀k,𝑖) ≠ 0 .

with 𝑀k,𝑖 denoting the matrix 𝑀k with the set of columns 𝑖 removed. The set of
matrices𝐶1, . . . , 𝐶𝑠 describes a (t,m,s)-net if and only if it satisfies a set of polynomial
constraints stating that all 𝑀k constructed from these matrices (see Sec. 2.2) have
full rank.
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3.5 Integer Linear Programs

Theorem 1 advocates linear constraint solving, which, however, is NP-complete.
Unless 𝑃 = 𝑁𝑃, the computational complexity is exponential in the number of
variables 𝑠𝑚2. In practice, such algorithms are infeasible, as the number of variables
is too high. However, assuming all values in the matrices to be known up to column
𝑖 − 1 and trying to determine the 𝑖-th column simplifies the problem to that of
satisfying a set of linear constraints with 𝑠𝑚 variables, since the determinant is a
linear function of the matrix columns. In combination with the heuristic applied in
modern Integer Linear Program Solvers [2], it becomes possible to compute tangible
results.

We hence use a greedy algorithm to construct the generator matrices column-by-
column:

©«
𝑐1,1 · · · 𝑐1,𝑚
...

. . .
...

𝑐𝑚,1 · · · 𝑐𝑚,𝑚

ª®®¬ →
©«
𝑐1,1 · · · 𝑐1,𝑚
...

. . .
...

𝑐𝑚,1 · · · 𝑐𝑚,𝑚

ª®®¬ →
©«
𝑐1,1 · · · 𝑐1,𝑚
...

. . .
...

𝑐𝑚,1 · · · 𝑐𝑚,𝑚

ª®®¬
At each step, the top-left square sub-matrices are checked to guarantee the sequence
property (highlighted in green). In the highlighted columns, elements in green are
chosen at random according to the constraints, while the blue elements are not
constrained and become selected at random. As our matrices have finite size, Def-
inition 3 of a (𝑡, 𝑠)-sequence is only ensured up to 𝑏𝑚 points. Hence, we call point
sets generated by such matrices progressive (𝑡, 𝑚, 𝑠)-nets.

To determine these linear constraints for each 𝑀k, we check whether the matrices
have full rank by performing a symbolic Gaussian elimination in the Galois field F𝑏.
Gaussian elimination seeks to triangularize a matrix by iteratively subtracting linear
combinations of rows. For a rectangular matrix, the Gaussian elimination results in
3 possible outcomes:

©«

∗ ∗ 𝑣1

0

∗ ∗

0 0
0 0 𝑣𝑚−𝑡

ª®®®®®®®®¬

©«

∗ ∗ 𝑣1

0

0 0 ∗ ∗ 𝑣𝑚−𝑡

ª®®®®®®®®¬

©«

∗ ∗ 𝑣1

0

∗ ∗
0 0 0 𝑣𝑚−𝑡

ª®®®®®®®®¬
(𝑎) (𝑏) (𝑐)

In case (a), no choice of 𝑣 𝑗 can make the matrix full rank since at least two rows
consist of zeros, possibly except for their last component 𝑣𝑚−𝑡 and 𝑣𝑚−𝑡−1, and hence
these rows must be linearly dependent. In case (b), the matrix necessarily has full
rank regardless of the last column 𝑣 as the row vectors are linearly independent
even without their last component. In case (c), the matrix has full rank if and only
if 𝑣𝑚−𝑡 ≠ 0 to ensure the last row is not identically zero. Following the Gaussian
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elimination process, 𝑣𝑚−𝑡 is a linear combination of the variables of the last column
of 𝑀k with weights depending on the values of the first columns of 𝑀k.

.
.
.

.
.
.
.
.
.

.
.
.

.
.
.

.
.
.

Maximize
∑
𝑤𝜈 𝑗

𝜈 𝑗

such that

H
ard

constraints
W

eak
constraints

R
anges

0 <
∑

𝑖 𝑤𝑖𝑥𝑖 − 𝑘 𝑗𝑏 < 𝑏

𝜈 𝑗 ≤
∑

𝑖 𝑤𝑖𝑥𝑖 + 𝑘 𝑗𝑏∑
𝑖 𝑤𝑖𝑥𝑖 + 𝑘 𝑗𝑏 ≤ (𝑏 − 1)𝜈 𝑗

0 ≤ 𝜈 𝑗 ≤ 1

0 ≤ 𝑥𝑖 < 𝑏

Fig. 6 Anatomy of an Integer Linear Program (ILP). Please refer to the text for details.

In summary, to grow the matrices 𝐶𝑖 according to our greedy strategy, the values
of the 𝑐 (𝑖)

𝑙,𝑚+1 (abstracted as 𝑥𝑖 in our formulas) in the last column of their respective𝐶𝑖

are determined by solving an Integer Linear Program, which consists of an objective
function to maximize subject to a set of constraints. Fig. 6 shows the anatomy of our
Integer Linear Programs: The range constraints enforce that 𝑐 (𝑖)

𝑙,𝑚+1 ∈ {0, . . . , 𝑏 − 1}
and the hard uniformity constraints enforce a non-zero determinant to guarantee the
design constraints of stratification, net, and sequence properties as introduced in
Sec. 2.2. Remember that matrices 𝑀k are constructed from the first rows of the 𝐶𝑖

matrices and hence include some of the 𝑐 (𝑖)
𝑙,𝑚+1. Indicated by 𝜈 𝑗 = 1, a satisfied weak

constraint adds its weight 𝑤𝜈 𝑗
to the objective function. Otherwise, a zero linear

combination (stating that the corresponding 𝑀k is not full rank) comes along with
𝜈 𝑗 = 0.

4 Results

In our previous work [8], we focused on computer graphics applications including
image synthesis, parametric texture exploration, and optimal control. At that time,
we only supported the special cases of stratification and (0, 𝑚, 𝑠)-net properties,
where 𝑡 = 0. For our new results, we investigate the larger solution space for gen-
erator matrices provided by 𝑡 ≥ 0 and weak constraints. The implementation of the
MatBuilder software is publicly available at https://github.com/loispaulin/
matbuilder.

Fig. 7 shows an initial experiment in 𝑠 = 6 dimensions. We observe that both
MatBuilder and LatNetBuilder [5] achieve good performance in terms of discrepancy
when maximizing the uniformity. Note that the One-weak-constraint profile in

https://github.com/loispaulin/matbuilder
https://github.com/loispaulin/matbuilder
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Fig. 5 causes the solver to approximate a progressive (0, 𝑚, 6)-net in base 𝑏 = 3 as
closely as possible, while theoretically it does not exist.
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Fig. 7 We measure uniformity in terms generalized 𝑙2-discrepancy in dimension 𝑠 = 6. The
MatBuilder (𝑏 = 3) results are obtained using a "weak 1 net 0 1 2 3 4 5" constraint in the
One-weak-constraint profile in Fig. 5. For LatNetBuilder (𝑏 = 2), we have used a figure of merit
minimizing the discrepancy. Rank1Lattice refers to [4]. For reference, stratified sampling partitions
each dimension into the same amount of intervals and randomly samples once inside each resulting
hypercube. The range for random and stratified sampling results from 64 independent realizations.

4.1 Overlapping Net Constraints

In Fig. 8, we present results for the Generic-proj-LDS profile in Fig. 5 which
ensures progressive (0, 𝑚, 2)-net properties for consecutive pairs of dimensions.
For all other pairs of dimensions, the additional weak constraints ask the solver to
establish a progressive (0, 𝑚, 2)-net property if possible. Using weak constraints in
the profile maximizes the number of elementary intervals checking their part of the
progressive (0, 𝑚, 2)-net property. This results in points that, even though technically
not a progressive (0, 𝑚, 2)-net, exhibit a similar quality in terms of discrepancy. As
compared to the Sobol’ sequence, the constraint based generator matrices clearly
improve the quality across the 2D sample projections. Converting these constraints
into a loss function for a stochastic matrix construction, LatNetBuilder [5] does not
achieve a comparable quality in the projections on its own. Yet, a constraint based
specification may help stochastic optimization [8].
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Fig. 8 Comparison of two-dimensional projections. For 2048 points generated in base 𝑏 = 2,
both the Sobol’ sequence and the result from LatNetBuilder show the known typical pattern-
ing. Both do not fulfill (0, 𝑚, 2)-net constraints on pairs of consecutive dimensions. Given the
Generic-proj-LDS profile in Fig. 5, MatBuilder can enforce such constraints. Then, off-diagonal
projections may lack uniformity as a consequence of Theorem 2. However, using the same profile
for 𝑏 = 3 and a similar number of 2187 points, MatBuilder finds high quality matrices that satisfy
both the hard and weak constraints. The graph simultaneously plots the generalized 𝑙2-discrepancy
of all two-dimensional projections for random sampling, the Sobol’ sequence, the LatNetBuilder
result, and the MatBuilder result in 𝑏 = 3. The generator matrices specified by constraints consis-
tently generate points of excellent low discrepancy with the least variation across all projections.

4.2 Playing with 𝒕-Parameters

Our system empowers the user to play with 𝑡-parameters provided as weak con-
straints. In order to satisfy a weak constraint, the greedy algorithm maximizes the
number of elementary intervals of size 𝑏−𝑡 containing 𝑏𝑡 points, approximating the
properties of 𝑡-parameters that are theoretically impossible. For example, in base
𝑏 = 3 the best possible 𝑡-parameter for a progressive (𝑡, 𝑚, 6)-net is 𝑡 = 3. However,
by asking the solver to generate matrices with 𝑡 ∈ {0, 1, 2} as a weak constraint, we
are able to improve uniformity.

In Fig. 9, we demonstrate that low discrepancy can be achieved by weak constraints
for the examples of 𝑡 ∈ {0, . . . , 4} and 𝑚 up to 10 in 𝑠 = 6 dimensions. As expected,
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increasing the 𝑡-parameter has a negative impact on the six-dimensional generalized
𝑙2-discrepancy (Fig. 9-𝑎) and the sample projection uniformity (Fig. 10). While the
construction time increases with the matrix size 𝑚, the number of constraints to
satisfy decreases with increasing 𝑡-parameter. Hence, the smaller 𝑡, the more greedy
expansion steps of the matrix columns and rows need to be executed as 𝑚 increases
(Fig. 9-𝑏).
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Fig. 9 Performance evaluation when increasing the 𝑡-parameter from 0 to 4 on a weak net profile
in base 3 and dimension 6 up to 310 points: (𝑎) Quality evaluation in terms of generalized 𝑙2-
discrepancy. (𝑏) Timings of the solver as a function of the matrix size 𝑚.

Weighted weak constraints also enable us to negatively weigh a net constraint.
While this seems to have little practical purpose, it allows one to explore the range
of possible net configurations. We revisit the example of sequences in 6 dimensions
in base 3 where the smallest feasible 𝑡-parameter is 3, with the profiles given in
Fig. 11. One may understand such profiles as for instance “What is the best 𝑡 = 3
point set that is neither 𝑡 = 0, 1, nor 2?”. In Figs. 12 and 13, we observe that block
artifacts on the projections have a direct impact on the generalized 𝑙2-discrepancy
(with relatively similar timings for the matrix construction). However, Fig. 13 shows
that the (3, 6)-sequence property does not differentiate between points of high or
low quality.

5 Conclusion

We extend the MatBuilder software to quality parameters 𝑡 > 0. This enables us to
exemplify that the (𝑡, 𝑚, 𝑠)-net property alone fails to characterize optimal quality
both across projections as well as across all dimensions before reaching asymptotic
behavior. Using MatBuilder, we are confident that by exploring constraints on not
necessarily disjoint subsets of dimensions, partially satisfying constraints, and higher
bases, generator matrices can be found that outperform the classic constructions in
practice. Generalizing our approach to prime power Galois fields is a promising
avenue of future research.
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(a) (b) (c)

(d) (e)

Fig. 10 Two-dimensional projections of 37 points in dimension 6 following "weak 1 net ti 0
1 2 3 4 5" profiles for i ∈ {0, 1, 2, 3, 4} (from (𝑎) to (𝑒)). Note that dimension indices follow
the ones depicted in Fig.8.
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Fig. 11 MatBuilder profiles exploring negatively weighted 𝑡 constraints: While enforcing the
progressive net to be as 𝑡 = 3 as possible (and 𝑡 = 4 for the last one), we progressively invalidate
some smaller 𝑡-parameter options.
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