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Measuring 3D-reconstruction quality in probabilistic
volumetric maps with the Wasserstein Distance

Stéphanie Aravecchia1, Antoine Richard2, Marianne Clausel3, Cédric Pradalier1

Abstract—In this study, we address the challenge of measuring
3D-reconstruction quality in large unstructured environments,
when the map is built with uncertainty in the robot localization.
The challenge lies in measuring the quality of a reconstruction
against the ground-truth when the data is extremely sparse and
where traditional methods, such as surface distance metrics, fail.
We propose a complete methodology to measure the quality of
the reconstruction, on a local level, in both structured and un-
structured environments. Building upon the fact that a common
map representation in robotics is the probabilistic volumetric
map, we propose, along this methodology, to use a novel metric to
measure the map quality based directly on the voxels’ occupancy
likelihood: the Wasserstein Distance. Finally, we evaluate this
Wasserstein Distance metric in simulation, under different level
of noise in the robot localization, and in a real world experiment,
demonstrating the robustness of our method.

I. INTRODUCTION

In this work, we are interested in large scale natural envi-
ronments, such as parks or forests, sometimes called “unstruc-
tured” ([1, 2]), in opposition to environments containing large
geometrical shapes, such as buildings, called “structured”. In
a large scale unstructured environment, not only computing
an accurate 3D map, with a 3D-Lidar, is particularly difficult
but also measuring the quality of the produced map is a
challenging task in itself.

When building the map in unstructured environments,
among the main challenges, we can specifically highlight the
sparsity of the data and the robot localization ([1, 2]). To
begin with the sparsity, the output from an affordable 3D-
Lidar is sparse. For example, the Ouster-16 used in this study
provides only 8,192 points at 10 Hz, whereas the number of
points is generally 100 times higher and the frame rate at
least 3 times higher when considering an RGBD camera or
the point-cloud derived from visual odometry algorithms. In
addition to the sparsity of the laser output, the environment
itself leads to a sparse reconstruction. For example, trees,
by their very structure, are sparse because they offer only
an aggregation of small surfaces to the Lidar. Although the
sampling of a trunk from a Lidar could be dense, the sampling
of small branches or leaves, will generally not be high enough
to recover the underlying structure. Moreover, from a laser’s
perspective, trees can behave as semi-transparent structures,
thereby inducing errors in the measurements. The reason is
that when laser-rays – light cones in practice – reach a small
object, like a branch, often only a portion of the energy
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is reflected, causing inaccurate distance readings. Two other
causes of errors in laser measurements, that are particularly
abundant in large scale natural environments, are linked to
the distance to the objects and the incidence angle: the error
increases with each of them [3]. Finally, the localization of
the robot in the map is also a source of errors because the
3D-reconstruction is a probabilistic accumulation of all the
point-clouds transformed in the localization frame.

In a robotic monitoring or inspection task, an important
question to consider is “how accurate is the map locally?”.
With sparse 3D-reconstructions, in unstructured environments,
answering this question is ambiguous. First, because the def-
inition of ground-truth is not straightforward: how to acquire
the real ground-truth of a park-like environment? Furthermore,
because most classical methods, based on statistics on surface
distances, require a reconstructed surface to measure the dis-
tance between the reconstruction and the ground-truth. We will
show that for natural environments, attempting to reconstruct
surfaces that match the actual surfaces of trees, trunks, small
branches and leaves is doomed to fail. We circumvent this
issue by measuring the quality of the reconstruction not on
the surfaces, but directly on the probabilistic map. We propose
to measure the “distance” between the occupancy likelihood
in the 3D-reconstruction and the occupancy likelihood in
the ground-truth. This measure is given by the Wasserstein
Distance.

Finally, to obtain local information about the quality of
the 3D-reconstruction, we propose a methodology to compare
reconstruction to ground-truth on a local level. The code to
reproduce the method and experiments is open-source 1.

To summarize, our contributions are:
• a methodology to compare locally 3D-reconstruction and

ground-truth, applicable both in structured and unstruc-
tured environments;

• a metric to measure the quality of a sparse 3D-
reconstruction, also applicable to both structured or un-
structured environments: the Wasserstein Distance.

II. RELATED WORK

A. Map building

The most common ways to represent maps are volumetric
maps, i.e. 3D-grids, and meshes, i.e. 3D-surface maps.

Meshes are generally obtained from either a Lidar point-
cloud or from the point-cloud derived from visual odometry.
In a mesh, the surface is described by connected triangles.

1https://github.com/stephanie-aravecchia/3d-reconstruction-metrics.git

https://github.com/stephanie-aravecchia/3d-reconstruction-metrics.git
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An optimization algorithm is applied on the point-cloud to
build the mesh. Among the most widely used techniques,
we can cite Ball-Pivoting Algorithm [4], Poisson Surface
Reconstruction [5] or Delaunay triangulations [6]. Although
results on the meshing of a single object is widely shown in the
literature, meshing large scale natural environments is still a
problem which is not solved. Some meshes can be derived, but
they are generally a rough approximation of trees and bushes.

In this paper, we focus on a more common map rep-
resentation for outdoor robotics: volumetric maps. Such a
map is a discretization of the space in voxels, each voxel
containing some information, such as its occupancy likelihood.
[7] presented Octomap, a method to build and store an
octree instead of a 3D-grid, saving memory and computation.
The open-source Octomap library implements the complete
probabilistic map building process. The map is constructed
in a given map frame, and every point-cloud in the Lidar
frame updates the map. For each point in the point-cloud,
a ray-casting operation is performed. Between the robot and
the returned point, the probability of occupancy of the leaves
in the octree is decreased. The returned points are updated
as occupied, their probability of occupancy is increased. A
thorough update process has been implemented to be robust
to noise in the Lidar’s point-cloud. We use Octomap to build
the probabilistic volumetric map denoted as “reconstruction”
in this paper.

It is also important to note that the quality of the map is in-
trinsically linked to the precision of the robot localization and
that solving the localization in large scale natural environment
is still challenging. Since the point-clouds are expressed in the
Lidar frame (which is based on the robot’s localization), any
error in the transformation from the Lidar frame to the map
frame will lead to errors in the map [1]. In this work, we do
not deal with solving the localization problem, but evaluate
our method with different level of noise in simulation, and
with a real experiment.

B. 3D-reconstruction metrics
In the context of 3D-reconstruction, several metrics exists

to measure the quality of the 3D-reconstruction.
Generally, when considering 3D-reconstruction, the objec-

tive is to compare two surfaces: the mesh generated from the
3D-point cloud, and the ground-truth mesh. The traditional
metrics in that case are based on surface distance errors. They
consist in calculating, for all surface points of one surface,
the distance to the closest on the other surface. Statistical
metrics are then extracted, among which we typically see the
Hausdorff Distance, the Root Mean Square Error (RMSE) or
the MAE (Mean Average Error) ([8, 9, 10]).

In the context of robotics, the surface coverage is derived
from those surface distance errors, and applied either on the
meshes or on the 3D-grids. In that case, if the distance between
a ground-truth point and its closest reconstructed point is
less than a registration distance, the ground-truth point is
considered as observed. The metric is the proportion of such
points ([11, 12]).

The fact that those metrics aim at measuring the quality
of a dense reconstruction, i.e. reconstructing dense objects

with high density point-clouds, is their main limitation. In the
context of unstructured environments, the 3D-reconstruction
tends to remain sparse, because only a few voxels will reach
the threshold probability for them to be considered occupied.
Therefore, in a sparse reconstruction, of an unstructured envi-
ronment, the level of information is not sufficient to recover a
surface, as we will also show later. This means that none of the
previously seen metrics are adequate to evaluate sparse 3D-
reconstructions of unstructured environments. Furthermore,
those methods solely focus on the reconstruction of occupied
voxels, and not on empty space. In the context of large scale
environments with sparse objects, it is also interesting to
measure how well empty space has been reconstructed.

C. Comparing probabilities
Since we are building a probabilistic volumetric map with

Octomap, we could take advantage of that framework to
measure the quality of the map. Each voxel in the probabilistic
map has a probability of occupancy between 0%, the absolute
certainty that the voxel is empty, and 100%, the absolute
certainty that the voxel is occupied. Leveraging the probabil-
ities inside a 3D-grid is not a novelty, and has been explored
in [11]. However, they do not propose a mean to compare
the reconstructed volume to a reference one. In this paper,
we propose a methodology to compare two volumetric maps
with probabilistic values. Something that, to the best of our
knowledge, has not been done before.

Different methods allow comparing probabilities. The most
common is probably the Kullback-Leibler divergence (DKL):
a measure of how different two probability distributions are.
Nonetheless, since we are considering a grid of probabilistic
voxels, we have access to another information: the Euclidean
distance between voxels. As an example, if a point is erro-
neously reconstructed 5 cm away from an actual object, the
reconstruction is better than if the erroneous point is 50 cm
away. The DKL is not sensitive to this difference. An alterna-
tive solution is then to calculate the Optimal Transport plan,
linking one probability distribution to another one, with a cost
function depending on the geometry [13]. From this Optimal
Transport plan, we can calculate a distance, the Wasserstein
Distance which is a generalization of the concept of Earth
Mover’s Distance (EMD). To bypass computational issues,
[14] regularizes the optimal transport problem by adding an
entropic term, and solves it using a Sinkhorn’s fixed point
iteration. [15] has implemented an open source Python library
providing several solvers for Optimal Transport problems,
including [14]’s algorithm. With the Wasserstein Distance, or
its regularized variants, we can measure the quality of the
3D-reconstruction, comparing not only the ground-truth and
reconstructed values of probabilistic maps but also taking into
account the Euclidean distances in the errors.

III. METHOD

The objective of our method is to compare 3D-
reconstruction to ground-truth, and to measure the quality of
the reconstruction on a local level. To do so, we discretize
the space into cuboid regions and calculate a reconstruction
metric for each cuboid.
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A. Cuboid region comparison

This section explains how we extract the cuboids regions
from the reconstruction and from the ground-truth. The 3D-
reconstruction is obtained from the full probability map con-
structed by Octomap, the ground-truth is either the mesh of
the scene used in simulation, or the point-cloud obtained when
scanning the area with a Total Station (Sec. IV-A).

To compare two cuboid regions of both the ground-truth
and the reconstruction, we first construct two 3D-grids, of the
ground-truth and of the reconstruction, in the same reference
frame. We then compute the intersection, and finally we
compare a cuboid region of the ground-truth to the cuboid
region of the reconstruction, corresponding to the same volume
in space (Alg. 1).

For the ground-truth in the simulated environment, we first
slice the ground-truth mesh with horizontal planes, with a
vertical space of res, our spatial resolution. In each plane, we
then calculate the intersection of the mesh and the plane, and
we store it in a 3D matrix of voxel size res. Each occupied
voxel has a value of 1.0, each empty voxel a value of 0.0.
For the ground-truth in the real experiment, we construct a
3D matrix of voxel size res containing zeros. We iterate on
the point-cloud from the Total Station, and for each point, we
set the value of the corresponding voxel to 1.0. Our ground-
truth dataset, Dgt, is then a 3D matrix of size (h1,w1,n1), with
its associated bounding-box Bbox1 in a reference frame Rf .
For the reconstruction, we first create a full probability map
with Octomap in the same reference frame Rf , and with the
same resolution res. From this octree, we select a bounding-
box in Rf , and we initialize a 3D matrix as unknown space,
i.e. values of 0.5, corresponding to the equal probability of
the voxel to be occupied or empty. The size of the matrix
depends on the bounding-box and res. We then iterate on
all the leaves in the octree and update the probability of
the voxels corresponding to the leaves (the unknown space
is implicitly described in Octomap with absent leaves). We
finally obtain the reconstruction dataset, Drec, a 3D matrix of
size (h2,w2,n2), with a voxel resolution res, with its associated
bounding-box, Bbox2, in the same reference frame, Rf .

Finally, we do the comparison in Bbox1 ∩ Bbox2. First, we
load the intersection of both datasets in two 3D matrices,
Mgt and Mrec: a voxel vijkgt from Mgt corresponds to the
same volume in Rf than vijkrec from Mrec. Second, we go
through both 3D matrices, and compare cuboid region by
cuboid region, the reconstruction and the ground truth. A
cuboid region is a group of n × n × n voxels in each 3D
matrix, and is noted Cgt or Crec. Those cuboid regions are in
fact voxels of size RES = n×res, in the 3D-grid Bbox1∩Bbox2,
in Rf .

B. Comparison metrics

This section explains how, for each cuboid region, we
compute different metrics to indicate the quality of the re-
construction (Alg. 2).

To measure the quality of reconstruction, we propose to
partition the volume in two: the cuboid regions containing
something to reconstruct, and the cuboid regions containing

only empty space. For the first part, we propose the Wasser-
stein Distance. For the second part, we simply propose the L1

norm.
Furthermore, because measuring the quality of reconstruc-

tion of unknown space is pointless, we consider a threshold
before calculating our metrics. If all the probabilities in Crec

are close to the unknown (0.5 ± 0.1), we do not calculate
the metrics, but set them to the maximum values WDmax

occ and
Lmax
1 .
1) Wasserstein Distance: The Wasserstein Distance is de-

rived from the optimal transport plan to “move” the mass
distribution from a query vector to match the mass distribution
of a reference vector. The cost of moving the mass being a
function of the Euclidean distance it has to be moved by. Here,
we calculate the Wasserstein Distance between two cuboid
regions.

First, we remap all the elements of Cgt and Crec into
two vectors of doubles, Vgt and Vrec, such that ∀(i, j, k) ∈
J0, nK, V∗(i · n2 + j · n+ k) = C∗(i, j, k)

Second, we derive from each vector, two different vectors.
From Vgt, we derive V occ

gt = max (2Vgt − 1, 0) and V free
gt =

max (1− 2Vgt, 0). They contain respectively the probability
of an element to correspond to an occupied voxel, and the
probability of an element to correspond to an empty voxel.
We then normalize each vector by their sum and obtain two
vectors of probability distributions P occ

gt and P free
gt . Similarly,

from Vrec, we obtain P occ
rec and P free

rec . We do this partition
between occupancy and emptiness because we observed that
the Wasserstein Distance between P occ

rec and P occ
gt , which

embeds in each element the distance from its probability of
occupancy to the unknown, contains more signal. Moreover,
this corresponds better to what we intend to measure with
this metric, that is how well the occupied space has been
reconstructed.

Finally, we calculate WDocc, the Wasserstein Distance be-
tween P occ

rec and P occ
gt , using the Sinkhorn algorithm described

in [14], following the implementation of [15]. The cost matrix
is set to contain the squared Euclidean distance between the
voxels associated to the element of each vector.

2) L1 norm: In a cuboid region of the ground-truth con-
taining only free space, all the voxels have a probability of
occupancy of 0. Therefore, when comparing the reconstruction
to the ground-truth, we are comparing a vector containing
some probabilities of occupancy Vrec to a vector of the same
size containing only zeros (absolute certainty of emptiness).
Calculating the optimal transport plan makes little sense,
because there is no mass distribution on the reference vector.
Hence, the Euclidean Distance the mass has to be moved
by is not relevant, as long as the mass is evenly distributed
to a uniform distribution at the end. Furthermore, what is
interesting is only how different the emptiness likelihood is
from actual emptiness. Such a measure is given by the L1

norm of Vrec: the distance between Vrec and the vector of
zeros that represent the empty space.

C. Evaluation Methodology
In order to evaluate our metric WDocc, we first assess that

the metric is meaningful. Then, we compare WDocc against a
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Algorithm 1 Reconstruction and ground-truth comparison

// Dgt and Drec are the datasets
Dgt(Bbox1, (h1, w1, n1), Rf ), Drec(Bbox2, (h2, w2, n2), Rf )
Bbox ← Bbox1 ∩Bbox2
Mgt ← Dgt(Bbox),Mrec ← Drec(Bbox)
for all cuboid ∈ Bbox do:

Cgt ←Mgt(cuboid), Crec ←Mrec(cuboid)
if isObserved(Crec) then

cuboid.computeMetric(Crec, Cgt)
else

cuboid.setMetricToMax()
end if

end for

Algorithm 2 Metric Computation

Vgt ← getVectorFromCube(Cgt)
Vrec ← getVectorFromCube(Crec)
if not isOnlyZeros(Vgt) then

V occ
rec , V

free
rec ← getFreeAndOccVectors(Vrec)

V occ
gt , V free

gt ← getFreeAndOccVectors(Vgt)
P occ
rec , P

occ
gt ← normalizeToDistribution(V occ

rec , V
occ
gt )

Metric←WassersteinDistance(P occ
rec , P

occ
gt )

else
Metric← L1(Vrec)

end if

traditional metric: the surface coverage.
To assess that WDocc is meaningful and is a distance that

actually measures the 3D-reconstruction quality, we select
randomly n cuboids Cgt from the ground-truth containing at
least one occupied point. We then simulate several “ideal”
reconstructions: we apply to Cgt a 3D Gaussian convolution,
with different kernel size and sigmas, and then add a uniform
noise. We also simulate a random reconstruction. Finally, we
calculate WDocc on those cuboids. If the value of WDocc

is significantly smaller for an ideal reconstruction than from
a random reconstruction, we can conclude that WDocc is a
meaningful metric of 3D-reconstruction quality.

To calculate the surface coverage, we apply the classical
methodology in a 3D-grid: all the points in the 3D-grid are
considered belonging to the surface if their occupancy likeli-
hood is above a threshold. We calculate the Euclidean distance
between a ground-truth point S and the closest reconstructed
point P . If the distance SP is below a registration distance, the
point is considered reconstructed. The total number of ground-
truth points is nS , the total number of considered reconstructed
points is nrec. The surface coverage is then cov = nrec/nS

Finally, to compare WDocc and cov, we compare their ability
to measure 3D-reconstruction quality. To assess if a metric is
able to measure the reconstruction quality, we simply consider
if the metric contains or does not contain information. Here,
we do not consider the quality of the reconstruction in itself,
but the ability of the metric to measure this quality. For cov,
we simply consider that if cov > 0, it contains information.

For WDocc, we consider that if WDocc < WD∗
occ, then it

contains information. We set the limit WD∗
occ to the mean of

the values calculated before with random reconstructions, in
the same environment. Lastly, we calculate, for each metric,
the proportion of cuboids for which the metric contains
information, in the population of cuboids for which a metric is
calculated (observed cuboids containing at least one ground-
truth voxel to reconstruct). The higher the proportion, the more
informative the metric.

IV. EXPERIMENTS AND RESULTS

Our experiments are done in simulation and on the field.
In both cases, we use the ROS framework and the robot is a
Clearpath Husky, equipped with a 3D Lidar Ouster OS1-16
(16 planes of 512 points).

A. Experimental Setup in Simulation

The simulator is Gazebo. A mixture of noise is applied to
the Lidar to simulate better the behavior of a Lidar in outdoor
natural environments.

We generate randomly several environments. Each envi-
ronment is a plane of dimension 60m × 60m on which
we place assets with a Poisson Cluster Point Process 2, to
reproduce the natural implantation of trees. The assets can
be either rectangular cuboids or randomly selected in our 15-
trees library, where simulated trees are created with a space
colonization algorithm 3. Due to computational considerations
in Gazebo, we create only trees without leaves. A random
scaling factor is applied on the x, y and z dimensions of the
assets, as well as on their orientation.

With the same point process generation, we create two
different synthetic environments. The first one contains only
rectangular cuboids: the structured environment. The second
one contains only trees: the unstructured environment. With
the open-source Blender software, we create a single shapefile
(.stl) for each environment. This ensures that the mesh we slice
to obtain the 3D-grid ground-truth is the same used in Gazebo
to infer the collisions of the Lidar, hence to construct the map.

Next, we run a simulation for each environment where the
robot is following the same list of waypoints, set manually.

Since the quality of the reconstruction is directly linked to
the localization of the robot, we incrementally add noise in
this localization. For each noise level, we build a probabilistic
map with Octomap. To obtain the different noise levels, we
use the perfect localization from Gazebo on which we apply
a Gaussian noise on the position and on the orientation. The
noise levels presented here are (with σp, standard deviation on
position, in m, σq , on orientation, in rad): • noise 0: perfect
localization; • noise 1: σp = 0.005, σq = 0.005; • noise 2:
σp = 0.05, σq = 0.01; Errors in the orientation estimation
lead to large errors in the position of far away points (i.e a
0.01 radian error in the orientation leads to a 0.25m error in
the position of a 25m distant point in the Lidar point-cloud).

We generate 6 environments (3 different point processes
with 1 structured, 1 unstructured each). For each environment,

2https://pointpats.readthedocs.io/
3https://github.com/dsforza96/tree-gen

https://pointpats.readthedocs.io/
https://github.com/dsforza96/tree-gen
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and for each of the 3 noise levels, we build two 3D-grids with
Octomap (max-range 25m), one with resolution res = 0.05m,
the other res = 0.1m. In total, we have 36 reconstructions to
compare to 6 ground-truths.

B. Experimental Setup in the field

The experimental field is a small park containing trees, of
an approximate area of 1500m2. Although it is not possi-
ble to acquire the ground-truth of such an environment, we
consider that the 3D point-cloud obtained from the scan of
the environment with a Total Station Leica TS60 is precise
and dense enough to be considered as ground truth. The
horizontal and vertical angular resolution of the scanning is
set to 0.05 degrees. To scan the area, the Total Station is
placed on three different locations, to have different point
of views on the trees. Each scan takes 40 to 60 minutes.
At the end, we obtain a single consistent point-cloud from
the area. To localize the robot in this area, we track it with
the Total Station. The robot is equipped with a prism, that is
localized by the Total Station with centimeter accuracy. In a
post-processing phase, we recover the orientation by fusing,
in an Extended Kalman Filter, the localization from the Total
Station, the wheel odometry of the robot, and the IMU. To
avoid large errors due to large uncertainty in the orientation,
we filter out the Lidar scans associated to turning motions of
the robot when we build the map with Octomap. With this
setup, we can consider we have a “good” localization for an
outdoor robotics application. For this experiment, we obtain
two reconstructions with Octomap (max-range 10m): one with
resolution res = 0.05m and one with res = 0.1m: we have
two reconstructions to compare to one ground-truth.

Ultimately, the volumetric maps are compared to the
ground-truth as described in III, with a cuboid resolution of
RES = 10 × res. In the experiments, we are interested in
comparing the reconstruction of salient objects, not the ground.
To enforce it, we apply a threshold on the Z coordinates of
the bounding-box on which we perform the comparison.

Fig. 1: Challenges with meshing: (a) the real tree, (b) the point-cloud
from the Total Station (c) an example of mesh failing to describe the
actual surface of the fine elements of the tree.

C. Results

After processing the data as explained in III, we obtain
for each cuboid containing at least a voxel to reconstruct the
reconstruction quality metric WDocc and other metrics we will
compare our method to.

1) Surface Distance Metrics: The underlying idea behind
our method stems from the issues we encountered when trying
to use surface distance metrics. Fig. 1 illustrates the difficulties
when trying to reconstruct the surface of a tree. The point-
cloud used here is the point-cloud from the Total Station (i.e

our ground-truth). As we can see, it is dense on the trunk of
the tree and on the larger branches, but really sparse on the
small branches and on the leaves, where the sampling is not
sufficient to recover the surface. As a consequence, classic
meshing methods are able to reconstruct the surface of the
trunk, but fail when it comes to the rest of the tree (i.e. the
unstructured part). The example shown in Fig. 1 is the mesh
reconstructed with the pivoting-ball algorithm with the open-
source software MeshLab. We tried all the meshing algorithms
available in MeshLab, with default parameters, and that mesh
is the best result. We do not claim that there is no solution to
compute a better mesh, but we illustrate the difficulties with
off-the-shelf algorithms. This mesh, although computed on a
single tree with the point-cloud from a Total Station, is also
representative of the challenges involved when reconstructing
meshes with robot-mounted Lidars in a natural environment.
For these reasons, we cannot apply directly any surface
distance metric (such as the RMSE) on the reconstruction of
that type of environment.

In the context of 3D-grids, a common solution to circumvent
the meshing is to calculate the distances not between surfaces
but between points. We calculate the surface coverage cov,
as described in III-C, with the following parameters (p, the
occupancy likelihood; d, the registration distance): • cov 1:
p = 0.8, d = 0.05m (as in [11, 12]); • cov 2: p = 0.8,
d = 0.1m ; • cov 3: p = 0.7, d = 0.1m; • cov 4:
p = 0.7, d = 0.15m. Doing so, we have surface coverages
with different levels of permissiveness to compare our metric
to.

Fig. 2: Left: distribution of WDocc on random and ideal reconstruc-
tions for an unstructured environment in simulation, on 500 cuboids,
with the values of the medians. Right: summary of the medians of
WDocc on random and ideal reconstructions on all our environments.
The dashed-lines are the limits for each environment (WD∗

occ).

2) Our metric: First, we demonstrate, as described in III-C,
that our metric is meaningful. Fig. 2 shows the distribution
of the calculated WDocc. For visualization purposes on the
“ideal” reconstruction, we only display the results for the
one with kernel size 11, sigma 0.2 and uniform noise 0.1.
The other results are similar. First, we can see that WDocc

is close to zero when the reconstruction is close to an ideal
reconstruction. Our proposed metric is relevant to measure the
3D-reconstruction quality: it is small when the reconstruction
is similar to the ground-truth, large if not. Second, we can see
that the distribution of WDocc when a random reconstruction is
compared to the ground-truth is dependent on the environment.
However, this is not significant with regard to the 3D-grid
resolution. This figure also shows the limit WD∗

occ for each
environment.
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Fig. 3: Proportion of cuboids for which the metric is informative.
Columns 1,2: results for the same point process simulation environ-
ment (1: structured, 2: unstructured), Column 3: real experiment. One
line per map resolution (1: 0.05m/vox, 2: 0.10m/vox). Blue is the
proportion of informative cuboids with our proposed metric (WDocc),
orange with different surface coverage (cov). The results are grouped
by noise level.

Then, we demonstrate that our metric WDocc is able to
measure 3D-reconstruction quality in both structured and
unstructured environments, whereas the more classic surface
coverage cov tends to fail in unstructured environments, specif-
ically when the robot localization is uncertain. We follow
III-C. WD∗

occ is set to the values shown in Fig. 2. The results
are shown in Fig. 3 for a single environment in simulation
(structured and unstructured), and for the real experiment. The
results for all the other simulated environments are similar. We
can see that, as expected, cov is generally working in struc-
tured environments, although it is sensitive to uncertainty in
the robot localization and to the map resolution. Additionally,
in unstructured environments, with noise in the localization,
the proportion of cuboids for which cov is informative is low.
On the contrary, our proposed metric WDocc is working both in
structured and unstructured environments and is less sensitive
than cov to map resolution or to noise in the localization.
If we consider the map resolution of 0.05m/vox, that seems
suitable for mapping trees in large scale natural environments,
we can see that, in the case of noisy localization in simulation,
WDocc is 5 times more informative than the most permissive
cov (p = 0.7, d = 0.15m). In the real experiment, even with
what we can consider a good localization, WDocc is still twice
more informative than the most permissive cov.

V. CONCLUSION

We have shown that our proposed metric WDocc is capable
of measuring 3D-reconstruction quality both in structured and
unstructured environments, even with noise in the robot local-
ization, when traditional metrics such as surface coverage fail.
Additionally, we have proposed a methodology to calculate
the quality of the 3D-reconstruction on a local level, where
the space is divided into cuboid regions. Based on these
results, we can now foresee the integration of this metric into
inspection and monitoring tasks, either by giving feedback
to a human operator or by using them in an autonomous
exploration framework. Looking even further, we intend to
use this metric within the computation of a reward function
for reinforcement learning algorithms.
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