Polynomial description for the T-Orbit Spaces of Multiplicative Actions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Polynomial description for the T-Orbit Spaces of Multiplicative Actions

Résumé

A finite group with an integer representation has a multiplicative action on the ring of Laurent polynomials, which is induced by a nonlinear action on the complex torus. We study the structure of the associated orbit space as the image of the fundamental invariants. For the Weyl groups of types A, B, C and D, this image is a compact basic semi-algebraic set and we present the defining polynomial inequalities explicitly. We show how orbits correspond to solutions in the complex torus of symmetric polynomial systems and give a characterization of the orbit space as the positivity-locus of a symmetric real matrix polynomial. The resulting domain is the region of orthogonality for a family of generalized Chebyshev polynomials, which have connections to topics such as Fourier analysis and representations of Lie algebras.
Fichier principal
Vignette du fichier
Hermite.pdf (921.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03590007 , version 1 (26-02-2022)
hal-03590007 , version 2 (11-05-2022)
hal-03590007 , version 3 (26-06-2023)
hal-03590007 , version 4 (26-02-2024)

Identifiants

  • HAL Id : hal-03590007 , version 2

Citer

Evelyne Hubert, Tobias Metzlaff, Cordian Riener. Polynomial description for the T-Orbit Spaces of Multiplicative Actions. 2022. ⟨hal-03590007v2⟩
396 Consultations
215 Téléchargements

Partager

More