Measuring 3D-reconstruction quality in probabilistic volumetric maps with the Wasserstein Distance - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Measuring 3D-reconstruction quality in probabilistic volumetric maps with the Wasserstein Distance

Antoine Richard
  • Fonction : Auteur
  • PersonId : 1087046
Marianne Clausel
Cedric Pradalier

Résumé

In this study, we address the challenge of measuring 3D-reconstruction quality in large unstructured environments, when the map is built with uncertainty in the robot localization. The challenge lies in measuring the quality of a reconstruction against the ground-truth when the data is extremely sparse and where traditional methods, such as surface distance metrics, fail. We propose a complete methodology to measure the quality of the reconstruction, on a local level, in both structured and unstructured environments. Building upon the fact that a common map representation in robotics is the probabilistic volumetric map, we propose, along this methodology, to use a novel metric to measure the map quality based directly on the voxels' occupancy likelihood: the Wasserstein Distance. Finally, we evaluate this Wasserstein Distance metric in simulation, under different level of noise in the robot localization, and in a real world experiment, demonstrating the robustness of our method.
Fichier principal
Vignette du fichier
RAL_WD_Metric.pdf (1.57 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03687781 , version 1 (03-06-2022)
hal-03687781 , version 2 (14-06-2023)

Identifiants

  • HAL Id : hal-03687781 , version 1

Citer

Stéphanie Aravecchia, Antoine Richard, Marianne Clausel, Cedric Pradalier. Measuring 3D-reconstruction quality in probabilistic volumetric maps with the Wasserstein Distance. 2022. ⟨hal-03687781v1⟩
129 Consultations
337 Téléchargements

Partager

More