HAL
open science

Polynomial description for the T-Orbit Spaces of Multiplicative Actions

Evelyne Hubert, Tobias Metzlaff, Cordian Riener

To cite this version:

Evelyne Hubert, Tobias Metzlaff, Cordian Riener. Polynomial description for the T-Orbit Spaces of Multiplicative Actions. 2022. hal-03590007v2

HAL Id: hal-03590007
 https://hal.science/hal-03590007v2

Preprint submitted on 11 May 2022 (v2), last revised 26 Feb 2024 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Polynomial description for the \mathbb{T}-Orbit Spaces of Multiplicative Actions

(for types $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$)

Evelyne Hubert*, Tobias Metzlaff*, Cordian Riener ${ }^{\dagger}$

Sunday $8^{\text {th }}$ May, 2022

Abstract

A finite group with an integer representation has a multiplicative action on the ring of Laurent polynomials, which is induced by a nonlinear action on the compact torus. We study the structure of the associated orbit space as the image of the fundamental invariants. For the Weyl groups of types $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D}, this image is a compact basic semi-algebraic set and we present the defining polynomial inequalities explicitly. We show how orbits correspond to solutions in the compact torus of symmetric polynomial systems and give a characterization of the orbit space as the positivity-locus of a real symmetric matrix polynomial. The resulting domain is the region of orthogonality for two families of generalized Chebyshev polynomials, which have connections to topics such as Fourier analysis and representations of Lie algebras.

[^0]
Contents

1 Introduction 3
2 Preliminaries 5
2.1 Group actions on $\mathbb{K}\left[x^{ \pm}\right]$ 5
2.2 Multiplicative actions and Weyl groups 7
2.3 Contribution 9
3 Symmetric polynomial systems 10
3.1 Solutions in \mathbb{T}^{n} 10
3.2 Characterization of real roots via Hermite quadratic forms 12
4 Type \mathcal{A} 14
4.1 Fundamental invariants for \mathcal{A}_{n-1} 14
4.2 Hermite matrix for \mathcal{A}_{n-1} 15
4.3 Example \mathcal{A}_{2} 17
5 Type \mathcal{C} 19
5.1 Fundamental invariants for \mathcal{C}_{n} 19
5.2 Hermite matrix for \mathcal{C}_{n} 20
5.3 Example \mathcal{C}_{2} 21
6 Type \mathcal{B} 22
6.1 Fundamental invariants for \mathcal{B}_{n} 22
6.2 Hermite matrix for \mathcal{B}_{n} 23
6.3 Example \mathcal{B}_{2} 24
7 Type \mathcal{D} 25
7.1 Fundamental invariants for \mathcal{D}_{n} 25
7.2 Hermite matrix for \mathcal{D}_{n} 28
7.3 Example \mathcal{D}_{4} 30
8 Conjecture 31
8.1 Euler derivations 31
8.2 Characterization of the \mathbb{T}-orbit space 32
9 Orthogonality of Chebyshev polynomials 34
9.1 Generalized cosine functions 34
9.2 Generalized Chebyshev polynomials 36
10 Conclusion 39

1 Introduction

The set of all orbits of a compact Lie group with an action on an affine variety is called orbit space. The coordinate ring of this affine variety contains the ring of invariants as a finitely generated subalgebra and the orbit space can be embedded into the variety defined by the syzygy ideal of the fundamental invariants. For a group with a linear action on a real representation space, the orbit space is, essentially, a semi-algebraic set and the defining polynomial equations and inequalities are given by a result due to Procesi and Schwarz [PS85, Main Theorem]. Our aim is to find such a polynomial description of the orbit space, when we consider finite groups with an integer representation and a nonlinear action on the compact torus. The purpose of this article is to show that in the case of Weyl groups, the orbit space as the image of the compact torus under fundamental invariants is a compact basic semi-algebraic set, and to characterize it as the positivity-locus of an explicitly known symmetric matrix polynomial. Being able to effectively describe the structure of an orbit space allows for applications in equivariant dynamical systems theory [Gat00, Theorem 4.2.1], symmetry reduction for polynomial optimization [ALRT13, Theorem 5.2], complex analysis [Sja93, Proposition 1.15], differential geometry [Dub98, Lemma 2.1] and quantum systems [GKP13, Section 2].
A finite group with an integer representation \mathcal{G} has a nonlinear action on the algebraic torus, which leaves the maximal compact subgroup, the compact torus \mathbb{T}^{n}, invariant and induces an action on the ring of Laurent polynomials. Given a set of generators of the ring of invariants, so called fundamental invariants, the image of \mathbb{T}^{n} under these generators corresponds to the set of orbits $\mathbb{T}^{n} / \mathcal{G}$ and we call it the \mathbb{T}-orbit space of \mathcal{G}. Such an action is called multiplicative [Lor05] and the invariant theory for this setting is related to representations of complex Lie algebras [Bou68, Hum72, Ser01, FH04]. Recent applications have been studied in the context of Fourier analysis [Bee91, MKNR13], cubature [Xu00, LX10, LSX12, Xu15, CH18] and interpolation [HS21]. For the Weyl groups of types $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D}, the ring of invariant Laurent polynomials is a polynomial algebra. In these four cases, we find relations between the elementary symmetric polynomials and the fundamental invariants. This gives rise to a symmetric polynomial system with complex variables. We show that a point in the \mathbb{T}-orbit space corresponds to such a system having all its solutions in \mathbb{T}^{n}. This property can be characterized by positivity of an explicit Hermite quadratic form.
In Section 2, we formally introduce \mathbb{T}-orbit spaces of multiplicative actions by first defining the action of a group with an integer representation on the ring of Laurent polynomials and then identifying it with the multiplicative action on a group algebra of an invariant lattice. Here, we fix the notation for fundamental invariants and explain the relevance of the four cases $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D}. Following with Section 3, we establish the necessary tools to study symmetric polynomial systems, which will later arise from the invariants. This involves Sylvester's characterization of a polynomial having all its roots in a real interval, which was also applied in [Pro78]. For the symmetric polynomial systems, which we shall encounter, we extract Corollaries 3.6 and 3.7.
We then proceed to the main results and give a polynomial description for the \mathbb{T}-orbit space of \mathcal{G} in terms of an explicit symmetric matrix polynomial. In Sections 4 to 7 , we work out the correspondence between points in the \mathbb{T}-orbit space and symmetric polynomial systems having all solutions in \mathbb{T}^{n}. We give explicit formulae for invariants in Propositions 4.1, 5.1, 6.1 and 7.1 and apply the results from Section 3 to obtain Theorems 4.3, 5.3, 6.4 and 7.4. Examples accompany the main results.
Motivated by the characterization due to Procesi and Schwarz [PS85], we formulate an alternative characterization in Section 8 with a proof of the necessary condition. We introduce differentials on the Laurent polynomial ring and state Conjecture 8.5 for groups, which are not necessarily Weyl groups of crystallographic root systems, but have only an integer representation.
The \mathbb{T}-orbit spaces, that we describe here as basic semi-algebraic sets, also appear in other contexts of interest to analysis. We review in Theorem 9.7 that the \mathbb{T}-orbit space is the region of orthogonality for a family of generalized Chebyshev polynomials of the first and second kind.
The following example demonstrates that a nonlinear action on the compact torus admits an orbit space, which needs to be distinguished from the orbit space of a linear action on a real representation space.

Example 1.1.

1. Consider the group \mathfrak{G} of order 8 with presentation $\left\langle s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}=1,\left(s_{1} s_{2}\right)^{4}=1\right\rangle$. We fix

$$
s_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \text { and } \quad s_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

so that \mathfrak{G}, as a subgroup of the orthogonal group $\mathrm{O}_{2}(\mathbb{R})$, has a linear action on the real representation space \mathbb{R}^{2} by matrix multiplication. The \mathfrak{G}-invariant polynomials are those, which are invariant under permutation and sign change of variables, and the ring of invariants is the polynomial algebra

$$
\mathbb{Q}\left[X_{1}, X_{2}\right]^{\mathfrak{G}}=\mathbb{Q}\left[\pi_{1}:=X_{1}^{2}+X_{2}^{2}, \pi_{2}:=X_{1}^{2} X_{2}^{2}\right]
$$

The image of \mathbb{R}^{2} under π_{1}, π_{2} corresponds to the orbit space $\mathbb{R}^{2} / \mathfrak{G}$. The Gram matrix of the gradients has \mathfrak{G}-invariant entries

$$
\left\langle\nabla \pi_{i}, \nabla \pi_{j}\right\rangle_{i j}=\left[\begin{array}{cc}
4 X_{1}^{2}+4 X_{2}^{2} & 8 X_{1}^{2} X_{2}^{2} \\
8 X_{1}^{2} X_{2}^{2} & 4 X_{1}^{2} X_{2}^{2}\left(X_{1}^{2}+X_{2}^{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
4 \pi_{1} & 8 \pi_{2} \\
8 \pi_{2} & 4 \pi_{1} \pi_{2}
\end{array}\right]=: M\left(\pi_{1}, \pi_{2}\right)
$$

By [PS85, Main Theorem], the image of \mathbb{R}^{2} under π_{1}, π_{2} is $\left\{z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2} \mid M\left(z_{1}, z_{2}\right) \succeq 0\right\}$. Hence, the orbit space $\mathbb{R}^{2} / \mathfrak{G}$ is identified with a basic semi-algebraic set, that is not compact (Figure 1a).
We will now explain the difference to so called multiplicative actions. The above group \mathfrak{G} is the Weyl group of the B_{2} root system with fundamental weights $\binom{1}{0},\binom{1 / 2}{1 / 2}$. For $W:=\left(\begin{array}{ll}1 & 1 / 2 \\ 0 & 1 / 2\end{array}\right)$, the image of the group homomorphism $\mathfrak{G} \rightarrow \mathrm{GL}_{2}(\mathbb{Z}), A \mapsto W^{-1} A W$ is a group denoted \mathcal{G} with generators

$$
W^{-1} s_{1} W=\left[\begin{array}{cc}
-1 & 0 \\
2 & 1
\end{array}\right] \quad \text { and } \quad W^{-1} s_{2} W=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] .
$$

Instead of \mathbb{R}^{2}, we consider the algebraic torus $\left(\mathbb{C}^{*}\right)^{2}$ and study the nonlinear action

$$
\begin{aligned}
\mathcal{G} \times\left(\mathbb{C}^{*}\right)^{2} & \rightarrow\left(\mathbb{C}^{*}\right)^{2} \\
(B, x) & \mapsto x^{B^{-1}}:=\left(x_{1}^{B_{11}^{-1}} x_{2}^{B_{21}^{-1}}, x_{1}^{B_{12}^{-1}} x_{2}^{B_{22}^{-1}}\right)
\end{aligned}
$$

The coordinate ring of the algebraic torus is the bivariate Laurent polynomial ring $\mathbb{Q}\left[x_{1}, x_{1}^{-1}, x_{2}, x_{2}^{-1}\right]$ and the algebraically independent fundamental invariants

$$
\theta_{1}:=\frac{x_{1}}{4}+\frac{1}{4 x_{1}^{-1}}+\frac{x_{2}^{2}}{4 x_{1}}+\frac{x_{1}}{4 x_{2}^{2}} \quad \text { and } \quad \theta_{2}:=\frac{x_{2}}{4}+\frac{1}{4 x_{2}}+\frac{x_{1}}{4 x_{2}}+\frac{x_{2}}{4 x_{1}}
$$

generate the ring of \mathcal{G}-invariant Laurent polynomials. We restrict the action to the compact torus \mathbb{T}^{2}. In Theorem 2.4, we show that the \mathbb{T}-orbit space $\mathbb{T}^{2} / \mathcal{G}$ corresponds to the image of \mathbb{T}^{2} under θ_{1}, θ_{2}. Furthermore, Theorem 5.3 states that this image is real and consists of all $\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$, that satisfy $H(z) \succeq 0$ (Figure 1b), where

$$
H(z):=\left[\begin{array}{cc}
-z_{1}^{2}+2 z_{2}^{2}-z_{1} & -4 z_{1}^{3}+12 z_{1} z_{2}^{2}-6 z_{1}^{2}-2 z_{1} \\
-4 z_{1}^{3}+12 z_{1} z_{2}^{2}-6 z_{1}^{2}-2 z_{1} & -16 z_{1}^{4}+64 z_{1}^{2} z_{2}^{2}-32 z_{2}^{4}-32 z_{1}^{3}+32 z_{1} z_{2}^{2}-20 z_{1}^{2}+8 z_{2}^{2}-4 z_{1}
\end{array}\right] .
$$

(a) $M(z) \succeq 0$

(b) $H(z) \succeq 0$

Figure 1: The orbit spaces $\mathbb{R}^{2} / \mathfrak{G}$ of the linear action and $\mathbb{T}^{2} / \mathcal{G}$ of the nonlinear action.

The action on the Laurent polynomials is called multiplicative, as the weight lattice $\Omega=\left\langle\binom{ 1}{0},\binom{1 / 2}{1 / 2}\right\rangle_{\mathbb{Z}}$ of the B_{2} root system is a multiplicative subgroup of the group algebra $\mathbb{Q}[\Omega]$, which we identify with the coordinate ring $\mathbb{Q}\left[x_{1}, x_{1}^{-1}, x_{2}, x_{2}^{-1}\right]$.
2. Further interesting examples are the Weyl groups of the root systems $\mathrm{A}_{3}, \mathrm{~B}_{3}$ and C_{3}. Visualizations of the associated \mathbb{T}-orbit spaces are depicted below.

Figure 2: \mathbb{T}-orbit spaces for root systems of rank $n=3$.

2 Preliminaries

Let $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{C}$ be a field of characteristic 0 and let $n \in \mathbb{N}$.
In this section, we discuss the action of a finite group with a representation in $\mathrm{GL}_{n}(\mathbb{Z})$ on the ring of Laurent polynomials $\mathbb{K}\left[x^{ \pm}\right]=\mathbb{K}\left[x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}\right]$, which is identified with the group algebra of a lattice. We motivate the problem of computing the \mathbb{T}-orbit space as the image of the compact n-torus under the fundamental invariants and then specify the problem for Weyl groups of crystallographic root systems.

2.1 Group actions on $\mathbb{K}\left[x^{ \pm}\right]$

Let \mathfrak{G} be a finite group with an integer representation

$$
\begin{equation*}
\varrho: \mathfrak{G} \rightarrow \mathrm{GL}_{n}(\mathbb{Z}) . \tag{2.1}
\end{equation*}
$$

Denote by $\left(\mathbb{C}^{*}\right)^{n}:=(\mathbb{C} \backslash\{0\})^{n}$ the algebraic n-torus. For $x=\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{C}^{*}\right)^{n}$ and a column vector $\alpha=\left[\alpha_{1}, \ldots, \alpha_{n}\right]^{t} \in \mathbb{Z}^{n}$, define $x^{\alpha}:=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \in \mathbb{C}^{*}$. The matrix group $\mathcal{G}:=\varrho(\mathfrak{G})$ has a nonlinear action on $\left(\mathbb{C}^{*}\right)^{n}$, given by monomial maps

$$
\begin{align*}
\star: \mathcal{G} \times\left(\mathbb{C}^{*}\right)^{n} & \rightarrow\left(\mathbb{C}^{*}\right)^{n}, \tag{2.2}\\
(B, x) & \mapsto B \star x:=\left(x_{1}, \ldots, x_{n}\right)^{B^{-1}}=\left(x^{B_{.1}^{-1}}, \ldots, x^{B_{-n}^{-1}}\right),
\end{align*}
$$

where $B_{\cdot i}^{-1} \in \mathbb{Z}^{n}$ denotes the i-th column vector of $B^{-1} \in \mathcal{G}$ for $1 \leq i \leq n$. The coordinate ring of $\left(\mathbb{C}^{*}\right)^{n}$ with coefficients in \mathbb{K} is the ring of multivariate Laurent polynomials $\mathbb{K}\left[x^{ \pm}\right]:=\mathbb{K}\left[x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}\right]$. The monomials of $\mathbb{K}\left[x^{ \pm}\right]$are all $x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ for $\alpha \in \mathbb{Z}^{n}$, and \star induces the linear action

$$
\begin{align*}
\cdot: \mathcal{G} \times \mathbb{K}\left[x^{ \pm}\right] & \rightarrow \mathbb{K}\left[x^{ \pm}\right] \tag{2.3}\\
\left(B, x^{\alpha}\right) & \mapsto B \cdot x^{\alpha}:=x^{B \alpha}
\end{align*}
$$

on $\mathbb{K}\left[x^{ \pm}\right]$. Hence, for $f=\sum_{\alpha} f_{\alpha} x^{\alpha} \in \mathbb{K}\left[x^{ \pm}\right]$and $B \in \mathcal{G}$, we write

$$
\begin{equation*}
(B \cdot f)(x)=f\left(x^{B}\right)=\sum_{\alpha} f_{\alpha} x^{B \alpha} \tag{2.4}
\end{equation*}
$$

If $(B \cdot f)(x)=f(x)$ for all $B \in \mathcal{G}$, then f is called \mathcal{G}-invariant. The set of all \mathcal{G}-invariant Laurent polynomials is a finitely generated, but not necessarily polynomial, \mathbb{K}-algebra [Lor05, Corollary 3.3.2] and denoted by $\mathbb{K}\left[x^{ \pm}\right]$.
Define $\mathbb{T}:=\{x \in \mathbb{C} \mid x \bar{x}=1\} \subseteq \mathbb{C}^{*}$, where \bar{x} is the complex conjugate. Note that \mathbb{T} is the maximal compact subgroup of \mathbb{C}^{*}, which is closed with respect to inversion $x \mapsto 1 / x$ and whose elements satisfy $1 / x=\bar{x}$. We denote by \mathbb{T}^{n} the compact n-torus.

Lemma 2.1. \mathbb{T}^{n} is left invariant by the action \star, that is, $\mathcal{G} \star \mathbb{T}^{n}=\mathbb{T}^{n}$.
Definition 2.2. Assume that $\mathbb{K}\left[x^{ \pm}\right]^{\mathcal{G}}=\mathbb{K}\left[\theta_{1}, \ldots, \theta_{m}\right]$ for some $m \in \mathbb{N}$ and $\theta_{1}, \ldots, \theta_{m} \in \mathbb{K}\left[x^{ \pm}\right]^{\mathcal{G}}$.

1. The generators $\theta_{1}, \ldots, \theta_{m}$ are called fundamental invariants of \mathcal{G}. We define the map

$$
\begin{aligned}
\vartheta: \mathbb{T}^{n} & \rightarrow \mathbb{C}^{m} \\
x & \mapsto\left(\theta_{1}(x), \ldots, \theta_{m}(x)\right) .
\end{aligned}
$$

2. For $\alpha \in \mathbb{Z}^{n}$, we call

$$
\Theta_{\alpha}(x):=\frac{1}{|\mathcal{G}|} \sum_{B \in \mathcal{G}} x^{B \alpha} \in \mathbb{K}\left[x^{ \pm}\right]^{\mathcal{G}}
$$

the orbit polynomial associated to α.
A basis for $\mathbb{K}\left[x^{ \pm}\right]^{\mathcal{G}}$ as a \mathbb{K}-vector space is given by $\left\{\Theta_{\alpha} \mid \alpha \in \mathbb{Z}^{n} / \mathcal{G}\right\}$ [Lor05, Equation (3.4)].
Lemma 2.3. The image $\operatorname{im}(\vartheta)$ of ϑ is compact in \mathbb{C}^{m}.
Proof. $\operatorname{im}(\vartheta) \subseteq \mathbb{C}^{m}$ is compact as the image of the compact set \mathbb{T}^{n} under a continuous map.

Our goal is to describe with the fundamental invariants of $\mathbb{K}\left[x^{ \pm}\right]^{\mathcal{G}}$ the set of orbits $\mathbb{T}^{n} / \mathcal{G}$ for the nonlinear action \star. Thanks to the following statement, this is achievable.

Theorem 2.4. The map

$$
\begin{aligned}
\mathbb{T}^{n} / \mathcal{G} & \rightarrow \operatorname{im}(\vartheta), \\
\mathcal{G} \star x & \mapsto
\end{aligned}
$$

is well defined and bijective.
Proof. We follow the proof of [CLO15, Chapter 7, §4, Theorem 10]. For $x, y \in \mathbb{T}^{n}$ with $\mathcal{G} \star x=\mathcal{G} \star y$, we have $\theta_{i}(x)=\theta_{i}(y)$ for all $1 \leq i \leq n$ by definition. Therefore, the map is well defined and surjective.
For injectiveness, assume that $x, y \in \mathbb{T}^{n}$ with $\mathcal{G} \star x \cap \mathcal{G} \star y=\emptyset$. Define the set $X:=\mathcal{G} \star x \cup \mathcal{G} \star y \backslash\{y\} \subseteq \mathbb{T}^{n}$. Since \mathcal{G} is finite, X is finite and there exists $\tilde{f} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with $\tilde{f}(X)=\{0\}, \tilde{f}(y) \neq 0$. For example

$$
\tilde{f}=\prod_{x^{\prime} \in X} \prod_{i=1}^{n}\left(x_{i}-x_{i}^{\prime}\right)
$$

has the desired property. Consider $\mathbb{C}\left[x^{ \pm}\right]$as a ring extension of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
f:=\frac{1}{|\mathcal{G}|} \sum_{B \in \mathcal{G}} B \cdot \tilde{f} \in \mathbb{C}\left[x^{ \pm}\right]^{\mathcal{G}}
$$

Then $f(x)=0$ and $f(y)=\left|\operatorname{Stab}_{\mathcal{G}}(y)\right| /|\mathcal{G}| \tilde{f}(y) \neq 0$ by definition, where $\operatorname{Stab}_{\mathcal{G}}(y)$ denotes the stabilizer subgroup of y in \mathcal{G}. Since $\mathbb{K}\left[x^{ \pm}\right]^{\mathcal{G}}=\mathbb{K}\left[\theta_{1}, \ldots, \theta_{m}\right]$ and $\mathbb{K} \subseteq \mathbb{C}$ is a field extension, we have $\mathbb{C}\left[x^{ \pm}\right]^{\mathcal{G}}=$ $\mathbb{C}\left[\theta_{1}, \ldots, \theta_{m}\right]$. With $f(x) \neq f(y)$, we obtain $\theta_{i}(x) \neq \theta_{i}(y)$ for some $1 \leq i \leq m$ and thus $\vartheta(x) \neq \vartheta(y)$.

We conclude that there is a one-to-one correspondence between the orbit space $\mathbb{T}^{n} / \mathcal{G}$ and the image of ϑ. In other words, ϑ separates the orbits of the action of \mathcal{G} by \star on \mathbb{T}^{n}.

Definition 2.5. We call $\mathcal{T}:=\operatorname{im}(\vartheta)$ the \mathbb{T}-orbit space of \mathcal{G}.
The following statement admits a recurrence formula to iteratively compute orbit polynomials and we make use of it in the proofs of Lemmas 6.2 and 7.2.

Proposition 2.6. Let $\alpha, \beta \in \mathbb{N}^{n}$. We have $\Theta_{0}=1$ and

$$
|\mathcal{G} \beta| \Theta_{\alpha} \Theta_{\beta}=\sum_{\tilde{\beta} \in \mathcal{G} \beta} \Theta_{\alpha+\tilde{\beta}} .
$$

2.2 Multiplicative actions and Weyl groups

Let $\Omega \subseteq \mathbb{R}^{n}$ be an n-dimensional lattice and

$$
\begin{equation*}
\pi: \mathfrak{G} \rightarrow \mathrm{GL}_{n}(\mathbb{R}) \tag{2.5}
\end{equation*}
$$

a real representation of \mathfrak{G}, such that Ω is left invariant by the linear action of $\pi(\mathfrak{G})$ on \mathbb{R}^{n} by matrix multiplication. For a fixed basis $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ of Ω, an isomorphism of \mathbb{Z}-modules $\Omega \cong \mathbb{Z}^{n}$ is

$$
\begin{array}{ccc}
\mathbb{Z}^{n} & \rightarrow & \Omega=\mathbb{Z} \omega_{1} \oplus \ldots \oplus \mathbb{Z} \omega_{n} \tag{2.6}\\
{\left[\alpha_{1}, \ldots, \alpha_{n}\right]^{t}} & \mapsto & W \alpha=\alpha_{1} \omega_{1}+\ldots+\alpha_{n} \omega_{n}
\end{array}
$$

where $W \in \mathbb{R}^{n \times n}$ is the matrix with columns $\omega_{1}, \ldots, \omega_{n}$. We obtain a \mathbb{K}-algebra isomorphism between the group algebra $\mathbb{K}[\Omega]$ with basis $\left\{\mathfrak{e}^{\mu} \mid \mu \in \Omega\right\}$ [Bou75, Chapitre VIII, $\left.\S 9.1\right]$ and the ring of Laurent polynomials $\mathbb{K}\left[x^{ \pm}\right]$with basis $\left\{x^{\alpha} \mid \alpha \in \mathbb{Z}^{n}\right\}$, given by

$$
\begin{array}{ccc}
\mathbb{K}\left[x^{ \pm}\right] & \rightarrow & \mathbb{K}[\Omega], \tag{2.7}\\
x^{\alpha} & \mapsto & \mathfrak{e}^{\alpha_{1} \omega_{1}+\ldots+\alpha_{n} \omega_{n}} .
\end{array}
$$

Since Ω is left invariant, there exists a representation $\varrho: \mathfrak{G} \rightarrow \mathrm{GL}_{n}(\mathbb{Z})$, such that $\varrho(g)=W^{-1} \pi(g) W$ for all $g \in \mathfrak{G}$. Then $\mathbb{K}[\Omega]^{\mathfrak{G}} \cong \mathbb{K}\left[x^{ \pm}\right]^{\mathcal{G}}$ is finitely generated as a ring. The action of \mathfrak{G} on $\mathbb{K}[\Omega]$ is called multiplicative, as the basis $\left\{\mathfrak{e}^{\mu} \mid \mu \in \Omega\right\}$ of $\mathbb{K}[\Omega]$ is a multiplicative subgroup of the units in $\mathbb{K}[\Omega]$.
For $\mu=W \alpha \in \Omega$, we say that the orbit polynomial Θ_{α} is associated to μ. From now on, we denote by $\theta_{i}:=\Theta_{e_{i}}$ the orbit polynomial associated to $e_{i} \in \mathbb{Z}^{n}$, which corresponds to ω_{i} for $1 \leq i \leq n$.
We deal with lattices, which are obtained from root systems. Therefore, we recall the following definitions.
Definition 2.7. Let V be an n-dimensional \mathbb{R}-vector space with inner product $\langle\cdot, \cdot\rangle$ and R be a finite subset of V. We say that R is a root system in V, if the following conditions hold.

1. R spans V and does not contain 0 .
2. If $\rho, \tilde{\rho} \in \mathrm{R}$, then $s_{\rho}(\tilde{\rho}) \in \mathrm{R}$, where s_{ρ} is the reflection defined by $s_{\rho}(u)=u-2 \frac{\langle u, \rho\rangle}{\langle\rho, \rho\rangle} \rho, u \in V$.
3. For all $\rho, \tilde{\rho} \in \mathrm{R}, 2 \frac{\langle\tilde{\rho}, \rho\rangle}{\langle\rho, \rho\rangle} \in \mathbb{Z}$.
4. For $\rho \in \mathrm{R}$ and $c \in \mathbb{R}, c \rho \in R$ if and only if $c= \pm 1$.

In many texts, a root system is defined only using the first three of the above conditions and if the fourth condition holds, one speaks of a "reduced" root system. Since we study the group generated by the reflections s_{ρ} in this article, we only need to deal with such reduced root systems thanks to [Bou68, Chapitre VI, §1,

Proposition 13] and may include the fourth condition in our definition. Less common is also to define a root system without the second "crystallographic" property [Kan01]. The element

$$
\rho^{\vee}=2 \frac{\rho}{\langle\rho, \rho\rangle}
$$

that appears in the definition of the reflection s_{ρ} is called the coroot of $\rho \in \mathrm{R}$.
Definition 2.8. The Weyl group of a root system R in V is the subgroup of the orthogonal group, with respect to the inner product $\langle\cdot, \cdot\rangle$, generated by the reflections s_{ρ} for $\rho \in \mathrm{R}$.

Definition 2.9. Let R be a root system in V.

1. A subset $\mathrm{B}=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$ of R is a base if the following conditions hold.
(a) B is a basis of the vector space V.
(b) Every root $\rho \in \mathrm{R}$ can be written as $\rho=\alpha_{1} \rho_{1}+\ldots+\alpha_{n} \rho_{n}$ or $\rho=-\alpha_{1} \rho_{1}-\ldots-\alpha_{n} \rho_{n}$ for some $\alpha \in \mathbb{N}^{n}$.

The elements of B are called simple roots.
2. If B is a base, the roots of the form $\rho=\alpha_{1} \rho_{1}+\ldots+\alpha_{n} \rho_{n}$ for $\alpha \in \mathbb{N}^{n}$ are called the positive roots and the set of all positive roots is denoted by R^{+}.
3. R contains a unique positive root ρ_{0} with maximal coefficients $\alpha \in \mathbb{N}^{n}$, called the highest root.

Existence of the highest root follows from [Bou68, Chapitre VI, §1, Proposition 25]. The Weyl group is generated by the reflections associated to the simple roots [Hum72, Chapter III, §10.3].
The fundamental Weyl chamber in V relative to the base $\mathrm{B}=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$ is $M:=\left\{u \in V \mid\left\langle u, \rho_{i}\right\rangle>0\right\}$. The closure of M in V is a fundamental domain for the Weyl group of R [Bou68, Chapitre V , $\S 3$, Théorème $2]$.
A root system defines the following lattice in V. This lattice and related concepts play an important role in the representation theory of semi-simple Lie algebras [Hum72, Ser01, FH04].

Definition 2.10. Let $\mathrm{B}=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$ be a base of R and $\mathrm{B}^{\vee}=\left\{\rho_{1}^{\vee}, \ldots, \rho_{n}^{\vee}\right\}$ its dual.

1. An element μ of V is called a weight if

$$
\left\langle\mu, \rho_{i}^{\vee}\right\rangle \in \mathbb{Z}
$$

for $1 \leq i \leq n$. The set of weights forms a lattice called the weight lattice.
2. The fundamental weights are the elements $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ such that $\left\langle\omega_{i}, \rho_{j}^{\vee}\right\rangle=\delta_{i, j}, 1 \leq i, j \leq n$.
3. A weight μ is strongly dominant if $\left\langle\mu, \rho_{i}\right\rangle>0$ for all $\rho_{i} \in \mathrm{~B}$. A weight μ is dominant if $\left\langle\mu, \rho_{i}\right\rangle \geq 0$ for all $\rho_{i} \in \mathrm{~B}$.

The weight lattice is left invariant under the Weyl group. Note that the set of strongly dominant weights is contained in M and the set of dominant weights is contained in the closure of M. The fundamental weights lie on the boundary or "walls" of M.

For Weyl groups and weight lattices, we have the following specific result about the ring of invariants.
Theorem 2.11. [Bou68, Chapitre VI, §3, Théorème 1] Let R be a root system. Assume that Ω is the weight lattice and \mathfrak{G} the Weyl group with integer representation \mathcal{G}. Then $\theta_{1}, \ldots, \theta_{n}$ are algebraically independent and $\mathbb{K}\left[x^{ \pm}\right]^{\mathcal{G}}$ is the polynomial algebra

$$
\mathbb{K}\left[x^{ \pm}\right]^{\mathcal{G}}=\mathbb{K}\left[\theta_{1}, \ldots, \theta_{n}\right] .
$$

The converse " $\mathbb{K}\left[x^{ \pm}\right]^{\mathcal{G}}$ polynomial algebra $\Rightarrow \mathfrak{G}$ Weyl group" of Theorem 2.11 is also true [Far86]. The above theorem implies that the fundamental invariants of \mathcal{G} are orbit polynomials as in Definition 2.2 and that $m=n$. Therefore, \mathbb{T}-orbit spaces satisfy the next property.

Lemma 2.12. Under the assumptions of Theorem 2.11, the following statements hold.

1. For $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathcal{T}$, we have $\left|z_{i}\right| \leq 1$ for $1 \leq i \leq n$.
2. If $-I_{n} \in \mathcal{G}$, then $\mathcal{T} \subseteq[-1,1]^{n} \subseteq \mathbb{R}^{n}$.

Proof. Let $z=\vartheta(x)$ for some $x \in \mathbb{T}^{n}$. Then $\left|z_{i}\right|=\left|\theta_{i}(x)\right| \leq \frac{1}{|\mathcal{G}|} \sum_{B \in \mathcal{G}}\left|x^{B e_{i}}\right|=1$.
Furthermore, if $-I_{n} \in \mathcal{G}$ we have $\overline{\theta_{i}(x)}=\theta_{i}\left(x^{-I_{n}}\right)=\theta_{i}(x) \in \mathbb{R}$ for all $x \in \mathbb{T}$. Hence by the first statement, \mathcal{T} is contained in the cube $[-1,1]^{n}$.

Proposition 2.13. Under the assumptions of Theorem 2.11, there exists a permutation $\sigma \in \mathfrak{S}_{n}$ of order 2, such that $\theta_{i}\left(x^{-I_{n}}\right)=\theta_{\sigma(i)}(x)$ for all $1 \leq i \leq n$.

Proof. Let $\mathrm{B}=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$ be a base with fundamental weights $\omega_{1}, \ldots, \omega_{n}$. We make use of Equation (2.6) and prove that there exists a permutation $\sigma \in \mathfrak{S}_{n}$, such that $-\omega_{\sigma(i)} \in \mathfrak{G} \omega_{i}$ for all $1 \leq i \leq n$.
By [Bou68, Chapitre VI, $\S 1$ Theorem 2], there exist $A \in \mathfrak{G}, \sigma \in \mathfrak{S}_{n}$ with $A \rho_{i}^{\vee}=-\rho_{\sigma(i)}^{\vee}$ for all $1 \leq i \leq n$. We have

$$
\left\langle-\omega_{\sigma(i)},-\rho_{\sigma(j)}^{\vee}\right\rangle=\delta_{i j}=\left\langle\omega_{i}, \rho_{j}^{\vee}\right\rangle=\left\langle A \omega_{i}, A \rho_{j}^{\vee}\right\rangle=\left\langle A \omega_{i},-\rho_{\sigma(j)}^{\vee}\right\rangle
$$

because σ is a permutation and the inner product is \mathfrak{G}-invariant. Since $-\mathrm{B}^{\vee}$ is a basis of $V, A \omega_{i}=-\omega_{\sigma(i)}$. Especially, $-\omega_{\sigma(i)} \in \mathfrak{G} \omega_{i} \cap \mathfrak{G} \omega_{\sigma^{2}(i)}$ and so $\mathfrak{G} \omega_{i}=\mathfrak{G} \omega_{\sigma^{2}(i)}$ for all $1 \leq i \leq n$. As the closure of M is a fundamental domain for \mathfrak{G} and $\omega_{i}, \omega_{\sigma^{2}(i)}$ lie on the walls of M, we have $\sigma^{2}=1$.

To describe the \mathbb{T}-orbit space of \mathcal{G} as a basic semi-algebraic set in \mathbb{R}^{n}, we can now make the following adjustment for $1 \leq i \leq n$. For $i=\sigma(i)$, we leave the i-th coordinate of ϑ as it is. For $i<\sigma(i)$, replace the i-th and $\sigma(i)$-th coordinate of ϑ by $\theta_{i, \mathbb{R}}:=\left(\theta_{i}+\theta_{\sigma(i)}\right) / 2$ and $\theta_{\sigma(i), \mathbb{R}}:=\left(\theta_{i}-\theta_{\sigma(i)}\right) /(2 \mathrm{i})$. The resulting map

$$
\begin{align*}
\vartheta_{\mathbb{R}}: \mathbb{T}^{n} & \rightarrow \mathbb{R}^{n}, \tag{2.8}\\
x & \mapsto\left(\theta_{1, \mathbb{R}}(x), \ldots, \theta_{n, \mathbb{R}}(x)\right)
\end{align*}
$$

has image $\mathcal{T}_{\mathbb{R}} \subseteq[-1,1]^{n}$.

2.3 Contribution

For a finite group with an integer representation, the natural problem we pursue is to describe the image of the compact n-torus \mathbb{T}^{n} under the fundamental invariants in terms of polynomial inequalities. As seen in Theorem 2.4, this image represents the orbit space $\mathbb{T}^{n} / \mathcal{G}$. The main results of this article do this explicitly for Weyl groups of type $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D}. We show the existence of an n-dimensional \mathbb{R}-vector space $\mathcal{Z} \subseteq \mathbb{C}^{n}$ containing \mathcal{T} and a symmetric matrix polynomial $H \in \mathbb{K}[z]^{n \times n}$ with the following property: For all $z \in \mathcal{Z}$, $H(z)$ has real entries and z is contained in the \mathbb{T}-orbit space \mathcal{T} of \mathfrak{G} if and only if $H(z)$ is positive semidefinite. The reason that we specifically consider the Weyl groups of type $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ is the following.
A root system can be decomposed into irreducible components [Bou68, Chapitre VI, $\S 1$, Proposition 6]. This leaves us with nine families, which are denoted by $\mathrm{A}_{n-1}, \mathrm{~B}_{n}, \mathrm{C}_{n}(n \geq 2), \mathrm{D}_{n}(n \geq 4)$ for fixed $n \in \mathbb{N}$, as well as $\mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8}, \mathrm{~F}_{4}$ and G_{2} [Bou68, Chapitre VI, $\S 4$, Théorème 3]. In this article, we study the four infinite families $\mathrm{A}_{n-1}, \mathrm{C}_{n}, \mathrm{~B}_{n}$ and D_{n} in Sections 4 to 7 for arbitrary n in this order. The associated Weyl groups are $\mathcal{A}_{n-1}, \mathcal{C}_{n}, \mathcal{B}_{n}$ and \mathcal{D}_{n}. For these cases, we present an explicit matrix polynomials $H \in \mathbb{K}[z]$ in Theorems 4.3, 5.3, 6.4 and 7.4.

For arbitrary groups with an integer representation, we present a conjecture in Section 8.
Convention. We work over the field $\mathbb{K}=\mathbb{Q}$. A root system in $V \subseteq \mathbb{R}^{n}$ is crystallographic, reduced, and irreducible. Its Weyl group \mathfrak{G} is a finite subgroup of $\mathrm{O}_{n}(\mathbb{R})$. Stabilizer subgroups of \mathfrak{G}, respectively its integer representation \mathcal{G}, are denoted by $\operatorname{Stab}_{\mathfrak{G}}(\ldots)$, respectively $\operatorname{Stab}_{\mathcal{G}}(\ldots)$, where the action by either matrix multiplication, Equation (2.2), or Equation (2.3), is evident from the argument.

3 Symmetric polynomial systems

The four Weyl groups $\mathcal{A}_{n-1}, \mathcal{B}_{n}, \mathcal{C}_{n}$ and \mathcal{D}_{n} each contain a subgroup isomorphic to the symmetric group \mathfrak{S}_{n} and the formulae we give for some specific invariants involve the elementary symmetric polynomials. This gives rise to a symmetric polynomial system. In this section, we give a characterization for all solutions of such a system to be contained in the compact torus \mathbb{T}^{n}.

3.1 Solutions in \mathbb{T}^{n}

For $1 \leq i \leq n$, the polynomial

$$
\begin{equation*}
\sigma_{i}\left(y_{1}, \ldots, y_{n}\right)=\sum_{\substack{J \subseteq\{1, \ldots, n\} \\|J|=i}} \prod_{j \in J} y_{j} \in \mathbb{Q}\left[y_{1}, \ldots, y_{n}\right] \tag{3.1}
\end{equation*}
$$

is called the i-th elementary symmetric polynomials in n indeterminates. We shall be confronted with the following two types of polynomial systems in unknown y_{1}, \ldots, y_{n}.

$$
\begin{array}{llll}
\text { (I) } & \sigma_{i}\left(y_{1}, \ldots, y_{n}\right) & =(-1)^{i} c_{i} \text { for } 1 \leq i \leq n \quad \text { with } \quad c_{1}, \ldots, c_{n} \in \mathbb{C} \\
\text { (II) } & \sigma_{i}\left(y_{1}+y_{1}^{-1}, \ldots, y_{n}+y_{n}^{-1}\right) & =(-1)^{i} c_{i} \text { for } 1 \leq i \leq n \quad \text { with } c_{1}, \ldots, c_{n} \in \mathbb{R}
\end{array}
$$

The goal of this section is to determine, whether all solutions $y=\left(y_{1}, \ldots, y_{n}\right)$ of system (I), respectively system (II), are contained in \mathbb{T}^{n}. Recall Vieta's formula

$$
\begin{equation*}
\prod_{k=1}^{n}\left(x-r_{k}\right)=x^{n}+\sum_{i=1}^{n}(-1)^{i} \sigma_{i}\left(r_{1}, \ldots, r_{n}\right) x^{n-i} \in \mathbb{C}[x] \tag{3.2}
\end{equation*}
$$

for $r_{1}, \ldots, r_{n} \in \mathbb{C}$.

Lemma 3.1.

1. System (I) always has a solution in \mathbb{C}^{n}. It is is unique up to permutation of coordinates.
2. The map

$$
\begin{aligned}
\mathbb{C}^{*} & \rightarrow \mathbb{C}, \\
x & \mapsto\left(x+x^{-1}\right)
\end{aligned}
$$

is surjective and the preimage of $[-2,2]$ is \mathbb{T}.
3. System (II) always has a solution in $\left(\mathbb{C}^{*}\right)^{n}$. It is is unique up to permutation and inversion of coordinates.

Proof. 1. By Equation (3.2), a solution of system (I) is the vector of roots of a polynomial with coefficients given by the right hand side of system (I). Such a polynomial always has n unique roots in \mathbb{C}.
2. For $r \in \mathbb{C}$, consider the polynomial $p:=x^{2}-r x+1 \in \mathbb{C}[x]$. Then 0 is not a root of p and $p=0$ if and only if $r=x+x^{-1}$, that is r is in the image of the map. If $r \in[-2,2]$, then $p \in \mathbb{R}[x]$ has discriminant
$(r / 2)^{2}-1 \leq 0$ and its two roots are $x, \bar{x}=x, x^{-1}=r / 2 \pm \mathrm{i} \sqrt{1-(r / 2)^{2}} \in \mathbb{T}$. On the other hand for $x \in \mathbb{T}$, $x+x^{-1}=x+\bar{x}=2 \Re(x) \in[-2,2]$.
3. By the second statement, we can write the roots r_{1}, \ldots, r_{n} of the polynomial with coefficients given by the right hand side of system (II) as $r_{i}=y_{i}+y_{i}^{-1}$ for some $y \in\left(\mathbb{C}^{*}\right)^{n}$. Then y is a unique solution of (II) up to permutation and inversion.

From now on, we speak of "the" solution of system (I), respectively (II).
Proposition 3.2. For $c_{1}, \ldots, c_{n} \in \mathbb{R}$, the solution of system (II) is contained in \mathbb{T}^{n} if and only if all the roots of the univariate polynomial

$$
x^{n}+c_{1} x^{n-1}+\ldots+c_{n} \in \mathbb{R}[x]
$$

are contained in $[-2,2]$.
Proof. Let $p:=x^{n}+c_{1} x^{n-1}+\ldots+c_{n} \in \mathbb{R}[x]$ with roots $r_{1}, \ldots, r_{n} \in \mathbb{C}$. If $y \in\left(\mathbb{C}^{*}\right)^{n}$ is the solution of system (II), then for all $1 \leq i \leq n, y_{i}+y_{i}^{-1}$ is a root of p by Equation (3.2). Applying Lemma 3.1 yields $y \in \mathbb{T}^{n}$ if and only if $r_{1}, \ldots, r_{n} \in[-2,2]$.

The Chebyshev polynomial of the first kind associated to $\ell \in \mathbb{N}$ is the unique univariate polynomial T_{ℓ} with $T_{\ell}\left(\left(x+x^{-1}\right) / 2\right)=\left(x^{\ell}+x^{-\ell}\right) / 2$. The set $\left\{T_{\ell} \mid \ell \in \mathbb{N}\right\}$ is a basis of $\mathbb{R}[x]$ as an \mathbb{R}-vector space. For $0 \neq p \in \mathbb{R}[x]$ or $\mathbb{C}[x]$, denote by Coeff $\left(x^{\ell}, p\right)$ the coefficient of the monomial x^{ℓ} in p for $0 \leq \ell \leq \operatorname{deg}(p)$.

Proposition 3.3. For $c_{1}, \ldots, c_{n-1} \in \mathbb{C}$ with $\overline{c_{i}}=(-1)^{n} c_{n-i}$ and $c_{0}:=(-1)^{n} c_{n}:=1$, the solution of system (I) is contained in \mathbb{T}^{n} if and only if all the roots of the univariate polynomial

$$
T_{n}(x)+d_{1} T_{n-1}(x)+\ldots+d_{n-1} T_{1}(x)+\frac{d_{n}}{2} T_{0}(x) \in \mathbb{R}[x] \quad \text { with } \quad d_{\ell}=\sum_{i=0}^{\ell} \overline{c_{i}} c_{\ell-i} \in \mathbb{R}
$$

are contained in $[-1,1]$.
Proof. By Equation (3.2), the solution of system (I) is contained in \mathbb{T}^{n} if and only if all the roots of the polynomial $p:=x^{n}+c_{1} x^{n-1}+\ldots+c_{n} \in \mathbb{C}[x]$ are contained in \mathbb{T}.
Set $\tilde{p}:=x^{n}+\overline{c_{1}} x^{n-1}+\ldots+\overline{c_{n}} \in \mathbb{C}[x]$. The roots of p are nonzero, because $p(0)=c_{n}=(-1)^{n} \neq 0$. Since $\tilde{p}(x)=(-x)^{n} p\left(x^{-1}\right)$, the roots of $p \tilde{p} \in \mathbb{C}[x]$ are the union of the roots of p and their inverses. Especially, all the roots of $p \tilde{p}$ are contained in \mathbb{T} if and only if the roots of p are. The coefficients of $p \tilde{p}$ satisfy

$$
\operatorname{Coeff}\left(x^{\ell}, p \tilde{p}\right)=\sum_{i=0}^{\ell} c_{n-i} \overline{c_{n-\ell+i}}=\sum_{i=0}^{\ell} \overline{c_{i}} c_{\ell-i}=\left\{\begin{array}{l}
\sum_{i=0}^{\ell} \operatorname{Coeff}\left(x^{n-i}, \tilde{p}\right) \operatorname{Coeff}\left(x^{n-\ell+i}, p\right)=\operatorname{Coeff}\left(x^{2 n-\ell}, p \tilde{p}\right) \\
\sum_{i=0}^{(\ell-1) / 2\rfloor} \underbrace{\left(\overline{c_{i}} c_{\ell-i}+\overline{c_{\ell-i}} c_{i}\right)}_{\in \mathbb{R}}+\left\{\begin{array}{ll}
c_{\ell / 2} \overline{c_{\ell / 2}}, & \ell \text { even } \\
0, & \ell \text { odd }
\end{array} \in \mathbb{R}\right.
\end{array}\right.
$$

for $0 \leq \ell \leq n$. Thus, $\operatorname{Coeff}\left(x^{\ell}, p \tilde{p}\right)=\operatorname{Coeff}\left(x^{2 n-\ell}, p \tilde{p}\right)=d_{\ell} \in \mathbb{R}$ and we can write

$$
p \tilde{p}=\sum_{\ell=1}^{n} d_{n-\ell}\left(x^{n+\ell}+x^{n-\ell}\right)+d_{n}=2 x^{n}\left(\sum_{\ell=1}^{n} d_{n-\ell} T_{\ell}\left(\frac{x+x^{-1}}{2}\right)+\frac{d_{n}}{2} T_{0}\left(\frac{x+x^{-1}}{2}\right)\right)=: 2 x^{n} g\left(\frac{x+x^{-1}}{2}\right) .
$$

By Lemma 3.1, we have $x \in \mathbb{T}$ is a root of $p \tilde{p}$ if and only if $\left(x+x^{-1}\right) / 2 \in[-1,1]$ is a root of g.

3.2 Characterization of real roots via Hermite quadratic forms

Let $p, q \in \mathbb{R}[x]$ be monic univariate polynomials. The multiplication by q in the \mathbb{R}-algebra $\mathbb{R}[x] /\langle p\rangle$ is the homomorphism

$$
\left.\begin{array}{rl}
m_{q}: \mathbb{R}[x] /\langle p\rangle & \rightarrow \mathbb{R}[x] /\langle p\rangle, \tag{3.3}\\
{[f]} & \mapsto
\end{array}\right][q f] .
$$

By [CLO05, Chapter 2, Proposition 4.2], we have for $q_{1}, q_{2} \in \mathbb{R}[x]$

$$
\begin{equation*}
m_{q_{1}+q_{2}}=m_{q_{1}}+m_{q_{2}} \quad \text { and } \quad m_{q_{1} q_{2}}=m_{q_{1}} \circ m_{q_{2}} . \tag{3.4}
\end{equation*}
$$

If $p=x^{n}+c_{1} x^{n-1}+\ldots+c_{n-1} x+c_{n}$, then the matrix of m_{x} in the basis $\left\{1, x, \ldots, x^{n-1}\right\}$ of $\mathbb{R}[x] /\langle p\rangle$ is the companion matrix

$$
\left[\begin{array}{cccc}
0 & & 0 & -c_{n} \tag{3.5}\\
1 & \ddots & & \vdots \\
& \ddots & 0 & -c_{2} \\
0 & & 1 & -c_{1}
\end{array}\right]
$$

of p, since $x x^{i}=x^{i+1}$ for $0 \leq i \leq n-2$ and $x x^{n-1}=x^{n} \equiv-c_{1} x^{n-1}-\ldots-c_{n-1} x-c_{n} \bmod \langle p\rangle$. On the other hand, the univariate Chebyshev polynomials of the first kind up to degree $n-1$ also form a basis $\left\{T_{0}, T_{1}, \ldots, T_{n-1}\right\}$ of $\mathbb{R}[x] /\langle p\rangle$. If $p=T_{n}+d_{1} T_{n-1}+\ldots+d_{n-1} T_{1}+d_{n} / 2 T_{0} \in \mathbb{R}[x]$ and $n \geq 3$, then the matrix of m_{x} in this basis is

$$
\left[\begin{array}{cccccc}
0 & 1 / 2 & & & 0 & -d_{n} / 4 \tag{3.6}\\
1 & 0 & \ddots & & & -d_{n-1} / 2 \\
& 1 / 2 & \ddots & \ddots & & \vdots \\
& & \ddots & \ddots & 1 / 2 & -d_{3} / 2 \\
& & & \ddots & 0 & \left(1-d_{2}\right) / 2 \\
0 & & & & 1 / 2 & -d_{1} / 2
\end{array}\right]
$$

where the rows and columns are indexed by $T_{0}, T_{1}, \ldots, T_{n-1}$. The entries in the columns originate from the recurrence formula $x T_{0}=T_{1}$ and $2 x T_{j}=T_{j+1}+T_{j-1}$ for $1 \leq j \leq n-1$. Especially,

$$
\begin{equation*}
2 x T_{n-1}=T_{n}+T_{n-2} \equiv-d_{1} T_{n-1}+\left(1-d_{2}\right) T_{n-2}-d_{3} T_{n-3}-\ldots-d_{n-1} T_{1}-d_{n} / 2 T_{0} \quad \bmod \quad\langle p\rangle \tag{3.7}
\end{equation*}
$$

yields the last column.
Example 3.4. Let $p=x^{3}-c x^{2}+\bar{c} x-1 \in \mathbb{C}[x]$ with $c \in \mathbb{C}$ and roots $r_{1}, r_{2}, r_{3} \in \mathbb{T}$, such that $r_{1} \cdot r_{2} \cdot r_{3}=1$. Following the proof of Proposition 3.3, we consider the palindromic polynomial $p \tilde{p} \in \mathbb{R}[x]$ with

$$
\begin{aligned}
& \frac{1}{2 x^{3}} p \tilde{p} \\
= & \frac{1}{2 x^{3}}\left(\left(x^{6}+1\right)-(c+\bar{c})\left(x^{5}+x\right)+(c \bar{c}+c+\bar{c})\left(x^{4}+x^{2}\right)-\frac{c^{2}+\bar{c}^{2}+2}{2} x^{3}\right) \\
= & \frac{x^{3}+x^{-3}}{2}-(c+\bar{c}) \frac{x^{2}+x^{-2}}{2}+(c \bar{c}+c+\bar{c}) \frac{x+x^{-1}}{2}-\frac{c^{2}+\bar{c}^{2}+2}{2} \\
= & T_{3}\left(\frac{x+x^{-1}}{2}\right)-(c+\bar{c}) T_{2}\left(\frac{x+x^{-1}}{2}\right)+(c \bar{c}+c+\bar{c}) T_{1}\left(\frac{x+x^{-1}}{2}\right)-\frac{c^{2}+\bar{c}^{2}+2}{2} T_{0}\left(\frac{x+x^{-1}}{2}\right) \\
= & g\left(\frac{x+x^{-1}}{2}\right) .
\end{aligned}
$$

The matrix of the multiplication by x in $\mathbb{R}[x] /\langle g\rangle$ in the basis of Chebyshev polynomials is

$$
\left[\begin{array}{ccc}
0 & 1 / 2 & \left(c^{2}+\bar{c}^{2}+2\right) / 4 \\
1 & 0 & (1-c \bar{c}-c-\bar{c}) / 2 \\
0 & 1 / 2 & (c+\bar{c}) / 2
\end{array}\right] \in \mathbb{R}^{3 \times 3}
$$

To characterize univariate polynomial with roots in $[-2,2]$, respectively $[-1,1]$, we use the next statement, which is an application of Sturm's version for Sylvester's theorem.

Theorem 3.5. Let $p \in \mathbb{R}[x]$ be a monic univariate polynomial of degree n and let m_{x} be the associated multiplication by x in $\mathbb{R}[x] /\langle p\rangle$. For $0<a \in \mathbb{R}$, all the roots of p are contained in $[-a, a]$ if and only if the Hermite quadratic form

$$
H_{q}(p): \mathbb{R}[x] /\langle p\rangle \rightarrow \mathbb{R},[f] \mapsto \operatorname{Tr}\left(m_{q f^{2}}\right), \quad \text { with } \quad q=(a-x)(a+x) \in \mathbb{R}[x]
$$

is positive semi-definite.
Proof. Let $H \in \mathbb{R}^{n \times n}$ be the symmetric matrix associated to $H_{q}(p)$ for a fixed basis of $\mathbb{R}[x] /\langle p\rangle$. Denote by N_{+}, respectively N_{-}, the number of strictly positive, respectively negative, eigenvalues of H, counting multiplicities. By [BPR06, Theorem 4.57] or also [CLO05, Chapter 2, Theorem 5.2], rank and signature of $H_{q}(p)$ are

$$
\begin{aligned}
& N_{+}+N_{-}=\operatorname{Rank}\left(H_{q}(p)\right)=\underbrace{|\{x \in \mathbb{C} \mid p(x)=0 q(x) \neq 0\}|,}_{=: n_{+}} \\
& N_{+}-N_{-}=\operatorname{Sign}\left(H_{q}(p)\right)=\underbrace{|\{x \in \mathbb{R} \mid p(x)=0 q(x)>0\}|}_{=: n_{-}}-\underbrace{|\{x \in \mathbb{R} \mid p(x)=0 q(x)<0\}|} .
\end{aligned}
$$

If all roots of p are contained in $[-a, a]$, then $n_{-}=0$ and thus $N_{+}+N_{-}=\operatorname{Rank}\left(H_{q}(p)\right)=\operatorname{Sign}\left(H_{q}(p)\right)=$ $n_{+}=N_{+}-N_{-}$. Therefore, $N_{-}=0$ and all eigenvalues of H are nonnegative, that is, $H_{q}(p)$ is positive semi-definite.
For the converse, assume that $H_{q}(p)$ is positive semi-definite. Then $N_{-}=0$ and $N_{+}=\operatorname{Sign}\left(H_{q}(p)\right)=$ $n_{+}-n_{-} \leq \operatorname{Rank}\left(H_{q}(p)\right)=N_{+}$, that is, $n_{+}-n_{-}=\operatorname{Rank}\left(H_{q}(p)\right)$. On the other hand, $\operatorname{Rank}\left(H_{q}(p)\right) \geq n_{+}+n_{-}$. Hence, $n_{-}=0$ and $\operatorname{Rank}\left(H_{q}(p)\right)=n_{+}$implies that all the roots of p are real and contained in $[-a, a]$.

Note that the matrix H in the proof of Theorem 3.5 does not depend on the choice of a basis for $\mathbb{R}[x] /\langle p\rangle$, as the trace is basis-invariant. As corollaries, we obtain explicit characterizations for solutions of symmetric polynomial systems in \mathbb{T}^{n}.

Corollary 3.6. Let $n \geq 3$. For $c_{1}, \ldots, c_{n} \in \mathbb{C}$ with $\overline{c_{i}}=(-1)^{n} c_{n-i}$ for $1 \leq i \leq n-1$ and $c_{0}:=(-1)^{n} c_{n}:=1$, the solution of system (I) is contained in \mathbb{T}^{n} if and only if the matrix $H \in \mathbb{R}^{n \times n}$ with entries

$$
\begin{aligned}
H_{i j} & =\operatorname{Tr}\left(C^{i+j-2}-C^{i+j}\right), \quad \text { where } \\
C & =\left[\begin{array}{cccccc}
0 & 1 / 2 & & & 0 & -d_{n} / 4 \\
1 & 0 & \ddots & & & -d_{n-1} / 2 \\
& 1 / 2 & \ddots & \ddots & & \vdots \\
& & \ddots & \ddots & 1 / 2 & -d_{3} / 2 \\
& & & \ddots & 0 & \left(1-d_{2}\right) / 2 \\
0 & & & & 1 / 2 & -d_{1} / 2
\end{array}\right] \in \mathbb{R}^{n \times n} \quad \text { and } \quad d_{\ell}=\sum_{i=0}^{\ell} c_{i} \overline{c_{\ell-i}} \quad \text { for } \quad 1 \leq \ell \leq n,
\end{aligned}
$$

is positive semi-definite.

Proof. H is the matrix associated to the Hermite quadratic form $H_{q}(p)$ from Theorem 3.5 with $q=1-x^{2}$ in the basis $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$. Indeed, by Equation (3.4), the entries of the associated matrix are

$$
\operatorname{Tr}\left(m_{q x^{i-1} x^{j-1}}\right)=\operatorname{Tr}\left(m_{x^{i+j-2}-x^{i+j}}\right)=\operatorname{Tr}\left(m_{x}^{i+j-2}-m_{x}^{i+j}\right)
$$

for $1 \leq i, j \leq n$. Since the trace is independent of the basis for $\mathbb{R}[x] /\langle p\rangle$, we can consider the matrix of m_{x} in the basis of univariate Chebyshev polynomials of the first kind, which according to Equation (3.6) is C. The statement now follows from Proposition 3.3.

Analogously, we obtain the following statement for systems of type (II).
Corollary 3.7. For $c_{1}, \ldots, c_{n} \in \mathbb{R}$, the solution of system (II) is contained in \mathbb{T}^{n} if and only if the matrix $H \in \mathbb{R}^{n \times n}$ with entries

$$
\begin{aligned}
H_{i j} & =\operatorname{Tr}\left(4 C^{i+j-2}-C^{i+j}\right), \quad \text { where } \\
C & =\left[\begin{array}{cccc}
0 & \cdots & 0 & -c_{n} \\
1 & & 0 & -c_{n-1} \\
& \ddots & & \vdots \\
0 & & 1 & -c_{1}
\end{array}\right] \in \mathbb{R}^{n \times n}
\end{aligned}
$$

is positive semi-definite.

4 Type \mathcal{A}

In Sections 4 to 7 we study the Weyl groups \mathfrak{G} of types $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D}. First, we give an explicit formula for some of the orbit polynomials in terms of the elementary symmetric polynomials. This induces a symmetric system of type (I), respectively (II). Afterwards, we present an explicit symmetric matrix polynomial H to characterize the solution of this symmetric system in \mathbb{T}^{n}. Such a solution then corresponds to a point in \mathcal{T}, the image of ϑ, representing the \mathbb{T}-orbit space. An example to visualize the 2 -dimensional case accompanies the main result of each section, except \mathcal{D}.
Convention. We abuse notation and speak of "the orbit polynomial Θ_{μ} associated to $\mu=W \alpha \in \Omega$ " with $\alpha \in \mathbb{Z}^{n}$, to refer to the orbit polynomial Θ_{α} associated to α. Furthermore for $f \in \mathbb{Q}\left[x^{ \pm}\right]$and $\mathfrak{G} \in$ $\left\{\mathcal{A}_{n-1}, \mathcal{B}_{n}, \mathcal{C}_{n}, \mathcal{D}_{n}\right\}$, we write $\mathfrak{G} \cdot f$ for the orbit $\mathcal{G} \cdot f$ of f with respect to the action from Equation (2.3).
For \mathcal{A}_{n-1}, we shall encounter a system of type (I) in n indeterminates. To be consistent with the notation of Section 3, we consider A_{n-1} as a root system of rank $n-1$. In particular, we denote the Laurent polynomial ring and the polynomial ring in $n-1$ indeterminates by $\mathbb{Q}\left[x^{ \pm}\right]=\mathbb{Q}\left[x_{1}, x_{1}^{-1}, \ldots, x_{n-1}, x_{n-1}^{-1}\right]$ and $\mathbb{Q}[z]=\mathbb{Q}\left[z_{1}, \ldots, z_{n-1}\right]$.

4.1 Fundamental invariants for \mathcal{A}_{n-1}

The group \mathfrak{S}_{n} acts on \mathbb{R}^{n} by permutation of coordinates and leaves the subspace $V:=\left\{u \in \mathbb{R}^{n} \mid u_{1}+\ldots+u_{n}=\right.$ $0\}$ invariant. The root system A_{n-1} given in [Bou68, Planche I] is a root system of rank $n-1$ in V with simple roots and fundamental weights

$$
\begin{equation*}
\rho_{i}=e_{i}-e_{i+1} \quad \text { and } \quad \omega_{i}=\sum_{j=1}^{i} e_{j}-\frac{i}{n} \sum_{j=1}^{n} e_{j}=\frac{1}{n}[\underbrace{n-i, \ldots, n-i}_{i \text { times }}, \underbrace{-i, \ldots,-i}_{n-i \text { times }}]^{t} \tag{4.1}
\end{equation*}
$$

for $1 \leq i \leq n-1$. The Weyl group of A_{n-1} is $\mathcal{A}_{n-1} \cong \mathfrak{S}_{n}$ and the graph

$$
\begin{equation*}
s_{1} \ldots s_{2} \ldots \quad s_{n-2} \tag{4.2}
\end{equation*}
$$

is the associated Coxeter diagram, where the $s_{i}:=s_{\rho_{i}}$ are the reflections from Definition 2.7, which generate \mathcal{A}_{n-1}. Thus, $-\omega_{n-i} \in \mathcal{A}_{n-1} \omega_{i}$ and the orbit $\mathcal{A}_{n-1} \omega_{i}$ has cardinality $\binom{n}{i}$ for $1 \leq i \leq n-1$.
The orbit polynomials associated to the fundamental weights of A_{n-1} and the elementary symmetric polynomials from Equation (3.1) satisfy the following relations.

Proposition 4.1. In $\mathbb{Q}\left[x^{ \pm}\right]$, define the monomials

$$
y_{1}=x_{1}, \quad y_{k}=x_{k} x_{k-1}^{-1} \quad \text { for } \quad 2 \leq k \leq n-1 \quad \text { and } \quad y_{n}=x_{n-1}^{-1} .
$$

Then

$$
\sigma_{i}\left(y_{1}(x), \ldots, y_{n}(x)\right)=\binom{n}{i} \theta_{i}(x)
$$

for $1 \leq i \leq n-1$.
Proof. We first show that the orbit of the monomial $x^{e_{1}}=x_{1}$ is $\mathcal{A}_{n-1} \cdot x_{1}=\left\{y_{1}, \ldots, y_{n}\right\}$, and then infer the orbit of the x_{i}.
It follows from Equation (4.1), that $W e_{1}=\omega_{1}=\left(n e_{1}-\sum_{j=1}^{n} e_{j}\right) / n$ and

$$
\omega_{i}-\omega_{i-1}=\sum_{j=1}^{i} e_{j}-\frac{i}{n} \sum_{j=1}^{n} e_{j}-\sum_{j=1}^{i-1} e_{j}+\frac{i-1}{n} \sum_{j=1}^{n} e_{j}=\frac{1}{n}\left(n e_{i}-\sum_{j=1}^{n} e_{j}\right)
$$

for $2 \leq i \leq n-1$. Hence, $\omega_{i}-\omega_{i-1}$ is obtained from ω_{1} by permutation of coordinates. Furthermore, $-\omega_{n-1}=\omega_{1}=\left(n e_{n}-\sum_{j=1}^{n} e_{j}\right) / n \in \mathcal{A}_{n-1} \omega_{1}$. Thus, we have $\left\{\omega_{1}, \omega_{2}-\omega_{1}, \ldots, \omega_{n-1}-\omega_{n-2},-\omega_{n-1}\right\} \subseteq$ $\mathcal{A}_{n-1} \omega_{1}$. Since these n weights are distinct and the orbit of ω_{1} has cardinality n, we also have " \supseteq ". The monomials in $\mathbb{Q}\left[x^{ \pm}\right]$, which correspond to $\omega_{1}, \omega_{2}-\omega_{1}, \ldots, \omega_{n-1}-\omega_{n-2},-\omega_{n-1}$ are y_{1}, \ldots, y_{n}.
For $1 \leq i \leq n-1$, we have $x^{e_{i}}=x_{i}=y_{1} \ldots y_{i}$. Since the linear action of \mathcal{A}_{n-1} on $\mathbb{Q}\left[x^{ \pm}\right]$by Equation (2.3) permutes the monomials y_{i}, we have $\mathcal{A}_{n-1} \cdot x_{i}=\left\{\prod_{j \in J} y_{j}|J \subseteq\{1, \ldots, n\},|J|=i\}\right.$. Hence,

$$
\theta_{i}=\frac{\left|\operatorname{Stab}_{\mathcal{A}_{n-1}}\left(x_{i}\right)\right|}{\left|\mathcal{A}_{n-1}\right|} \sum_{\substack{J \subseteq\{1, \ldots, n\} \\|J|=i}} \prod_{j \in J} y_{j}=\frac{1}{\left|\mathcal{A}_{n-1} \cdot x_{i}\right|} \sigma_{i}\left(y_{1}, \ldots, y_{n}\right)=\binom{n}{i}^{-1} \sigma_{i}\left(y_{1}, \ldots, y_{n}\right) .
$$

4.2 Hermite matrix for \mathcal{A}_{n-1}

We introduce the subset $\mathbb{T}_{1}^{n}:=\left\{y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{T}^{n} \mid y_{1} \ldots y_{n}=1\right\}$ of the compact torus. The proof of the following fact is straightforward.

Proposition 4.2. The map

$$
\begin{aligned}
\psi:\left(\mathbb{C}^{*}\right)^{n-1} & \rightarrow\left(\mathbb{C}^{*}\right)^{n} \\
x & \mapsto\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{n-1} x_{n-2}^{-1}, x_{n-1}^{-1}\right)
\end{aligned}
$$

is injective and the preimage of \mathbb{T}_{1}^{n} is \mathbb{T}^{n-1}.
We state the main result for Weyl groups of type \mathcal{A}. Note that for $n=2$, we are in the univariate case $\mathcal{A}_{1} \cong \mathfrak{S}_{2} \cong\{ \pm 1\}$, where $\mathcal{T}=[-1,1]$.

Theorem 4.3. Let $n \geq 3$. Consider the \mathbb{R}-vector space $\mathcal{Z}:=\left\{z \in \mathbb{C}^{n-1} \mid \forall 1 \leq j \leq n-1: \overline{z_{j}}=z_{n-j}\right\}$ and define the matrix $H \in \mathbb{Q}[z]^{n \times n}$ by

$$
\begin{aligned}
& H(z)_{i j}=\operatorname{Tr}\left((C(z))^{i+j-2}-(C(z))^{i+j}\right) \quad \text { with } \\
& C(z)=\left[\begin{array}{cccccc}
0 & 1 / 2 & & & 0 & -d_{n}(z) / 4 \\
1 & 0 & \ddots & & & -d_{n-1}(z) / 2 \\
& 1 / 2 & \ddots & \ddots & & \vdots \\
& & \ddots & \ddots & 1 / 2 & -d_{3}(z) / 2 \\
& & & \ddots & 0 & \left(1-d_{2}(z)\right) / 2 \\
0 & & & & 1 / 2 & -d_{1}(z) / 2
\end{array}\right], \quad \text { where } \\
& d_{\ell}(z)=(-1)^{\ell}\left(\binom{n}{\ell}\left(z_{\ell}+z_{n-\ell}\right)+\sum_{i=1}^{\ell-1}\binom{n}{i}\binom{n}{\ell-i} z_{i} z_{n-\ell+i}\right) \quad \text { for } \quad 1 \leq \ell \leq n-1 \quad \text { and } \\
& d_{n}(z)=(-1)^{n}\left(2+\sum_{i=1}^{n-1}\binom{n}{i}^{2} z_{i}^{2}\right) .
\end{aligned}
$$

For all $z \in \mathcal{Z}, H(z) \in \mathbb{R}^{n \times n}$ and $\mathcal{T}=\{z \in \mathcal{Z} \mid H(z) \succeq 0\}$.
Proof. Let $z \in \mathbb{C}^{n-1}$ and define $c_{0}:=(-1)^{n} c_{n}:=1, c_{i}:=(-1)^{i}\binom{n}{i} z_{i} \in \mathbb{C}$ for $1 \leq i \leq n-1$ as well as $d_{\ell}:=d_{\ell}(z)$ for $1 \leq \ell \leq n$.
To show " \subseteq ", assume that $z \in \mathcal{T}$ and fix $x \in \mathbb{T}^{n-1}$, such that $\theta_{i}(x)=z_{i}$. By Proposition 4.1, the solution of

$$
\text { (I) } \quad \sigma_{i}\left(y_{1}, \ldots, y_{n}\right)=(-1)^{i} c_{i} \quad \text { for } \quad 1 \leq i \leq n
$$

is given by $y=\psi(x) \in \mathbb{T}_{1}^{n}$, where ψ is the map from Proposition 4.2. Note that $\theta_{j}(x)$ and $\theta_{n-j}(x)$ are complex conjugates, because $-\omega_{j} \in \mathcal{A}_{n-1} \omega_{n-j}$. Therefore, $z \in \mathcal{Z}$ and $d_{\ell}=\sum_{i=0}^{\ell} c_{i} \overline{c_{\ell-i}} \in \mathbb{R}$ yields the last column of $C(z)$. Applying Corollary 3.6 with coefficients d_{ℓ} yields $H(z) \succeq 0$.
For " \supseteq " on the other hand, assume $z \in \mathcal{Z}$ with $H(z) \succeq 0$. By Corollary 3.6, the solution y of system (I) is contained in \mathbb{T}^{n} and satisfies $y_{1} \ldots y_{n}=(-1)^{n} c_{n}=1$, that is, $y \in \mathbb{T}_{1}^{n}$. Let $x \in \mathbb{T}^{n-1}$ be the unique preimage of y under ψ. Then

$$
z_{i}=(-1)^{i}\binom{n}{i}^{-1} c_{i}=\binom{n}{i}^{-1} \sigma_{i}\left(y_{1}, \ldots, y_{n}\right)=\theta_{i}(x)
$$

by Proposition 4.1 and thus $z=\vartheta(x) \in \mathcal{T}$.

We finish this subsection with a remark on the embedding of \mathcal{T} in \mathbb{R}^{n-1} and on the degree of the entries of the Hermite matrix polynomial.

Remark 4.4.

1. In the case of \mathcal{A}_{n-1}, we have $\mathcal{T} \nsubseteq \mathbb{R}^{n-1}$, because $-I_{n} \notin \mathcal{A}_{n-1}$. Following Equation (2.8), we consider the image $\mathcal{T}_{\mathbb{R}}$ of the map

$$
\begin{aligned}
& \vartheta_{\mathbb{R}}: \mathbb{T}^{n-1} \rightarrow \mathbb{R}^{n-1}, x \mapsto\left(\theta_{1, \mathbb{R}}(x), \ldots, \theta_{n-1, \mathbb{R}}(x)\right) \text { with } \\
& \theta_{i, \mathbb{R}}(x)=\frac{\theta_{i}(x)+\theta_{n-i}(x)}{2}, \quad \theta_{n-i, \mathbb{R}}(x)=\frac{\theta_{i}(x)-\theta_{n-i}(x)}{2 \mathrm{i}} \quad \text { for } \quad 1 \leq i \leq\lfloor(n-1) / 2\rfloor \quad \text { and } \\
& \theta_{n / 2, \mathbb{R}}(x)=\theta_{n / 2}(x), \quad \text { when } \quad n \quad \text { is even. }
\end{aligned}
$$

2. The entries of the last column of the matrix polynomial $C(z)$ have degree 2 , except $C(z)_{n n}=-f_{1}(z)$, which has degree 1. All other entries are constant. Hence, the degree of $H(z)_{i j}$ is $i+j$. The determinant of $H(z)$ has degree $4 n-2$ for $n \geq 3$.

4.3 Example \mathcal{A}_{2}

In this subsection, we further investigate the case $n=3$ and give a visualization for the embedding of the \mathbb{T}-orbit space in \mathbb{R}^{2}.

$$
\begin{aligned}
\mathcal{A}_{2} & \cong \mathfrak{S}_{3} \\
\omega_{1} & =\left[\begin{array}{ll}
2, & -1,-1
\end{array}\right]^{t} / 3 \\
\omega_{2} & =\left[\begin{array}{ll}
1, & 1,-2
\end{array}\right]^{t} / 3 \\
\rho_{1} & =\left[\begin{array}{ll}
1, & -1,
\end{array}\right]^{t} \\
\rho_{2} & =\left[\begin{array}{ll}
0, & 1,
\end{array}\right]^{t}
\end{aligned}
$$

Figure 3: The root system A_{2} in $V \subseteq \mathbb{R}^{3}$ with fundamental weights ω_{1}, ω_{2} and simple roots ρ_{1}, ρ_{2}.

In Figure 3, the hexagon is the orbit of the blue shaded triangle with vertices $0, \omega_{1}, \omega_{2}$ under \mathcal{A}_{2}. Let $z_{1}, z_{2} \in \mathbb{R}$ and $z=\left(z_{1}+\mathrm{i} z_{2}, z_{1}-\mathrm{i} z_{2}\right) \in \mathcal{Z}$. Then the matrix $C(z) \in \mathbb{R}[z]^{3 \times 3}$ from Theorem 4.3 is

$$
C(z)=\left[\begin{array}{ccc}
0 & 1 / 2 & \left(1+9 z_{1}^{2}-9 z_{2}^{2}\right) / 2 \tag{4.3}\\
1 & 0 & \left(1-9 z_{1}^{2}-9 z_{2}^{2}-6 z_{1}\right) / 2 \\
0 & 1 / 2 & 3 z_{1}
\end{array}\right]
$$

We already computed this matrix (up to a substitution) in Example 3.4. Following Theorem 4.3, define the matrix $H(z) \in \mathbb{R}[z]^{3 \times 3}$ with entries $(H(z))_{i j}=4 \operatorname{Tr}\left(C(z)^{i+j-2}\right)-\operatorname{Tr}\left(C(z)^{i+j}\right)$. Then $\left(z_{1}, z_{2}\right)$ is contained in $\mathcal{T}_{\mathbb{R}}$ if and only if $H(z)$ is positive semi-definite. Assume that $\operatorname{Det}\left(x I_{3}-H(z)\right)=x^{3}-h_{2}(z) x^{2}+h_{1}(z) x-$ $h_{0}(z) \in \mathbb{R}[x]$ is the characteristic polynomial of $H(z)$ for some $h_{i}(z) \in \mathbb{R}[z]$. By [BPR06, Theorem 4.58], $H(z)$ is positive semi-definite if and only if $h_{i}(z) \geq 0$ for $0 \leq i \leq 2$.

Figure 4: Vanishing points and positivity regions for the coefficients of the characteristic polynomial of $H(z)$.

Of particular interest are the vertices, which correspond to the fundamental weights and the origin. They are given by
$\operatorname{Vertex} 1:=\vartheta_{\mathbb{R}}\left(\exp \left(-2 \pi \mathrm{i}\left\langle\omega_{1}, \omega_{1}\right\rangle\right), \exp \left(-2 \pi \mathrm{i}\left\langle\omega_{2}, \omega_{1}\right\rangle\right)\right)=\vartheta_{\mathbb{R}}\left(\exp \left(-\frac{4}{3} \pi \mathrm{i}\right), \exp \left(-\frac{2}{3} \pi \mathrm{i}\right)\right)=\left(-\frac{1}{2}, \quad \frac{\sqrt{3}}{2}\right)$, $\operatorname{Vertex}_{2}:=\vartheta_{\mathbb{R}}\left(\exp \left(-2 \pi \mathrm{i}\left\langle\omega_{1}, \omega_{2}\right\rangle\right), \exp \left(-2 \pi \mathrm{i}\left\langle\omega_{2}, \omega_{2}\right\rangle\right)\right)=\vartheta_{\mathbb{R}}\left(\exp \left(-\frac{2}{3} \pi \mathrm{i}\right), \exp \left(-\frac{4}{3} \pi \mathrm{i}\right)\right)=\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$, Vertex $3:=\vartheta_{\mathbb{R}}\left(\exp \left(-2 \pi \mathrm{i}\left\langle\omega_{1}, 0\right\rangle\right), \exp \left(-2 \pi \mathrm{i}\left\langle\omega_{2}, 0\right\rangle\right)\right)=\vartheta_{\mathbb{R}}(1,1)=(1,0)$.

We visualize the problem " $\left(z_{1}, z_{2}\right) \in \mathcal{T}_{\mathbb{R}}$?" by evaluating h_{0}, h_{1}, h_{2} at z. In the above images, a solid red line, blue dots and green dashes indicate the varieties of these three polynomials. The plots indicate an invariance under the dihedral groups \mathfrak{D}_{3}. Let $g_{1}(z):=z_{1}^{2}+z_{2}^{2}, g_{2}(z):=z_{1}\left(z_{1}^{2}-3 z_{2}^{2}\right)$. Then $\mathbb{R}[z]^{\mathfrak{D}_{3}}=\mathbb{R}\left[g_{1}(z), g_{2}(z)\right]$
and we have

$$
\begin{aligned}
h_{0}(z)= & -\operatorname{Coeff}\left(t^{0}, \operatorname{Det}\left(t I_{3}-H(z)\right)\right) \quad(\text { solid }) \\
= & 2187 / 64 z_{2}^{4}\left(3 z_{1}+1\right)^{2}\left(-3 z_{1}^{4}-6 z_{1}^{2} z_{2}^{2}-3 z_{2}^{4}+8 z_{1}^{3}-24 z_{1} z_{2}^{2}-6 z_{1}^{2}-6 z_{2}^{2}+1\right) \\
= & 2187 / 64 z_{2}^{4}\left(3 z_{1}+1\right)^{2} \underbrace{\left(-6 g_{1}(z)-3 g_{1}(z)^{2}+8 g_{2}(z)+1\right)}_{\mathfrak{D}_{3} \text {-invariant }}, \\
h_{1}(z)= & \operatorname{Coeff}\left(t^{1}, \operatorname{Det}\left(t I_{3}-H(z)\right)\right)(\text { dots }) \\
= & 243 / 256 z_{2}^{2}\left(-243 z_{1}^{8}-972 z_{1}^{6} z_{2}^{2}-1458 z_{1}^{4} z_{2}^{4}-972 z_{1}^{2} z_{2}^{6}-243 z_{2}^{8}+324 z_{1}^{7}-1620 z_{1}^{5} z_{2}^{2}\right. \\
& -4212 z_{1}^{3} z_{2}^{4}-2268 z_{1} z_{2}^{6}-432 z_{1}^{6}-2052 z_{1}^{4} z_{2}^{2}-5400 z_{1}^{2} z_{2}^{4}-324 z_{2}^{6}+180 z_{1}^{5}-3384 z_{1}^{3} z_{2}^{2} \\
& \left.-684 z_{1} z_{2}^{4}+18 z_{1}^{4}-804 z_{1}^{2} z_{2}^{2}+42 z_{2}^{4}+76 z_{1}^{3}+404 z_{1} z_{2}^{2}-8 z_{1}^{2}-108 z_{2}^{2}+60 z_{1}+25\right), \\
h_{2}(z)= & -\operatorname{Coeff}\left(t^{2}, \operatorname{Det}\left(t I_{3}-H(z)\right)\right)(\text { dash }) \\
= & 1 / 32\left(-729 z_{1}^{6}+1458 z_{1}^{5}+\left(10935 z_{2}^{2}-1215\right) z_{1}^{4}+\left(-2916 z_{2}^{2}+540\right) z_{1}^{3}+351 z_{2}^{2}+63\right. \\
& \left.+\left(-10935 z_{2}^{4}+1458 z_{2}^{2}-135\right) z_{1}^{2}+\left(-4374 z_{2}^{4}+972 z_{2}^{2}+18\right) z_{1}+729 z_{2}^{6}-1215 z_{2}^{4}\right) .
\end{aligned}
$$

For a generic point $z \in \mathcal{Z}, H(z)$ has rank 3 . We observe an intersection of all three varieties in Vertex ${ }_{3}$, in which case the rank of $H\left(\right.$ Vertex $\left._{3}\right)$ vanishes. This also occurs at

$$
\vartheta_{\mathbb{R}}\left(\exp \left(-2 \pi \mathrm{i}\left\langle\omega_{1}, \frac{\omega_{1}+\omega_{2}}{2}\right\rangle\right), \exp \left(-2 \pi \mathrm{i}\left\langle\omega_{2}, \frac{\omega_{1}+\omega_{2}}{2}\right\rangle\right)\right)=\vartheta_{\mathbb{R}}(\exp (-\pi \mathrm{i}), \exp (\pi \mathrm{i}))=\left(-\frac{1}{3}, 0\right) .
$$

Furthermore, the rank of both $H\left(\right.$ Vertex $\left._{1}\right), H\left(\right.$ Vertex $\left._{2}\right)$ is 1 , we only have an intersection of " $h_{0}(z)=0$ " with " $h_{1}(z)=0$ ". Two more intersection of " $h_{0}(z)=0$ " with " $h_{1}(z)=0$ " lie at $(-1 / 3,2 / 3)$ and $(-1 / 3,-2 / 3)$. Every other point on the boundary of $\mathcal{T}_{\mathbb{R}}$ admits rank 2 .

5 Type \mathcal{C}

In Sections 5 to 7, we will encounter symmetric systems similarly to Section 4, however they will be of type (II) and therefore, we dealt with the type \mathcal{A} first. The dimension of the root system and the number of indeterminates of the symmetric system are from now on both n.

5.1 Fundamental invariants for \mathcal{C}_{n}

The groups \mathfrak{S}_{n} and $\{ \pm 1\}^{n}$ act on \mathbb{R}^{n} by permutation of coordinates, and multiplication of coordinates by ± 1. The root system C_{n} given in [Bou68, Planche III] is a root system in \mathbb{R}^{n} with simple roots and fundamental weights

$$
\begin{equation*}
\rho_{i}=e_{i}-e_{i+1}, \quad \rho_{n}=2 e_{n} \quad \text { and } \quad \omega_{i}=e_{1}+\ldots+e_{i} \tag{5.1}
\end{equation*}
$$

for $1 \leq i \leq n$. The Weyl group of C_{n} is $\mathcal{C}_{n} \cong \mathfrak{S}_{n} \ltimes\{ \pm 1\}^{n}$ and the graph

$$
\begin{equation*}
s_{1}-s_{2} \ldots s_{n-1}=s_{n} \tag{5.2}
\end{equation*}
$$

is the associated Coxeter diagram, where the $s_{i}:=s_{\rho_{i}}$ are the reflections from Definition 2.7, which generate \mathcal{C}_{n}. We have $-I_{n} \in \mathcal{C}_{n}$ and thus, $-\omega_{i} \in \mathcal{C}_{n} \omega_{i}$. Furthermore, the orbit $\mathcal{C}_{n} \omega_{i}$ has cardinality $2^{i}\binom{n}{i}$ for $1 \leq i \leq n$.
The orbit polynomials associated to the fundamental weights of C_{n} and the elementary symmetric polynomials from Equation (3.1) satisfy the following relations.

Proposition 5.1. In $\mathbb{Q}\left[x^{ \pm}\right]$, define the monomials

$$
y_{1}=x_{1} \quad \text { and } \quad y_{k}=x_{k} x_{k-1}^{-1} \quad \text { for } \quad 2 \leq k \leq n
$$

Then

$$
\sigma_{i}\left(y_{1}(x)+y_{1}(x)^{-1}, \ldots, y_{n}(x)+y_{n}(x)^{-1}\right)=2^{i}\binom{n}{i} \theta_{i}(x)
$$

for $1 \leq i \leq n$.

Proof. We follow the proof of Proposition 4.1.
It follows from Equation (5.1), that $\pm \omega_{1}= \pm e_{1}$ and $\pm\left(\omega_{i}-\omega_{i-1}\right)= \pm e_{i}$ for $2 \leq i \leq n$, which is obtained from ω_{1} by permutation and sign change of coordinates. Thus, $\left\{ \pm \omega_{1}, \pm\left(\omega_{2}-\omega_{1}\right), \ldots, \pm\left(\omega_{n}-\omega_{n-1}\right)\right\} \subseteq \mathcal{C}_{n} \omega_{1}$. Since these $2 n$ weights are distinct and the orbit of ω_{1} has cardinality $2 n$, we also have " \supseteq ". The corresponding monomials in $\mathbb{Q}\left[x^{ \pm}\right]$are given by y_{1}, \ldots, y_{n} and their inverses.
For $1 \leq i \leq n$, we have $x_{i}=y_{1} \ldots y_{i}$. Since the linear action of \mathcal{C}_{n} on $\mathbb{Q}\left[x^{ \pm}\right]$by Equation (2.3) permutes and inverts the y_{i}, we have $\mathcal{C}_{n} \cdot x_{i}=\left\{\prod_{j \in J} y_{j}^{\delta_{j}}\left|J \subseteq\{1, \ldots, n\},|J|=i, \delta \in\{ \pm 1\}^{J}\right\}\right.$. Thus,

$$
\theta_{i}=\frac{\left|\operatorname{Stab}_{\mathcal{C}_{n}}\left(x_{i}\right)\right|}{\left|\mathcal{C}_{n}\right|} \sum_{\substack{J \subseteq\{1, \ldots, n\} \\|J|=i}} \sum_{\delta \in\{ \pm 1\}^{J}} \prod_{j \in J} y_{j}^{\delta_{j}}=\frac{1}{\left|\mathcal{C}_{n} \cdot x_{i}\right|} \sum_{\substack{J \subseteq\{1, \ldots, n\} \\|J|=i}} \prod_{j \in J}\left(y_{j}+y_{j}^{-1}\right)
$$

with $\left|\mathcal{C}_{n} \cdot x_{i}\right|=2^{i}\binom{n}{i}$ yields the statement.

5.2 Hermite matrix for \mathcal{C}_{n}

The proof of the next statement is straightforward.
Proposition 5.2. The map

$$
\begin{aligned}
\psi:\left(\mathbb{C}^{*}\right)^{n} & \rightarrow\left(\mathbb{C}^{*}\right)^{n} \\
x & \mapsto\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{n} x_{n-1}^{-1}\right)
\end{aligned}
$$

is bijective and the preimage of \mathbb{T}^{n} is \mathbb{T}^{n}.
We state the main result of this section, which we applied in Example 1.1.
Theorem 5.3. Define the matrix $H \in \mathbb{Q}[z]^{n \times n}$ by

$$
\begin{aligned}
H(z)_{i j} & =\operatorname{Tr}\left(4(C(z))^{i+j-2}-(C(z))^{i+j}\right) \text { with } \\
C(z) & =\left[\begin{array}{cccc}
0 & \cdots & 0 & -c_{n}(z) \\
1 & & 0 & -c_{n-1}(z) \\
& \ddots & & \vdots \\
0 & & 1 & -c_{1}(z)
\end{array}\right], \quad \text { where } c_{i}(z)=(-2)^{i}\binom{n}{i} z_{i} \text { for } 1 \leq i \leq n .
\end{aligned}
$$

Then $\mathcal{T}=\left\{z \in \mathbb{R}^{n} \mid H(z) \succeq 0\right\}$.
Proof. Let $z \in \mathbb{R}^{n}$ and set $c_{i}:=c_{i}(z) \in \mathbb{R}$ for $1 \leq i \leq n$.
To show " \subseteq ", assume that $z \in \mathcal{T}$. Then there exists $x \in \mathbb{T}^{n}$, such that $\theta_{i}(x)=z_{i}$ for $1 \leq i \leq n$. By Proposition 5.1, the solution of the symmetric polynomial system

$$
\text { (II) } \quad \sigma_{i}\left(y_{1}+y_{1}^{-1}, \ldots, y_{n}+y_{n}^{-1}\right)=(-1)^{i} c_{i} \quad \text { for } \quad 1 \leq i \leq n
$$

is $y=\psi(x) \in \mathbb{T}^{n}$, where ψ is the map from Proposition 5.2. Applying Corollary 3.7 yields $H(z) \succeq 0$.
For " \supseteq " on the other hand, assume $H(z) \succeq 0$. By Corollary 3.7, the solution y of the above system (II) is contained in \mathbb{T}^{n}. Let $x \in \mathbb{T}^{n}$ be the unique preimage of y under ψ. Then $z_{i}=\theta_{i}(x)$ and so $z=\vartheta(x)$ is contained in \mathcal{T}.

We finish this subsection with a remark on the degree of the entries of the Hermite matrix polynomial.
Remark 5.4. The entries of the last column of the matrix polynomial $C(z)$ from Theorem 5.3 have degree 1 , all other entries are constant. The degree of $H(z)_{i j}$ is $i+j$ and the determinant of $H(z)$ has degree $2 n$.

5.3 Example \mathcal{C}_{2}

In this subsection, we further investigate the case $n=2$.

$$
\begin{aligned}
\mathcal{C}_{2} & \cong \mathfrak{S}_{2} \ltimes\{ \pm 1\}^{2} \\
\omega_{1} & =[1,1]^{t} \\
\omega_{2} & =[1,0]^{t} \\
\rho_{1} & =[1,-1]^{t} \\
\rho_{2} & =\left[\begin{array}{ll}
0, & 2
\end{array}\right]^{t}
\end{aligned}
$$

Figure 5: The root system C_{2} in \mathbb{R}^{2} with fundamental weights ω_{1}, ω_{2} and simple roots ρ_{1}, ρ_{2}.

In Figure 5, the square is the orbit of the blue shaded triangle with vertices $0, \omega_{1} / 2, \omega_{2} / 2$ under reflection by \mathcal{C}_{2}.
Let $z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$. The matrix $C(z) \in \mathbb{Q}[z]^{2 \times 2}$ from Theorem 5.3 evaluated in z is

$$
C(z)=\left[\begin{array}{rr}
0 & -4 z_{2} \tag{5.3}\\
1 & 4 z_{1}
\end{array}\right]
$$

Then z is contained in \mathcal{T} if and only if the resulting Hermite matrix

$$
H(z)=8\left[\begin{array}{cc}
-2 z_{1}^{2}+z_{2}+1 & -8 z_{1}^{3}+6 z_{1} z_{2}+2 z_{1} \tag{5.4}\\
-8 z_{1}^{3}+6 z_{1} z_{2}+2 z_{1} & -32 z_{1}^{4}+8 z_{1}^{2}+32 z_{1}^{2} z_{2}-4 z_{2}^{2}-4 z_{2}
\end{array}\right]
$$

is positive semi-definite, which is equivalent to its determinant and trace being nonnegative. The varieties of these two polynomials in z_{1}, z_{2} are depicted below.

Figure 6: Vanishing points and positivity regions for determinant and trace of $H(z)$.

$$
\begin{aligned}
\operatorname{Det}(H(z)) & =256\left(z_{2}-z_{1}^{2}\right)\left(2 z_{1}+z_{2}+1\right)\left(2 z_{1}-z_{2}-1\right) \\
\operatorname{Tr}(H(z)) & =8\left(-32 z_{1}^{4}+32 z_{1}^{2} z_{2}+6 z_{1}^{2}-4 z_{2}^{2}-3 z_{2}+1\right)
\end{aligned} \quad \text { (solid) } \text { (dots) }
$$

We observe three intersections of $" \operatorname{Det}(H(z))=0$ " (red solid line) and " $\operatorname{Tr}(H(z))=0$ " (blue dots) in the
the vertices

$$
\begin{aligned}
& \text { Vertex }_{1}:=\vartheta\left(\exp \left(-2 \pi \mathrm{i}\left\langle\omega_{1}, \frac{\omega_{1}}{2}\right\rangle\right), \exp \left(-2 \pi \mathrm{i}\left\langle\omega_{2}, \frac{\omega_{1}}{2}\right\rangle\right)\right)=\vartheta(-1,-1)=(0,-1) \\
& \text { Vertex }_{2}:=\vartheta\left(\exp \left(-2 \pi \mathrm{i}\left\langle\omega_{1}, \frac{\omega_{2}}{2}\right\rangle\right), \exp \left(-2 \pi \mathrm{i}\left\langle\omega_{2}, \frac{\omega_{2}}{2}\right\rangle\right)\right)=\vartheta(-1,1)=(-1,1) \\
& \text { Vertex }_{3}:=\vartheta\left(\exp \left(-2 \pi \mathrm{i}\left\langle\omega_{1}, 0\right\rangle\right), \exp \left(-2 \pi \mathrm{i}\left\langle\omega_{2}, 0\right\rangle\right)\right)=\vartheta(1,1)=(1,1)
\end{aligned}
$$

The shape of this domain is dictated by the determinant, but from the positivity condition one can observe that the trace is also required. Alternatively the inequation given by the trace could be replaced by the constraint that the orbit space is contained in the square $[-1,1]^{n}$.

6 Type \mathcal{B}

The Weyl group of B_{n} is isomorphic to that of C_{n} and we find a similar formula for the orbit polynomials in Proposition 6.1 with a deviation at σ_{n} that leads to a different Hermite matrix in Theorem 6.4.

6.1 Fundamental invariants for \mathcal{B}_{n}

Similar to the case \mathcal{C}_{n}, the root system B_{n} given in [Bou68, Planche II] is a root system in \mathbb{R}^{n} and the simple roots and fundamental weights are

$$
\begin{equation*}
\rho_{i}=e_{i}-e_{i+1}, \quad \rho_{n}=e_{n} \quad \text { and } \quad \omega_{i}=e_{1}+\ldots+e_{i}, \quad \omega_{n}=\left(e_{1}+\ldots+e_{n}\right) / 2 \tag{6.1}
\end{equation*}
$$

for $1 \leq i \leq n$. The Weyl group of B_{n} is $\mathcal{B}_{n} \cong \mathcal{C}_{n} \cong \mathfrak{S}_{n} \ltimes\{ \pm 1\}^{n}$ and the graph

$$
\begin{equation*}
s_{1}-s_{2} \longleftarrow s_{n-1}=s_{n} \tag{6.2}
\end{equation*}
$$

is the associated Coxeter diagram, where the $s_{i}:=s_{\rho_{i}}$ are the reflections from Definition 2.7, which generate \mathcal{B}_{n}. We have $-I_{n} \in \mathcal{B}_{n}$ and thus, $-\omega_{i} \in \mathcal{C}_{n} \omega_{i}$. Furthermore, the orbit $\mathcal{C}_{n} \omega_{i}$ has cardinality $2^{i}\binom{n}{i}$ for $1 \leq i \leq n$.

The orbit polynomials associated to the fundamental weights of B_{n} and the elementary symmetric polynomials from Equation (3.1) satisfy the following relations.

Proposition 6.1. In $\mathbb{Q}\left[x^{ \pm}\right]$, define the monomials

$$
y_{1}=x_{1}, y_{k}=x_{k} x_{k-1}^{-1} \quad \text { for } \quad 2 \leq k \leq n-1 \quad \text { and } \quad y_{n}=x_{n}^{2} x_{n-1}^{-1}
$$

Then

$$
\begin{aligned}
\sigma_{i}\left(y_{1}(x)+y_{1}(x)^{-1}, \ldots, y_{n}(x)+y_{n}(x)^{-1}\right) & =2^{i}\binom{n}{i} \theta_{i}(x) \quad \text { for } \quad 1 \leq i \leq n-1 \quad \text { and } \\
\sigma_{n}\left(y_{1}(x)+y_{1}(x)^{-1}, \ldots, y_{n}(x)+y_{n}(x)^{-1}\right) & =2^{n} \Theta_{2 \omega_{n}}(x)
\end{aligned}
$$

Proof. Since $\mathcal{B}_{n} \cong \mathcal{C}_{n}$, the proof is analogous to the one of Proposition 5.1, when we replace ω_{n} with $2 \omega_{n}$. Then the corresponding monomial in $\mathbb{Q}\left[x^{ \pm}\right]$is $x^{2 e_{n}}=x_{n}^{2}$.

The orbit polynomial $\Theta_{2 \omega_{n}}$ is \mathcal{B}_{n}-invariant. Hence, it can be expressed as a polynomial in the fundamental invariants of $\mathbb{Q}\left[x^{ \pm}\right]^{\mathcal{B}_{n}}$. We give the explicit equation in the next lemma.

Lemma 6.2. In $\mathbb{Q}\left[x^{ \pm}\right]$, the orbit polynomial associated to $2 \omega_{n} \in \Omega$ satisfies

$$
\Theta_{2 \omega_{n}}=2^{n} \theta_{n}^{2}-\sum_{j=1}^{n-1}\binom{n}{j} \theta_{j}-1
$$

Proof. The cardinality of the orbit $\mathcal{B}_{n} \omega_{n}$ is 2^{n}. Let $\mu \in \mathcal{B}_{n} \omega_{n}$ and distinguish between the following three cases.

1. If $\mu=\omega_{n}$, then $\Theta_{\omega_{n}+\mu}=\Theta_{2 \omega_{n}}$ is the term on the left-hand side of the statement, for which we search an explicit formula.
2. If $\mu=-\omega_{n}$, then $\Theta_{\omega_{n}+\mu}=\Theta_{0}=1$.
3. For any other $\mu \in \mathcal{B}_{n} \omega_{n}$, there exists $1 \leq j \leq n-1$, such that μ contains exactly j positive coordinates. Therefore, $\mu+\omega_{n}$ has exactly j nonzero entries and is contained in the orbit of ω_{j} under \mathcal{B}_{n}, that is, $\Theta_{\mu+\omega_{n}}=\Theta_{\omega_{j}}$. The number of μ, for which this is the case, is $\binom{n}{j}$.

From this and Proposition 2.6, we conclude that

$$
2^{n} \theta_{n}^{2}=\sum_{\mu \in \mathcal{B}_{n} \omega_{n}} \Theta_{\omega_{n}+\mu}=\Theta_{2 \omega_{n}}+1+\sum_{j=1}^{n-1}\binom{n}{j} \theta_{j}
$$

to obtain the equation for $\Theta_{\omega_{n}+\mu}$.

6.2 Hermite matrix for \mathcal{B}_{n}

Proposition 6.3. Define the map

$$
\begin{aligned}
\psi:\left(\mathbb{C}^{*}\right)^{n} & \rightarrow\left(\mathbb{C}^{*}\right)^{n} \\
x & \mapsto\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{n-1} x_{n-2}^{-1}, x_{n}^{2} x_{n-1}^{-1}\right)
\end{aligned}
$$

1. ψ is surjective. The preimage of \mathbb{T}^{n} under ψ is \mathbb{T}^{n}.
2. Every point in \mathbb{T}^{n} has exactly two distinct preimages $x, x^{\prime} \in \mathbb{T}^{n}$ with $x_{1}=x_{1}^{\prime}, \ldots, x_{n-1}=x_{n-1}^{\prime}$ and $x_{n}=-x_{n}^{\prime}$.
3. If $x, x^{\prime} \in \mathbb{T}^{n}$ with $\psi(x)=\psi\left(x^{\prime}\right)$ and $x_{n}=-x_{n}^{\prime}$, then $\theta_{n}(x)=-\theta_{n}\left(x^{\prime}\right)$.

Proof. 1. and 2. For all $y \in\left(\mathbb{C}^{*}\right)^{n}$, there exists $x \in\left(\mathbb{C}^{*}\right)^{n}$ with $x_{1}=y_{1}, x_{2}=y_{1} x_{1}, \ldots, x_{n-1}=y_{n-1} x_{n-2}$ and $x_{n}^{2}=y_{n} x_{n-1}$. Thus, x is a preimage of y under ψ and uniquely determined by y up to a sign in the last coordinate. We have $y \in \mathbb{T}^{n}$ if and only if $x \in \mathbb{T}^{n}$.
3. We deduce from the Coxeter diagram in Equation (6.2) that $\operatorname{Stab}_{\mathcal{B}_{n}}\left(\omega_{n}\right) \cong \mathcal{A}_{n-1} \cong \mathfrak{S}_{n}$. Hence, $\mathcal{B}_{n} \omega_{n}=$ $\{ \pm 1\}^{n} \omega_{n}$ and by Proposition 6.1 this orbit consists of elements

$$
\mu=\frac{\epsilon_{1}}{2} e_{1}+\ldots+\frac{\epsilon_{n}}{2} e_{n}=\frac{\epsilon_{1}}{2} \omega_{1}+\sum_{i=2}^{n-1} \frac{\epsilon_{i}}{2}\left(\omega_{i}-\omega_{i-1}\right)+\frac{\epsilon_{n}}{2}\left(2 \omega_{n}-\omega_{n-1}\right)=\epsilon_{n} \omega_{n}+\nu \in \Omega
$$

with $\epsilon_{i} \in\{ \pm 1\}$ for $1 \leq i \leq n$ and $\nu \in \mathbb{Z} \omega_{1} \oplus \ldots \oplus \mathbb{Z} \omega_{n-1}$. Let $\alpha, \beta \in \mathbb{Z}^{n}$ be the coordinates of μ, ν in Ω. Then $\beta_{n}=0$ and the monomial in θ_{n} corresponding to μ is $x^{\alpha}=x_{1}^{\beta_{1}} \ldots x_{n-1}^{\beta_{n-1}} x_{n}^{\epsilon_{n}}$. Thus, x^{α} is linear in x_{n}. Since every monomial in θ_{n} can be written in terms of such $\beta, \epsilon, \theta_{n}$ is linear in x_{n} and with x, x^{\prime} from the hypothesis we have $\theta_{n}(x)=-\theta_{n}\left(x^{\prime}\right)$.

We state the main result for Weyl groups of type \mathcal{B}.
Theorem 6.4. Define the matrix $H \in \mathbb{Q}[z]^{n \times n}$ by

$$
\begin{aligned}
H(z)_{i j} & =\operatorname{Tr}\left(4(C(z))^{i+j-2}-(C(z))^{i+j}\right) \text { with } \\
C(z) & =\left[\begin{array}{cccc}
0 & \cdots & 0 & -c_{n}(z) \\
1 & & 0 & -c_{n-1}(z) \\
& \ddots & & \vdots \\
0 & & 1 & -c_{1}(z)
\end{array}\right], \text { where } c_{i}(z)=(-2)^{i}\binom{n}{i} z_{i} \text { for } 1 \leq i \leq n-1 \text { and } \\
c_{n}(z) & =(-2)^{n}\left(2^{n} z_{n}^{2}-\sum_{i=1}^{n-1}\binom{n}{i} z_{i}-1\right)
\end{aligned}
$$

Then $\mathcal{T}=\left\{z \in \mathbb{R}^{n} \mid H(z) \succeq 0\right\}$.
Proof. Let $z \in \mathbb{R}^{n}$ and set $c_{i}:=c_{i}(z) \in \mathbb{R}$ for $1 \leq i \leq n$.
To show " \subseteq ", assume that $z \in \mathcal{T}$. Then there exists $x \in \mathbb{T}^{n}$, such that $\theta_{i}(x)=z_{i}$ for $1 \leq i \leq n$. By Proposition 6.1 and Lemma 6.2, the solution of

$$
\text { (II) } \quad \sigma_{i}\left(y_{1}+y_{1}^{-1}, \ldots, y_{n}+y_{n}^{-1}\right)=(-1)^{i} c_{i} \quad \text { for } \quad 1 \leq i \leq n
$$

is $y=\psi(x) \in \mathbb{T}^{n}$, where ψ is the map from Proposition 6.3. Applying Corollary 3.7 yields $H(z) \succeq 0$.
For " \supseteq " on the other hand, assume $H(z) \succeq 0$. By Corollary 3.7, the solution y of system (II) with coefficients c_{i} is contained in \mathbb{T}^{n}. According to Proposition $6.3, y$ has exactly two distinct preimages $x, x^{\prime} \in \mathbb{T}^{n}$ under ψ with $x_{1}=x_{1}^{\prime}, \ldots, x_{n-1}=x_{n-1}^{\prime}$ and $x_{n}=-x_{n}^{\prime}$. We have $z_{i}=\theta_{i}(x)=\theta_{i}\left(x^{\prime}\right)$ for $1 \leq i \leq n-1$ and $z_{n}^{2}=\theta_{n}(x)^{2}=\theta_{n}\left(x^{\prime}\right)^{2}$ with $\theta_{n}(x)=-\theta_{n}\left(x^{\prime}\right)$. Therefore, $z_{n}=\theta_{n}(x)$ or $z_{n}=\theta_{n}\left(x^{\prime}\right)=-\theta_{n}(x)$ and thus, z is contained in \mathcal{T}.

Remark 6.5. The entries of the last column of the matrix polynomial $C(z)$ from Theorem 6.4 have degree 1, except $C(z)_{1 n}$, which has degree 2. All other entries are constant. The degree of $H(z)_{i j}$ is $i+j$ and the degree of the determinant of $H(z)$ is $3 n$.

6.3 Example \mathcal{B}_{2}

In this subsection, we further investigate the case $n=2$.

$$
\left.\begin{array}{rl}
\mathcal{B}_{2} & \cong \mathfrak{S}_{2} \ltimes\{ \pm 1\}^{2} \\
\omega_{1} & =[1,1]^{t} / 2 \\
\omega_{2} & =[1,0]^{t} \\
\rho_{1} & =[1,-1]^{t} \\
\rho_{2} & =[0, \\
0,
\end{array}\right]^{t}, ~ l
$$

Figure 7: The root system B_{2} in \mathbb{R}^{2} with fundamental weights ω_{1}, ω_{2} and simple roots ρ_{1}, ρ_{2}.

In Figure 7, the square is the orbit of the blue shaded triangle with vertices $0, \omega_{1}, \omega_{2}$ under reflection by \mathcal{B}_{2}.

Let $z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$. The matrix $C(z) \in \mathbb{Q}[z]^{2 \times 2}$ from Theorem 6.4 evaluated in z is

$$
C(z)=\left[\begin{array}{cc}
0 & -16 z_{2}^{2}+8 z_{1}+4 \tag{6.3}\\
1 & 4 z_{1}
\end{array}\right]
$$

Then z is contained in \mathcal{T} if and only if the resulting Hermite matrix

$$
H(z)=16\left[\begin{array}{cc}
-z_{1}^{2}+2 z_{2}^{2}-z_{1} & -4 z_{1}^{3}+12 z_{1} z_{2}^{2}-6 z_{1}^{2}-2 z_{1} \\
-4 z_{1}^{3}+12 z_{1} z_{2}^{2}-6 z_{1}^{2}-2 z_{1} & -16 z_{1}^{4}+64 z_{1}^{2} z_{2}^{2}-32 z_{2}^{4}-32 z_{1}^{3}+32 z_{1} z_{2}^{2}-20 z_{1}^{2}+8 z_{2}^{2}-4 z_{1}
\end{array}\right]
$$

is positive semi-definite, which is equivalent to its determinant and trace being nonnegative. The varieties of these two polynomials in z_{1}, z_{2} are depicted below.

(a) $\operatorname{Det}(H(z) \geq 0$

(b) $\operatorname{Tr}(H(z) \geq 0$

(c) $\operatorname{Det}(H(z), \operatorname{Tr}(H(z) \geq 0$

Figure 8: Vanishing points and positivity regions for determinant and trace of $H(z)$.

$$
\begin{align*}
\operatorname{Det}(H(z)) & =4096 z_{2}^{2}\left(z_{1}-z_{2}^{2}\right)\left(z_{1}+2 z_{2}+1\right)\left(z_{1}-2 z_{2}+1\right) \tag{solid}\\
\operatorname{Tr}(H(z)) & =16\left(-16 z_{1}^{4}+64 z_{1}^{2} z_{2}^{2}-32 z_{2}^{4}-32 z_{1}^{3}+32 z_{1} z_{2}^{2}-21 z_{1}^{2}+10 z_{2}^{2}-5 z_{1}\right) \tag{dots}
\end{align*}
$$

The \mathbb{T}-orbit space in the B_{2}-case is obtained from the C_{2}-case in Figure 6 by swapping z_{1}, z_{2}. Apart from a rotation, we also observe that the rank of $H(z)$ reduces from 2 to 1 on the line " $z_{2}=0$ ". Furthermore, there is a fourth intersection of the varieties of the determinant and the trace at $z=(0,0)$.

7 Type \mathcal{D}

The Weyl group \mathcal{D}_{n} is isomorphic to a subgroup of $\mathcal{C}_{n} \cong \mathcal{B}_{n}$ of index 2 , which lead to a symmetric system of type (II). The explicit formula between fundamental invariants and the elementary symmetric polynomials is similar to Proposition 5.1, but with deviations in σ_{n-1} and σ_{n} that additionally depend on the parity of n. If n is odd, then the orbit space of \mathcal{D}_{n} contains complex points, but a real description is possible with a change of variables as in Equation (2.8).

7.1 Fundamental invariants for \mathcal{D}_{n}

The groups \mathfrak{S}_{n} and $\{ \pm 1\}_{+}^{n}:=\left\{\epsilon \in\{ \pm 1\}^{n} \mid \epsilon_{1} \ldots \epsilon_{n}=1\right\}$ act on \mathbb{R}^{n} by permutation of coordinates, and multiplication of coordinates by ± 1, where only an even amount of sign changes is admissible. The root system D_{n} given in [Bou68, Planche IV] is a root system in \mathbb{R}^{n} with simple roots and fundamental weights

$$
\begin{align*}
& \rho_{i}=e_{i}-e_{i+1}, \quad \rho_{n}=e_{n-1}+e_{n} \quad \text { and } \tag{7.1}\\
& \omega_{i}=e_{1}+\ldots+e_{i}, \quad \omega_{n-1}=\left(e_{1}+\ldots+e_{n-1}-e_{n}\right) / 2, \quad \omega_{n}=\left(e_{1}+\ldots+e_{n}\right) / 2
\end{align*}
$$

The Weyl group of D_{n} is $\mathcal{D}_{n} \cong \mathfrak{S}_{n} \ltimes\{ \pm 1\}_{+}^{n}$ and the graph

is the associated Coxeter diagram, where the $s_{i}:=s_{\rho_{i}}$ are the reflections from Definition 2.7, which generate \mathcal{D}_{n}. For all $1 \leq i \leq n$, we have $-\omega_{i} \in \mathcal{D}_{n} \omega_{i}$, except when n is odd, where $-\omega_{n-1} \in \mathcal{D}_{n} \omega_{n}$. Furthermore, the orbit $\mathcal{D}_{n} \omega_{i}$ has cardinality $2^{i}\binom{n}{i}$ for $1 \leq i \leq n-2$ and $\left|\mathcal{D}_{n} \omega_{n-1}\right|=\left|\mathcal{D}_{n} \omega_{n}\right|=2^{n-1}$.
The orbit polynomials associated to the fundamental weights of D_{n} and the elementary symmetric polynomials from Equation (3.1) satisfy the following relations.

Proposition 7.1. In $\mathbb{Q}\left[x^{ \pm}\right]$, define the monomials

$$
y_{1}=x_{1}, \quad y_{k}=x_{k} x_{k-1}^{-1} \quad \text { for } \quad 2 \leq k \leq n-2, \quad y_{n-1}=x_{n} x_{n-1} x_{n-2}^{-1} \quad \text { and } \quad y_{n}=x_{n} x_{n-1}^{-1} .
$$

Then

$$
\begin{aligned}
\sigma_{i}\left(y_{1}(x)+y_{1}(x)^{-1}, \ldots, y_{n}(x)+y_{n}(x)^{-1}\right) & =2^{i}\binom{n}{i} \theta_{i}(x) \quad \text { for } \quad 1 \leq i \leq n-2 \\
\sigma_{n-1}\left(y_{1}(x)+y_{1}(x)^{-1}, \ldots, y_{n}(x)+y_{n}(x)^{-1}\right) & =2^{n-1} n \Theta_{\omega_{n-1}+\omega_{n}}(x) \quad \text { and } \\
\sigma_{n}\left(y_{1}(x)+y_{1}(x)^{-1}, \ldots, y_{n}(x)+y_{n}(x)^{-1}\right) & =2^{n-1}\left(\Theta_{2 \omega_{n-1}}(x)+\Theta_{2 \omega_{n}}(x)\right)
\end{aligned}
$$

Proof. We follow the proof of Proposition 4.1.
It follows from Equation (7.1), that $\pm \omega_{1}= \pm e_{1}$ and

$$
\begin{aligned}
\pm\left(\omega_{i}-\omega_{i-1}\right) & = \pm e_{i} \text { for } \quad 2 \leq i \leq n-2 \\
\pm\left(\omega_{n}+\omega_{n-1}-\omega_{n-2}\right) & = \pm e_{n-1} \quad \text { and } \\
\pm\left(\omega_{n}-\omega_{n-1}\right) & = \pm e_{n}
\end{aligned}
$$

are obtained from ω_{1} by permutation and admissible sign changes of coordinates. Those $2 n$ weights are distinct and thus form the orbit $\mathcal{D}_{n} \omega_{1}$. The corresponding monomials in $\mathbb{Q}\left[x^{ \pm}\right]$are given by y_{1}, \ldots, y_{n} and their inverses.
For $1 \leq i \leq n-2$, we have $x_{i}=y_{1} \ldots y_{i}$. Then the statement for θ_{i} is proven analogously to Proposition 5.1. With $x_{n} x_{n-1}=y_{1} \ldots y_{n-1}$, we obtain the equation for $\Theta_{\omega_{n-1}+\omega_{n}}$ as well.
Finally, apply $x_{n-1}^{2}=y_{1} \ldots y_{n-1} y_{n}^{-1}$ and $x_{n}^{2}=y_{1} \ldots y_{n-1} y_{n}$ to obtain

$$
2^{n-1}\left(\Theta_{2 \omega_{n-1}}+\Theta_{2 \omega_{n}}\right)=\sum_{\substack{\epsilon \in\{ \pm 1\}^{n} \\ \epsilon_{1} \ldots \epsilon_{n}=-1}} y^{\epsilon}+\sum_{\substack{\epsilon \in\{ \pm 1\}^{n} \\ \epsilon_{1} \ldots \epsilon_{n}=1}} y^{\epsilon}=\sum_{\epsilon \in\{ \pm 1\}^{n}} y^{\epsilon}=\prod_{i=1}^{n} y_{i}+y_{i}^{-1}
$$

where $y^{\epsilon}:=y_{1}^{\epsilon_{1}} \ldots y_{n}^{\epsilon_{n}}$. This proves the last equation.

The orbit polynomials associated to $\omega_{n}+\omega_{n-1}, 2 \omega_{n-1}$ and $2 \omega_{n} \in \Omega$ are invariant. Hence, they can be expressed in terms of the generators θ_{i} of $\mathbb{Q}\left[x^{ \pm}\right]^{\mathcal{D}_{n}}$. The formula depends on the parity of n as follows.

Lemma 7.2. In $\mathbb{Q}\left[x^{ \pm}\right]$, the following equations hold.

1. If n is even, then

$$
\begin{aligned}
\Theta_{\omega_{n-1}+\omega_{n}} & =\frac{2^{n-1}}{n} \theta_{n-1} \theta_{n}-\frac{1}{n} \sum_{j=1}^{(n-2) / 2}\binom{n}{2 j-1} \theta_{2 j-1} \\
\Theta_{2 \omega_{n-1}} & =2^{n-1} \theta_{n-1}^{2}-\sum_{j=1}^{(n-2) / 2}\binom{n}{2 j} \theta_{2 j}-1 \quad \text { and } \\
\Theta_{2 \omega_{n}} & =2^{n-1} \theta_{n}^{2}-\sum_{j=1}^{(n-2) / 2}\binom{n}{2 j} \theta_{2 j}-1
\end{aligned}
$$

2. If n is odd, then

$$
\begin{aligned}
\Theta_{\omega_{n-1}+\omega_{n}} & =\frac{2^{n-1}}{n} \theta_{n-1} \theta_{n}-\frac{1}{n} \sum_{j=1}^{(n-3) / 2}\binom{n}{2 j} \theta_{2 j}-\frac{1}{n} \\
\Theta_{2 \omega_{n-1}} & =2^{n-1} \theta_{n-1}^{2}-\sum_{j=0}^{(n-3) / 2}\binom{n}{2 j+1} \theta_{2 j+1} \quad \text { and } \\
\Theta_{2 \omega_{n}} & =2^{n-1} \theta_{n}^{2}-\sum_{j=0}^{(n-3) / 2}\binom{n}{2 j+1} \theta_{2 j+1}
\end{aligned}
$$

Proof. We have $\left|\mathcal{D}_{n} \omega_{n-1}\right|=\left|\mathcal{D}_{n} \omega_{n}\right|=2^{n-1}$. The equations can be obtained from the recurrence formula Proposition 2.6 and the following combinatorial steps.

1. Assume that n is even. We first prove the equation for $\Theta_{2 \omega_{n}}$ in detail. For $0 \leq j \leq n / 2$, consider $\mu \in \mathcal{D}_{n} \omega_{n}$ with $2 j$ positive coordinates. There are precisely $\binom{n}{2 j}$ such elements in $\mathcal{D}_{n} \omega_{n}$ and an odd amount of positive coordinates is not possible. We distinguish three cases. If $j=0$, then $\omega_{n-1}+\mu=0$, and if $j=n / 2$, then $\omega_{n}+\mu=2 \omega_{n}$. Otherwise, $\omega_{n}+\mu$ has $2 j$ nonzero coordinates and must therefore be contained in $\mathcal{D}_{n} \omega_{2 j}$. All in all, we obtain

$$
2^{n-1} \theta_{n}^{2}=\sum_{\mu \in \mathcal{D}_{n} \omega_{n}} \Theta_{\omega_{n}+\mu}=\Theta_{2 \omega_{n}}+\sum_{j=1}^{(n-2) / 2}\binom{n}{2 j} \theta_{2 j}+1
$$

Next for $1 \leq j \leq n / 2$, consider $\mu \in \mathcal{D}_{n} \omega_{n-1}$ with $2 j-1$ positive coordinates. Then

$$
\omega_{n-1}+\mu\left\{\begin{array}{ll}
=0, & \text { if } j=1, \quad \mu_{n}=\frac{1}{2} \\
=2 \omega_{n-1}, & \text { if } j=\frac{n}{2}, \quad \mu_{n}=-\frac{1}{2} \\
\in \mathcal{D}_{n} \omega_{2 j}, & \text { otherwise }
\end{array} \quad \text { and } \quad \omega_{n}+\mu \begin{cases}\in \mathcal{D}_{n}\left(\omega_{n}+\omega_{n-1}\right), & \text { if } \quad j=\frac{n}{2} \\
\in \mathcal{D}_{n} \omega_{2 j-1}, & \text { otherwise }\end{cases}\right.
$$

After counting the number of possibilities in each case, we obtain the two equations

$$
2^{n-1} \theta_{n-1}^{2}=1+\Theta_{2 \omega_{n-1}}+\sum_{j=1}^{(n-2) / 2}\binom{n}{2 j} \theta_{2 j} \quad \text { and } \quad 2^{n-1} \theta_{n-1} \theta_{n}=n \Theta_{\omega_{n}+\omega_{n-1}}+\sum_{j=1}^{(n-2) / 2}\binom{n}{2 j-1} \theta_{2 j-1}
$$

2. Now assume that n is odd. For $1 \leq j \leq(n+1) / 2$, consider $\mu \in \mathcal{D}_{n} \cdot \omega_{n}$ with $2 j-1$ positive coordinates. If $j=(n+1) / 2$ then $\omega_{n}+\mu=2 \omega_{n}$. Otherwise, $\omega_{n}+\mu$ has $2 j-1$ nonzero coordinates. The equation for $\Theta_{2 \omega_{n}}$ is

$$
2^{n-1} \theta_{n}^{2}=\Theta_{2 \omega_{n}}+\sum_{j=1}^{(n-1) / 2}\binom{n}{2 j-1} \theta_{2 j-1}
$$

Finally for $0 \leq j \leq(n-1) / 2$, consider $\mu \in \mathcal{D}_{n} \omega_{n-1}$ with $2 j$ positive coordinates. Then

$$
\omega_{n-1}+\mu\left\{\begin{array}{lll}
=2 \omega_{n-1}, & \text { if } j=\frac{n-1}{2}, \quad \mu_{n}=-\frac{1}{2} \\
\in \mathcal{D}_{n} \omega_{2 j+1}, & \text { otherwise }
\end{array} \quad \text { and } \quad \omega_{n}+\mu \begin{cases}=0, & \text { if } j=0 \\
\in \mathcal{D}_{n}\left(\omega_{n}+\omega_{n-1}\right), & \text { if } j=\frac{n-1}{2} . \\
\in \mathcal{D}_{n} \omega_{2 j}, & \text { otherwise }\end{cases}\right.
$$

After counting the number of possibilities in each case, we obtain the two equations

$$
2^{n-1} \theta_{n-1}^{2}=\Theta_{2 \omega_{n-1}}+\sum_{j=0}^{(n-3) / 2}\binom{n}{2 j+1} \theta_{2 j+1} \quad \text { and } \quad 2^{n-1} \theta_{n-1} \theta_{n}=1+n \Theta_{\omega_{n}+\omega_{n-1}}+\sum_{j=1}^{(n-3) / 2}\binom{n}{2 j} \theta_{2 j} .
$$

This completes the proof.

7.2 Hermite matrix for \mathcal{D}_{n}

Proposition 7.3. Define the map

$$
\begin{aligned}
\psi:\left(\mathbb{C}^{*}\right)^{n} & \rightarrow\left(\mathbb{C}^{*}\right)^{n}, \\
x & \mapsto\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{n-2} x_{n-3}^{-1}, x_{n} x_{n-1} x_{n-2}^{-1}, x_{n} x_{n-1}^{-1}\right) .
\end{aligned}
$$

1. ψ is surjective. The preimage of \mathbb{T}^{n} under ψ is \mathbb{T}^{n}.
2. Every point in \mathbb{T}^{n} has exactly two distinct preimages $x, x^{\prime} \in \mathbb{T}^{n}$ with $x^{\prime}=\left(x_{1}, \ldots, x_{n-2},-x_{n-1},-x_{n}\right)$.
3. If $x \neq x^{\prime} \in \mathbb{T}^{n}$ with $\psi(x)=\psi\left(x^{\prime}\right)$, then $\theta_{i}(x)=\theta_{i}\left(x^{\prime}\right)$ for $1 \leq i \leq n-2$ and $\theta_{n-1}(x)=-\theta_{n-1}\left(x^{\prime}\right), \theta_{n}(x)=$ $-\theta_{n}\left(x^{\prime}\right)$.
4. For all $x \in \mathbb{T}$, there exists $\tilde{x} \in \mathbb{T}$, such that $\theta_{i}(x)=\theta_{i}(\tilde{x})$ for $1 \leq i \leq n-2$ and $\theta_{n-1}(x)=\theta_{n}(\tilde{x}), \theta_{n}(x)=$ $\theta_{n-1}(\tilde{x})$.

Proof. 1. and 2. For all $y \in\left(\mathbb{C}^{*}\right)^{n}$, there exists $x \in\left(\mathbb{C}^{*}\right)^{n}$ with $x_{1}=y_{1}, x_{2}=y_{1} x_{1}, \ldots, x_{n-2}=y_{n-2} x_{n-3}$ and $x_{n-1}^{2}=y_{n}^{-1} y_{n-1} x_{n-2}, x_{n}=y_{n} x_{n-1}$. Hence, x is uniquely determined by y up to a sign in x_{n-1}, x_{n}. We have $y \in \mathbb{T}^{n}$ if and only if $x \in \mathbb{T}^{n}$.
3. We deduce from the Coxeter diagram in Equation (5.2) that $\operatorname{Stab}_{\mathcal{D}_{n}}\left(\omega_{n}\right) \cong \operatorname{Stab}_{\mathcal{D}_{n}}\left(\omega_{n-1}\right) \cong \mathcal{A}_{n-1} \cong \mathfrak{S}_{n}$. Hence, $\mathcal{D}_{n} \omega_{n-1}=\{ \pm 1\}_{+}^{n} \omega_{n-1}$, respectively $\mathcal{D}_{n} \omega_{n}=\{ \pm 1\}_{+}^{n} \omega_{n}$, and by Proposition 7.1, this orbit consists of elements

$$
\begin{aligned}
\mu & =\frac{\epsilon_{1}}{2} e_{1}+\ldots+\frac{\epsilon_{n}}{2} e_{n}=\frac{\epsilon_{1}}{2} \omega_{1}+\sum_{i=2}^{n-2} \frac{\epsilon_{i}}{2}\left(\omega_{i}-\omega_{i-1}\right)+\frac{\epsilon_{n-1}}{2}\left(\omega_{n}+\omega_{n-1}-\omega_{n-2}\right)+\frac{\epsilon_{n}}{2}\left(\omega_{n}-\omega_{n-1}\right) \\
& =\frac{\epsilon_{n-1}+\epsilon_{n}}{2} \omega_{n}+\frac{\epsilon_{n-1}-\epsilon_{n}}{2} \omega_{n-1}+\nu \in \Omega
\end{aligned}
$$

with $\epsilon_{i} \in\{ \pm 1\}$ for $1 \leq i \leq n$ satisfying

$$
\epsilon_{1} \ldots \epsilon_{n}=\left\{\begin{array}{rll}
-1, & \text { if } \quad \mu \in \mathcal{D}_{n} \omega_{n-1} \\
1, & \text { if } & \mu \in \mathcal{D}_{n} \omega_{n}
\end{array}\right.
$$

and $\nu \in \mathbb{Z} \omega_{1} \oplus \ldots \oplus \mathbb{Z} \omega_{n-2}$. Let $\alpha, \beta \in \mathbb{Z}^{n}$ be the coordinate vectors of μ, ν in Ω. Then $\beta_{n-1}=\beta_{n}=0$ and the monomial in θ_{n-1}, respectively θ_{n}, corresponding to μ is

$$
x^{\alpha}=x_{1}^{\beta_{1}} \ldots x_{n-2}^{\beta_{n-2}} x_{n-1}^{\left(\epsilon_{n-1}-\epsilon_{n}\right) / 2} x_{n}^{\left(\epsilon_{n-1}+\epsilon_{n}\right) / 2}
$$

with $\left(\epsilon_{n-1} \pm \epsilon_{n}\right) / 2 \in\{-1,0,1\}$. Therefore, x^{α} is linear in x_{n-1} and independent of x_{n} or vice versa. With x, x^{\prime} from the hypothesis we have $x^{\alpha}=-\left(x^{\prime}\right)^{\alpha}$. Since every monomial in θ_{n-1}, respectively θ_{n}, can be written in terms of such β, ϵ, we obtain $\theta_{n-1}(x)=-\theta_{n-1}\left(x^{\prime}\right)$ as well as $\theta_{n}(x)=-\theta_{n}\left(x^{\prime}\right)$. Furthermore, $\theta_{i}(x)=\theta_{i}\left(x^{\prime}\right)$ holds according to Proposition 7.1, since $y_{k}(x)=y_{k}\left(x^{\prime}\right)$ for all $1 \leq k \leq n$.
4. Following the proof for the third statement, this holds for $\tilde{x}:=\left(x_{1}, \ldots, x_{n-2}, x_{n}, x_{n-1}\right)$.

We state the main result for Weyl groups of type \mathcal{D}.
Theorem 7.4. Consider the n-dimensional \mathbb{R}-vector space

$$
\mathcal{Z}:= \begin{cases}\mathbb{R}^{n}, & \text { if } n \text { is even } \\ \left\{z \in \mathbb{C}^{n} \mid z_{1}, \ldots, z_{n-2} \in \mathbb{R}, \overline{z_{n}}=z_{n-1}\right\}, & \text { if } n \text { is odd }\end{cases}
$$

and define the matrix $H \in \mathbb{Q}[z]^{n \times n}$ by

$$
\begin{aligned}
& H(z)_{i j}=\operatorname{Tr}\left(4(C(z))^{i+j-2}-(C(z))^{i+j}\right) \quad \text { with } \\
& C(z)=\left[\begin{array}{cccc}
0 & \cdots & 0 & -c_{n}(z) \\
1 & & 0 & -c_{n-1}(z) \\
& \ddots & & \vdots \\
0 & & 1 & -c_{1}(z)
\end{array}\right] \text {, where } c_{i}(z)=(-2)^{i}\binom{n}{i} z_{i} \text { for } 1 \leq i \leq n-2 \quad \text { and } \\
& c_{n-1}(z)=(-2)^{n-1}\left\{\begin{array}{l}
2^{n-1} z_{n} z_{n-1}-\sum_{\substack{(n-1) / 2}}\binom{n}{j 2-1} z_{2 j-1}, \\
2^{n-1} z_{n} z_{n-1}-\sum_{j=1}^{(n-3) / 2}\binom{n}{2 j} z_{2 j}-1,
\end{array} \quad \text { is even } n \text { is odd }, ~,\right. \\
& c_{n}(z)=(-2)^{n}\left\{\begin{array}{l}
2^{n-2}\left(z_{n}^{2}+z_{n-1}^{2}\right)-\sum_{j=1}^{(n-2) / 2}\binom{n}{2 j} z_{2 j}-1, \\
2^{n-2}\left(z_{n}^{2}+z_{n-1}^{2}\right)-\sum_{j=0}^{(n-3) / 2}\binom{n}{2 j+1} z_{2 j+1},
\end{array} \quad \text { if } n \text { is even } \quad \text { is odd } .\right.
\end{aligned}
$$

For all $z \in \mathcal{Z}, H(z) \in \mathbb{R}^{n \times n}$ and $\mathcal{T}=\{z \in \mathcal{Z} \mid H(z) \succeq 0\}$.
Proof. Let $z \in \mathbb{C}^{n}$ and set $c_{i}:=c_{i}(z)$ for $1 \leq i \leq n$.
To show " \subseteq ", assume that $z \in \mathcal{T}$. Then there exists $x \in \mathbb{T}^{n}$, such that $\theta_{i}(x)=z_{i}$ for $1 \leq i \leq n$. Furthermore, we have $z \in \mathcal{Z}$ and $c_{i} \in \mathbb{R}$. By Proposition 7.1 and Lemma 7.2 , the solution of

$$
\text { (II) } \quad \sigma_{i}\left(y_{1}+y_{1}^{-1}, \ldots, y_{n}+y_{n}^{-1}\right)=(-1)^{i} \tilde{c}_{i} \quad \text { for } \quad 1 \leq i \leq n
$$

is $y=\psi(x) \in \mathbb{T}^{n}$, where ψ is the map from Proposition 7.3. Applying Corollary 3.7 yields $H(z) \succeq 0$.
For " \supseteq " on the other hand, assume $z \in \mathcal{Z}$ with $H(z) \succeq 0$. Hence, $c_{i} \in \mathbb{R}$ and by Corollary 3.7 , the solution y of the above system (II) is contained in \mathbb{T}^{n}. According to Proposition $7.3, y$ has two distinct preimages $x, x^{\prime} \in$ \mathbb{T}^{n}. We have $z_{i}=\theta_{i}(x)=\theta_{i}\left(x^{\prime}\right)$ for $1 \leq i \leq n-2$ and $\theta_{n-1}(x)=-\theta_{n-1}\left(x^{\prime}\right), \theta_{n}(x)=-\theta_{n}\left(x^{\prime}\right)$. Furthermore, $z_{n-1}^{2}+z_{n}^{2}=\theta_{n-1}(x)^{2}+\theta_{n}(x)^{2}=\theta_{n-1}\left(x^{\prime}\right)^{2}+\theta_{n}\left(x^{\prime}\right)^{2}$ and $z_{n-1} z_{n}=\theta_{n-1}(x) \theta_{n}(x)=\theta_{n-1}\left(x^{\prime}\right) \theta_{n}\left(x^{\prime}\right)$. Therefore, $\left\{z_{n-1}, z_{n}\right\} \in\left\{\left\{\theta_{n-1}(x), \theta_{n}(x)\right\},\left\{\theta_{n-1}\left(x^{\prime}\right), \theta_{n}\left(x^{\prime}\right)\right\}\right\}$. If $z_{n-1}=\theta_{n-1}(x), z_{n}=\theta_{n}(x)$, then $z=\vartheta(x)$. Otherwise by Proposition 7.3, there exists \tilde{x}, such that $z_{n-1}=\theta_{n-1}(\tilde{x}), z_{n}=\theta_{n}(\tilde{x})$ and $z=\vartheta(\tilde{x})$. An analogous argument applies to x^{\prime} and thus, z is contained in \mathcal{T}.

Remark 7.5.

1. If n is odd, we have $-\omega_{n-1} \in \mathcal{D}_{n} \omega_{n}$. In this case, $\mathcal{T} \nsubseteq \mathbb{R}^{n}$. We follow Equation (2.8) and substitute $z_{n}=\Re\left(\tilde{z}_{n}\right)$ and $z_{n-1}=\Im\left(\tilde{z}_{n}\right)$. This leaves us with the substitutions $z_{n} z_{n-1} \mapsto z_{n}^{2}+z_{n-1}^{2}$ in $c_{n-1}(z)$ and $z_{n}^{2}+z_{n-1}^{2} \mapsto 2\left(z_{n}^{2}-z_{n-1}^{2}\right)$ in $c_{n}(z)$. The image of this new map $\vartheta_{\mathbb{R}}$ is contained in $[-1,1]^{n}$.
2. The entries $H(z)_{i j} \in \mathbb{Q}[z]$ have degree $i+j$. Independent of the parity of n, the determinant of $H(z)$ has degree $3 n+1$.

7.3 Example \mathcal{D}_{4}

In this subsection, we further investigate the case $n=4$.

$$
\begin{aligned}
\mathcal{D}_{4} & \cong \mathfrak{S}_{4} \ltimes\{ \pm 1\}_{+}^{4} \\
\omega_{1} & =\left[\begin{array}{ll}
1,0,0, & 0
\end{array}\right]^{t} \\
\omega_{2} & =\left[\begin{array}{ll}
1,1,0, & 0
\end{array}\right]^{t} \\
\omega_{3} & =\left[\begin{array}{ll}
1,1,1,-1
\end{array}\right]^{t} / 2 \\
\omega_{4} & =\left[\begin{array}{ll}
1,1,1, & 1
\end{array}\right]^{t} / 2
\end{aligned}
$$

Figure 9: A partial projection of the root system D_{4} in \mathbb{R}^{4} with fundamental weights $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$.

The 4 -simplex with vertices $0, \omega_{1}, \omega_{2} / 2, \omega_{3}, \omega_{4}$ is mapped under reflection by $\mathcal{D}_{4} \cong \mathfrak{S}_{4} \ltimes\{ \pm 1\}_{+}^{4}$ to an icositetrachoron. This is a polytope in \mathbb{R}^{4} with boundary consisting of 24 octahedral cells. In Figure 9, we depict a projection of the unique cell with center $\omega_{2} / 2$ and three out of six vertices $\omega_{1}, \omega_{3}, \omega_{4}$ to \mathbb{R}^{3}. The blue shaded region is the 3 -simplex with projected vertices $\omega_{1}, \omega_{2} / 2, \omega_{3}, \omega_{4}$.
Let $z=\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \mathbb{R}^{4}$. Then the matrix $H(z)$ from Theorem 7.4 has determinant

$$
\begin{aligned}
\operatorname{Det}(H(z))= & 4294967296\left(z_{3}-z_{4}\right)^{2}\left(z_{3}+z_{4}\right)^{2}\left(-512 z_{1}^{3} z_{3}^{3} z_{4}^{3}-432 z_{1}^{4} z_{3}^{4}-96 z_{1}^{4} z_{3}^{2} z_{4}^{2}-432 z_{1}^{4} z_{4}^{4}\right. \\
& +864 z_{1}^{3} z_{2} z_{3}^{3} z_{4}+864 z_{1}^{3} z_{2} z_{3} z_{4}^{3}+144 z_{1}^{2} z_{2}^{2} z_{3}^{2} z_{4}^{2}-96 z_{1}^{2} z_{3}^{4} z_{4}^{2}-96 z_{1}^{2} z_{3}^{2} z_{4}^{4} \\
& +864 z_{1} z_{2} z_{3}^{3} z_{4}^{3}-432 z_{3}^{4} z_{4}^{4}-384 z_{1}^{5} z_{3} z_{4}+864 z_{1}^{4} z_{2} z_{3}^{2}+864 z_{1}^{4} z_{2} z_{4}^{2}-1440 z_{1}^{3} z_{2}^{2} z_{3} z_{4} \\
& +96 z_{1}^{3} z_{3}^{3} z_{4}+96 z_{1}^{3} z_{3} z_{4}^{3}-216 z_{1}^{2} z_{2}^{3} z_{3}^{2}-216 z_{1}^{2} z_{2}^{3} z_{4}^{2}+864 z_{1}^{2} z_{2} z_{3}^{4}+576 z_{1}^{2} z_{2} z_{3}^{2} z_{4}^{2} \\
& +864 z_{1}^{2} z_{2} z_{4}^{4}-1440 z_{1} z_{2}^{2} z_{3}^{3} z_{4}-1440 z_{1} z_{2}^{2} z_{3} z_{4}^{3}-384 z_{1} z_{3}^{5} z_{4}+96 z_{1} z_{3}^{3} z_{4}^{3}-384 z_{1} z_{3} z_{4}^{5} \\
& -216 z_{2}^{3} z_{3}^{2} z_{4}^{2}+864 z_{2} z_{3}^{4} z_{4}^{2}+864 z_{2} z_{3}^{2} z_{4}^{4}+64 z_{1}^{6}-288 z_{1}^{4} z_{2}^{2}+192 z_{1}^{4} z_{3}^{2}+192 z_{1}^{4} z_{4}^{2} \\
& +288 z_{1}^{3} z_{2} z_{3} z_{4}+324 z_{1}^{2} z_{2}^{4}-1872 z_{1}^{2} z_{2}^{2} z_{3}^{2}-1872 z_{1}^{2} z_{2}^{2} z_{4}^{2}+192 z_{1}^{2} z_{3}^{4}-240 z_{1}^{2} z_{3}^{2} z_{4}^{2} \\
& +192 z_{1}^{2} z_{4}^{4}+2376 z_{1} z_{2}^{3} z_{3} z_{4}+288 z_{1} z_{2} z_{3}^{3} z_{4}+288 z_{1} z_{2} z_{3} z_{4}^{3}+324 z_{2}^{4} z_{3}^{2}+324 z_{2}^{4} z_{4}^{2} \\
& -288 z_{2}^{2} z_{3}^{4}-1872 z_{2}^{2} z_{3}^{2} z_{4}^{2}-288 z_{2}^{2} z_{4}^{4}+64 z_{3}^{6}+192 z_{3}^{4} z_{4}^{2}+192 z_{3}^{2} z_{4}^{4}+64 z_{4}^{6}-288 z_{1}^{4} z_{2} \\
& +192 z_{1}^{3} z_{3} z_{4}+864 z_{1}^{2} z_{2}^{3}-792 z_{1}^{2} z_{2} z_{3}^{2}-792 z_{1}^{2} z_{2} z_{4}^{2}+792 z_{1} z_{2}^{2} z_{3} z_{4}+192 z_{1} z_{3}^{3} z_{4} \\
& +192 z_{1} z_{3} z_{4}^{3}-486 z_{2}^{5}+864 z_{2}^{3} z_{3}^{2}+864 z_{2}^{3} z_{4}^{2}-288 z_{2} z_{3}^{4}-792 z_{2} z_{3}^{2} z_{4}^{2}-288 z_{2} z_{4}^{4}-48 z_{1}^{4} \\
& +576 z_{1}^{2} z_{2}^{2}-96 z_{1}^{2} z_{3}^{2}-96 z_{1}^{2} z_{4}^{2}-72 z_{1} z_{2} z_{3} z_{4}-729 z_{2}^{4}+576 z_{2}^{2} z_{3}^{2}+576 z_{2}^{2} z_{4}^{2}-48 z_{3}^{4} \\
& -96 z_{3}^{2} z_{4}^{2}-48 z_{4}^{4}+144 z_{1}^{2} z_{2}-24 z_{1} z_{3} z_{4}-432 z_{2}^{3}+144 z_{2} z_{3}^{2}+144 z_{2} z_{4}^{2}+12 z_{1}^{2}-126 z_{2}^{2} \\
& \left.+12 z_{3}^{2}+12 z_{4}^{2}-18 z_{2}-1\right) .
\end{aligned}
$$

8 Conjecture

In this section, we formulate the conjecture that the \mathbb{T}-orbit space can be computed as the negativity-locus of another matrix polynomial, which is closer to the characterization of the real orbit space for the linear action of a compact Lie group [PS85, Main Theorem].

8.1 Euler derivations

We return to the general case of a finite group with an integer representation \mathcal{G} as in Equation (2.1). Assume that $\mathbb{Q}\left[x^{ \pm}\right]^{\mathcal{G}}=\mathbb{Q}\left[\theta_{1}, \ldots, \theta_{m}\right]$ for some $n \leq m \in \mathbb{N}$. On $\mathbb{Q}\left[x^{ \pm}\right]$, define the Euler derivation $x_{i} \partial / \partial x_{i}$ with $x_{i} \partial / \partial x_{i}\left(x_{i}\right)=x_{i}$ and $x_{i} \partial / \partial x_{i}\left(x_{j}\right)=0$ for $1 \leq i \neq j \leq n$ as well as the associated gradient $\tilde{\nabla}:=\left[x_{1} \partial / \partial x_{1}, \ldots, x_{n} \partial / \partial x_{n}\right]^{t}$. We fix a symmetric positive definite matrix $S \in \mathbb{Q}^{n \times n}$ with $B^{t} S B=S$ for all $B \in \mathcal{G}$. For example, $S=1 /|\mathcal{G}| \sum_{B \in \mathcal{G}} B^{t} B$ has the desired property. For $F, F^{\prime} \in \mathbb{Q}\left[x^{ \pm}\right]^{n}$, write $\left\langle F, F^{\prime}\right\rangle_{S}:=F^{t} S F^{\prime}$. This is an S-induced inner product, which is \mathcal{G}-invariant. First, we show that the S-induced inner product of two gradients of \mathcal{G}-invariant Laurent polynomials is again \mathcal{G}-invariant.

Proposition 8.1. Let $f, f^{\prime} \in \mathbb{Q}\left[x^{ \pm}\right]^{\mathcal{G}}$.

1. For all $B \in \mathcal{G}, B(\tilde{\nabla} f)\left(x^{B}\right)=\tilde{\nabla} f(x)$.
2. We have $\left\langle\tilde{\nabla} f, \tilde{\nabla} f^{\prime}\right\rangle_{S}=(\tilde{\nabla} f)^{t} S\left(\tilde{\nabla} f^{\prime}\right) \in \mathbb{Q}\left[x^{ \pm}\right]^{\mathcal{G}}$.

Proof. We obtain the first statement from

$$
\tilde{\nabla} f(x)=\tilde{\nabla}(B \cdot f)(x)=B\left[x^{B \cdot 1} \frac{\partial f}{\partial x_{1}}\left(x^{B}\right), \ldots, x^{B \cdot n} \frac{\partial f}{\partial x_{n}}\left(x^{B}\right)\right]^{t}=B(\tilde{\nabla} f)\left(x^{B}\right)
$$

where we applied the hypothesis that f is \mathcal{G}-invariant and then the chain rule. Therefore,

$$
\begin{aligned}
\left(B \cdot\left((\tilde{\nabla} f)^{t} S\left(\tilde{\nabla} f^{\prime}\right)\right)\right)(x) & =\left((\tilde{\nabla} f)\left(x^{B}\right)\right)^{t} S\left(\left(\tilde{\nabla} f^{\prime}\right)\left(x^{B}\right)\right) \\
& =\left(B^{-1} \tilde{\nabla} f(x)\right)^{t} S\left(B^{-1} \tilde{\nabla} f^{\prime}(x)\right) \\
& =(\tilde{\nabla} f(x))^{t}\left(B^{-1}\right)^{t} S B^{-1}\left(\tilde{\nabla} f^{\prime}(x)\right) \\
& =\left((\tilde{\nabla} f)^{t} S\left(\tilde{\nabla} f^{\prime}\right)\right)(x)
\end{aligned}
$$

proves the second statement.

For $f \in \mathbb{Q}\left[x^{ \pm}\right]$, define $\widehat{f} \in \mathbb{Q}\left[x^{ \pm}\right]$by $\widehat{f}(x)=f\left(x^{-I_{n}}\right)$.
Proposition 8.2. Let $f \in \mathbb{Q}\left[x^{ \pm}\right]$.

1. We have $\tilde{\nabla} \widehat{f}(x)=-\widehat{(\tilde{\nabla} f)}(x)$.
2. If $f \in \mathbb{Q}\left[x^{ \pm}\right]^{\mathcal{G}}$, then $\widehat{f} \in \mathbb{Q}\left[x^{ \pm}\right]^{\mathcal{G}}$.

Proof. By the chain rule, we have

$$
\tilde{\nabla} \widehat{f}(x)=-\left[x^{\left(-I_{n}\right) \cdot 1} \frac{\partial f}{\partial x_{1}}\left(x^{-I_{n}}\right), \ldots, x^{\left(-I_{n}\right) \cdot n} \frac{\partial f}{\partial x_{n}}\left(x^{-I_{n}}\right)\right]^{t}=-(\tilde{\nabla} f)\left(x^{-I_{n}}\right)=-(\widehat{\tilde{\nabla} f})(x)
$$

The second statement follows from the fact that for all $B \in \mathcal{G},(B \cdot \widehat{f})(x)=f\left(x^{-B}\right)=f\left(x^{-I_{n}}\right)=\widehat{f}(x)$, if f is \mathcal{G}-invariant.

Lemma 8.3. For $f \in \mathbb{Q}\left[x^{ \pm}\right]^{\mathcal{G}}$ and $x \in \mathbb{T}^{n},\langle\tilde{\nabla} f, \tilde{\nabla} \widehat{f}\rangle_{S}(x) \leq 0$.
Proof. By Proposition 8.2, we have

$$
\left.\langle\tilde{\nabla} f, \tilde{\nabla} \hat{f}\rangle_{S}(x)=-(\tilde{\nabla} f(x))^{t} S \widehat{((\tilde{\nabla} f)}(x)\right)=-(\tilde{\nabla} f(x))^{t} S\left((\tilde{\nabla} f)\left(x^{-I_{n}}\right)\right)
$$

Since $x \in \mathbb{T}^{n}, \bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)=\left(x_{1}^{-1}, \ldots, x_{n}^{-1}\right)=x^{-I_{n}}$ and thus,

$$
\left\langle\tilde{\nabla} f, \tilde{\nabla} \widehat{f}_{S}(x)=-(\tilde{\nabla} f(x))^{t} S((\tilde{\nabla} f)(\bar{x}))=-(\tilde{\nabla} f(x))^{t} S(\bar{\nabla} f(x)) \leq 0\right.
$$

completes the proof.

We can now state a necessary condition for points in \mathbb{C}^{n} to be contained in the \mathbb{T}-orbit space of \mathcal{G} given by the image of \mathbb{T}^{n} under ϑ.
Corollary 8.4. Define the matrix $\tilde{M} \in\left(\mathbb{Q}\left[x^{ \pm}\right]^{\mathcal{G}}\right)^{m \times m}$ with entries $\tilde{M}_{i j}=\left\langle\tilde{\nabla} \theta_{i}, \tilde{\nabla} \widehat{\theta}_{j}\right\rangle_{S}$. For $x \in \mathbb{T}^{n}$, $\tilde{M}(x)$ is Hermitian negative semi-definite.

Proof. Let $J:=\left[\tilde{\nabla} \theta_{1}|\ldots| \tilde{\nabla} \theta_{m}\right]$ be the Jacobian transpose of ϑ with respect to the Euler derivations and assume that $S=C^{t} C$ is the Cholesky decomposition of S for an upper triangular matrix $C \in \mathbb{Q}^{n \times n}$. We write $\tilde{M}(x)=J(x)^{t} S \widehat{J}(x)$. Since $x \in \mathbb{T}^{n}, \bar{x}=x^{-I_{n}}$ and consequently $\widehat{J}(x)=-\overline{J(x)}$. Then

$$
\tilde{M}(x)=J(x)^{t} C^{t} C J(x)=-\left(C J(x)^{t}(\overline{C J(x)})\right.
$$

is Hermitian negative semi-definite.

8.2 Characterization of the \mathbb{T}-orbit space

The following characterization is similar to the one we used in the introductory Example 1.1 for the linear case in the sense that we compute derivations of the fundamental invariants, but now consider a negativity locus.

Conjecture 8.5. Let $M \in \mathbb{Q}\left[z_{1}, \ldots, z_{m}\right]^{m \times m}$, such that $\tilde{M}(x)=M\left(\theta_{1}(x), \ldots, \theta_{m}(x)\right)$. Furthermore, let $\mathcal{I} \subseteq \mathbb{Q}[z]$ be the ideal of relations among the $\theta_{1}, \ldots, \theta_{m}$ and denote by $\mathcal{V}(\mathcal{I}) \subseteq \mathbb{C}^{m}$ the variety of \mathcal{I}.
If $z \in \mathcal{V}(\mathcal{I})$ is such that $M(z)$ is Hermitian negative semi-definite, then $z \in \mathcal{T}$.
With Corollary 8.4, we obtain a necessary and sufficient condition and therefore a characterization of the \mathbb{T}-orbit space as a basic semi-algebraic set. There are upsides and downsides for using M instead of the Hermite matrix polynomial H for Weyl groups. Generically, the matrix M admits the same number of necessary polynomial inequalities, respectively one less in the case of \mathcal{A}_{n-1}. There is to our knowledge no closed expression for M. Therefore, one needs to express the entries of $M\left(\theta_{1}, \ldots, \theta_{n}\right)$ as polynomials in the fundamental invariants.

Remark 8.6. The entry $H_{i j}$ of the Hermite matrix polynomial has degree $i+j$ for $1 \leq i, j \leq n$. Remarks 4.4, $5.4,6.5$ and 7.5 state that the degree of the determinant of H can be expected to be linear in n. In general, the degree of the entries $M_{i j}$ can not be predicted. For $\mathcal{G} \cong \mathcal{D}_{4}$, we have $\operatorname{deg}\left(M_{22}\right)=3$ and $\operatorname{deg}(\operatorname{Det}(M))=9$.

To support Conjecture 8.5, we give a visualization of the two-dimensional cases for the groups, which we treated in the main results of this article.

Example 8.7.

1. Let $z=\left(z_{1}+\mathrm{i} z_{2}, z_{1}-\mathrm{i} z_{2}\right) \in \mathbb{C}^{2}$ and consider $\mathfrak{G}=\mathcal{A}_{2}$. The matrix $H(z) \in \mathbb{Q}[z]^{3 \times 3}$ from Theorem 4.3, which characterizes the \mathbb{T}-orbit space of \mathcal{A}_{2}, was computed in Section 4.3, so that we obtain a description of \mathcal{T} in terms of polynomials $h_{0}(z), h_{1}(z), h_{2}(z) \in \mathbb{Q}[z]$. The Hermitian matrix $M(z)$ from Conjecture 8.5 is

$$
M(z)=\frac{2}{3}\left[\begin{array}{cc}
z_{1}^{2}+z_{2}^{2}-1 & 2\left(z_{1}+\mathrm{i} z_{2}\right)^{2}-2\left(z_{1}-\mathrm{i} z_{2}\right) \\
2\left(z_{1}-\mathrm{i} z_{2}\right)^{2}-2\left(z_{1}+\mathrm{i} z_{2}\right) & z_{1}^{2}+z_{2}^{2}-1
\end{array}\right] \in \mathbb{Q}[z]^{2 \times 2}
$$

Figure 10: Vanishing points and positivity regions for determinant and trace of $M(z)$ in the case \mathcal{A}_{2}.

As in Section 4.3, we observe a \mathfrak{D}_{3}-invariance

$$
\begin{array}{rlr}
\operatorname{Det}(-M(z)) & =1 / 9\left(-12 z_{1}^{4}-24 z_{1}^{2} z_{2}^{2}-12 z_{2}^{4}+32 z_{1}^{3}-96 z_{1} z_{2}^{2}-24 z_{1}^{2}-24 z_{2}^{2}+4\right) & \text { (solid) } \tag{solid}\\
& =4 / 9\left(-3 g_{1}(z)^{2}-6 g_{1}(z)+8 g_{2}(z)+1\right), \\
\operatorname{Tr}(-M(z)) & =-4 / 3\left(z_{1}^{2}+z_{2}^{2}-1\right) \\
& =-4 / 3\left(g_{1}(z)-1\right) & \text { (dots) }
\end{array}
$$

where $g_{1}(z):=z_{1}^{2}+z_{2}^{2}, g_{2}(z):=z_{1}\left(z_{1}^{2}-3 z_{2}^{2}\right)$ generate the ring of \mathfrak{D}_{3}-invariant polynomials. One can observe that $\operatorname{Det}(-M(z))$ divides $h_{0}(z)=\operatorname{Det}(H(z))$ and the quotient $\left(3 z_{1}+1\right)^{2} z_{2}^{4}$ (up to a positive scalar) is a square.
2. The property ${ }^{\prime} \operatorname{Det}(-M(z))$ divides $\operatorname{Det}(H(z))$ in $\mathbb{Q}[z]$ " is also true for the other two-dimensional cases. We have

$$
\begin{aligned}
& \mathcal{A}_{2}: \operatorname{Det}(H(z)) \\
& \mathcal{B}_{2}: \operatorname{Det}(H(z))=19683 / 256\left(3 z_{1}+1\right)^{2} z_{2}^{4} \operatorname{Det}(-M(z)) \\
& \mathcal{C}_{2}: \operatorname{Det}(H(z))=16384 / 9 z_{2}^{2} \operatorname{Det}(-M(z)) \\
& \text { (solid) }, \\
& \text { (solid) }, \\
& \text {, } \text { solid) },
\end{aligned}
$$

which are depicted in Figure 11.

Figure 11: The regions " $H(z) \succeq 0$ " and " $M(z) \preceq 0$ " for $\mathcal{A}_{2}, \mathcal{B}_{2}, \mathcal{C}_{2}$.

9 Orthogonality of Chebyshev polynomials

The content of this section was the original motivation to study \mathbb{T}-orbit spaces. In [HMMR22], we apply the results of this article to solve an optimization problem for symmetric trigonometric functions as a polynomial optimization problem on the \mathbb{T}-orbit space. A specific application is the computation of the spectral bound for the chromatic number of an infinite graph.
The image \mathcal{T} of ϑ that we describe in this article also appears in other contexts of interest to analysis. The equations were known for specific examples such as the deltoid in Figure 4 and Steiner's hypocycloid in Figure 2. These domains contain sampling points with logarithmic Lebesgue number [MKNR13, Theorem 1.24] and minimal cubature points [LSX12, HMP16]. They are also the region of orthogonality for a family of generalized Chebyshev polynomials [EL82, HW88, LU13]. As far as we know, we give in this paper their first explicit general characterization as semi-algebraic sets.
In this section, we review the orthogonality of generalized Chebyshev polynomials in terms of multiplicative invariants and characterize the determinant of the matrix M from Conjecture 8.5.

9.1 Generalized cosine functions

Assume that \mathfrak{G} is the Weyl group of a rank n root system R , which is represented over \mathbb{R}^{n} equipped with the Euclidean scalar product $\langle\cdot, \cdot\rangle . \mathfrak{G}$ is the subgroup of the orthogonal matrix group $\mathrm{O}_{n}(\mathbb{R})$, that is generated by the orthogonal reflections s_{ρ} for $\rho \in \mathrm{R}$. The affine Weyl group is the semi-direct product of \mathfrak{G} with the Abelian group of translations with respect to the lattice of coroots Λ, that is the \mathbb{Z}-module generated
by R^{\vee} [Bou68, Chapitre VI, $\S 2$, Proposition 1]. Assume that $\rho_{1}, \ldots, \rho_{n}$ form a base of R and that ρ_{0} is the highest root. For μ in the weight lattice Ω, define the map

$$
\begin{align*}
\mathfrak{e}_{\mu}: \mathbb{R}^{n} & \rightarrow \mathbb{C}, \tag{9.1}\\
u & \mapsto \exp (-2 \pi \mathrm{i}\langle\mu, u\rangle) .
\end{align*}
$$

Lemma 9.1.

1. A fundamental domain for $\mathfrak{G} \ltimes \Lambda$ is the closed alcove

$$
\triangle:=\left\{u \in \mathbb{R}^{n} \mid\left\langle u, \rho_{0}\right\rangle \leq 1,\left\langle u, \rho_{1}\right\rangle \geq 0, \ldots,\left\langle u, \rho_{n}\right\rangle \geq 0\right\}
$$

and $\mathfrak{G} \triangle=\bigcup_{A \in \mathfrak{G}} A \triangle$ is the closure of a fundamental domain for the group of translations Λ.
2. $\left\{\mathfrak{e}_{\mu} \mid \mu \in \Omega\right\}$ is an orthonormal basis for both

- the Λ-periodic locally square integrable function $\mathrm{L}^{2}\left(\mathbb{R}^{n} / \Lambda\right)$ and
- the square integrable functions on $\mathfrak{G} \triangle$
with respect to the inner product

$$
(f, g) \mapsto \frac{1}{|\mathfrak{G}| \operatorname{Vol}(\triangle)} \int_{\mathfrak{G} \triangle} f(u) \overline{g(u)} \mathrm{d} u
$$

where $\operatorname{Vol}(\triangle)$ is the Lebesgue measure of \triangle in \mathbb{R}^{n}.
Proof. The first assertion of 1. is [Bou68, Chapitre VI, §2.1]. The second assertion of 1. follows from [LX10, Equation (3.3)].
The second statement is a consequence of [Fug74, Section 5].

Definition 9.2. The generalized cosine function associated to $\mu \in \Omega$ is the \mathfrak{G}-invariant Λ-periodic function

$$
\begin{aligned}
\mathfrak{c}_{\mu}: \mathbb{R}^{n} & \rightarrow \mathbb{C}, \\
u & \mapsto \frac{1}{|\mathfrak{G}|} \sum_{A \in \mathfrak{G}} \mathfrak{e}_{A \mu}(u) .
\end{aligned}
$$

The generalized sine function associated to $\mu \in \Omega$ is the \mathfrak{G}-anti-invariant Λ-periodic function

$$
\begin{aligned}
\mathfrak{s}_{\mu}: \mathbb{R}^{n} & \rightarrow \mathbb{C}, \\
u & \mapsto \frac{1}{|\mathfrak{G}|} \sum_{A \in \mathfrak{G}} \operatorname{Det}(A) \mathfrak{e}_{A \mu}(u) .
\end{aligned}
$$

Let $\mu, \nu \in \Omega$. By Lemma 9.1 and the \mathfrak{G}-invariance, we have

$$
\frac{1}{\operatorname{Vol}(\triangle)} \int_{\triangle} \mathfrak{c}_{\mu} \overline{\mathfrak{c}_{\nu}} \mathrm{d} u= \begin{cases}\frac{\left|\operatorname{Stab}_{\mathfrak{G}}(\mu)\right|}{|\mathfrak{G}|}, & \text { if } \mu \in \mathfrak{G} \nu \tag{9.2}\\ 0, & \text { otherwise }\end{cases}
$$

For $\alpha \in \mathbb{N}^{n} \backslash\left([1, \ldots, 1]^{t}+\mathbb{N}^{n}\right), \mu=W \alpha$ lies on a wall of a Weyl chamber [Bou68, Chapitre V, §1.4] and thus $\mathfrak{s}_{\mu}=0$. For $\alpha \in[1, \ldots, 1]^{t}+\mathbb{N}^{n}$ on the other hand, $\mu=W \alpha$ is strongly dominant and we have $\left|\operatorname{Stab}_{\mathfrak{G}}(\mu)\right|=1$. Hence, for strongly dominant weights $\mu, \nu \in \Omega$,

$$
\frac{1}{\operatorname{Vol}(\triangle)} \int_{\triangle} \mathfrak{s}_{\mu} \overline{\mathfrak{s}_{\nu}} \mathrm{d} u= \begin{cases}\frac{1}{|\mathfrak{G}|}, & \text { if } \mu \in \mathfrak{G} \nu \tag{9.3}\\ 0, & \text { otherwise }\end{cases}
$$

We show that the image of the generalized cosine functions associated to the fundamental weights is precisely the \mathbb{T}-orbit space \mathcal{T} as in Definition 2.5.

Lemma 9.3. We have $\mathcal{T}=\mathfrak{c}(\triangle)=\mathfrak{c}\left(\mathbb{R}^{n}\right)$, where $\mathfrak{c}(u):=\left(\mathfrak{c}_{\omega_{1}}(u), \ldots, \mathfrak{c}_{\omega_{n}}(u)\right) \in \mathbb{C}^{n}$ for $u \in \mathbb{R}^{n}$.
Proof. Note that for $\mu \in \Omega, \alpha \in \mathbb{Z}^{n}$ with $W \alpha=\mu$, we have $\mathfrak{c}_{\mu}=\Theta_{\alpha} \circ\left(\mathfrak{e}_{\omega_{1}}, \ldots, \mathfrak{e}_{\omega_{n}}\right)$. Indeed, $\mathfrak{e}_{\omega_{1}}^{\alpha_{1}} \ldots \mathfrak{e}_{\omega_{n}}^{\alpha_{n}}=\mathfrak{e}_{\mu}$, and if $A \in \mathfrak{G}, B \in \mathcal{G}$ with $A=W B W^{-1}$ and $\beta:=B \alpha \in \mathbb{Z}^{n}$, then $\mathfrak{e}_{A \mu}=\mathfrak{e}_{\omega_{1}}^{\beta_{1}} \ldots \mathfrak{e}_{\omega_{n}}^{\beta_{n}}$. Now, the map

$$
\begin{aligned}
\mathbb{R}^{n} & \rightarrow \mathbb{T}^{n} \\
u & \mapsto\left(\mathfrak{e}_{\omega_{1}}(u), \ldots, \mathfrak{e}_{\omega_{n}}(u)\right)
\end{aligned}
$$

is surjective, because the fundamental weights form a basis of \mathbb{R}^{n}. Hence, $\mathfrak{c}\left(\mathbb{R}^{n}\right)=\vartheta\left(\mathbb{T}^{n}\right)=\mathcal{T}$. We have $\mathfrak{c}\left(\mathbb{R}^{n}\right)=\mathfrak{c}(\triangle)$, because $\mathfrak{c}_{\omega_{j}}$ is \mathfrak{G}-invariant, Λ-periodic for all $1 \leq j \leq n$, and, by Lemma $9.1, \triangle$ is a fundamental domain for $\mathfrak{G} \ltimes \Lambda$.

9.2 Generalized Chebyshev polynomials

Recall that $\mathbb{Q}\left[x^{ \pm}\right]^{\mathcal{G}}=\mathbb{Q}\left[\theta_{1}, \ldots, \theta_{n}\right]$ from Theorem 2.11. For $\alpha \in \mathbb{Z}^{n}$, there thus exists a unique multivariate polynomial $T_{\alpha} \in \mathbb{Q}[z]=\mathbb{Q}\left[z_{1}, \ldots, z_{n}\right]$, such that $T_{\alpha}\left(\theta_{1}, \ldots, \theta_{n}\right)=\Theta_{\alpha}$. We call $\left\{T_{\alpha} \in \mathbb{Q}[z] \mid \alpha \in \mathbb{Z}^{n}\right\}$ the generalized Chebyshev polynomials of the first kind associated to the root system R.
If $\mu \in \Omega$ is such that $W \alpha=\mu$, then $\mathfrak{c}_{\mu}=\Theta_{\alpha} \circ\left(\mathfrak{e}_{\omega_{1}}, \ldots, \mathfrak{e}_{\omega_{n}}\right)=T_{\alpha} \circ\left(\mathfrak{c}_{\omega_{1}}, \ldots, \mathfrak{c}_{\omega_{n}}\right)$. Thus, Definition 9.2 is a generalization of the univariate case $T_{\ell}(\cos (u))=\cos (\ell u)$ for $\ell \in \mathbb{N}$, that corresponds to the root system A_{1}. The second kind Chebyshev polynomials are defined through the character polynomials. Thanks to Weyl's character formula [Bou75, Chapitre VIII, §9, Théorème 1], those are given by

$$
\begin{equation*}
\Xi_{\alpha}(x)=\frac{\Upsilon_{\alpha+\delta}(x)}{\Upsilon_{\delta}(x)} \in \mathbb{Q}\left[x^{ \pm}\right]^{\mathcal{G}} \tag{9.4}
\end{equation*}
$$

for $\alpha \in \mathbb{Z}^{n}$, where $\delta:=[1, \ldots, 1]^{t} \in \mathbb{Z}^{n}$ and $\Upsilon_{\alpha}:=\sum_{B \in \mathcal{G}} \operatorname{Det}(B) x^{B \alpha} \in \mathbb{Q}\left[x^{ \pm}\right]$is anti-invariant. The anti-invariant Laurent polynomials form a free $\mathbb{Q}\left[x^{ \pm}\right]{ }^{\mathcal{G}}$-module of rank 1 , which is generated by Υ_{δ}. Υ_{δ} is also known as the "Weyl denominator". The generalized Chebyshev polynomials of the second kind associated to the root system R are the unique $\left\{U_{\alpha} \in \mathbb{Q}[z] \mid \alpha \in \mathbb{Z}^{n}\right\}$ satisfying $U_{\alpha}\left(\theta_{1}, \ldots, \theta_{n}\right)=\Xi_{\alpha}$. Hence, for $W \alpha=\mu \in \Omega$ and $\omega_{0}:=W \delta=\omega_{1}+\ldots+\omega_{n}$,

$$
\begin{equation*}
U_{\alpha} \circ\left(\mathfrak{c}_{\omega_{1}}, \ldots, \mathfrak{c}_{\omega_{n}}\right)=\frac{\Upsilon_{\alpha+\delta}}{\Upsilon_{\delta}} \circ\left(\mathfrak{e}_{\omega_{1}}, \ldots, \mathfrak{e}_{\omega_{n}}\right)=\frac{\mathfrak{s}_{\mu+\omega_{0}}}{\mathfrak{s}_{\omega_{0}}} \tag{9.5}
\end{equation*}
$$

In the classical univariate case $\mathfrak{G}=\mathcal{A}_{1}=\{ \pm 1\}$, we have

$$
\begin{equation*}
\Xi_{\ell}(x)=\frac{x^{\ell+1}-x^{-\ell-1}}{x-x^{-1}}=x^{\ell}+x^{\ell-1}+\ldots+x^{1-\ell}+x^{-\ell} \tag{9.6}
\end{equation*}
$$

and thus $U_{\ell}(\cos (u))=\sin ((\ell+1) u) / \sin (u)$ for $\ell \in \mathbb{N}$.
Lemma 9.4. We have $\Upsilon_{-\delta}(x)= \pm \Upsilon_{\delta}(x)$ and $\Upsilon_{\delta}\left(\mathbb{T}^{n}\right)^{2} \subseteq \mathbb{R}$.
Proof. Recall the proof of Proposition 2.13, where we showed the existence of $A \in \mathfrak{G}, \sigma \in \mathfrak{S}_{n}$, such that $A \omega_{i}=-\omega_{\sigma(i)}$ for all $1 \leq i \leq n$. Then

$$
-W \delta=-\sum_{i=1}^{n} \omega_{i}=\sum_{i=1}^{n}-\omega_{\sigma(i)}=A \sum_{i=1}^{n} \omega_{i}=A W \delta
$$

and thus $\Upsilon_{-\delta}(x)=\operatorname{Det}(A) \Upsilon_{\delta}(x)$. Especially, $\Upsilon_{\delta}(x)$ is either real or pure imaginary for $x \in \mathbb{T}^{n}$ and so its square is real.

We shall review now that \mathcal{T} is the domain of orthogonality of the generalized Chebyshev polynomials and show that the weight of orthogonality can be given in terms of Υ_{δ}.
Lemma 9.5. Let $J:=\left[\tilde{\nabla} \theta_{1}|\ldots| \tilde{\nabla} \theta_{n}\right] \in \mathbb{Q}\left[x^{ \pm}\right]^{n \times n}$. Then $\operatorname{Det}(J) \in \mathbb{Q}\left[x^{ \pm}\right]$is anti-invariant with

$$
\operatorname{Det}(J)=\frac{\prod_{i=1}^{n}\left|\operatorname{Stab}_{\mathcal{G}}\left(e_{i}\right)\right|}{|\mathcal{G}|^{n}} \Upsilon_{\delta}
$$

Proof. By Proposition 8.1, we have $J\left(x^{B}\right)=B J(x)$ for any $B \in \mathcal{G}$. Hence, $\operatorname{Det}(J)$ is anti-invariant in $\mathbb{Q}\left[x^{ \pm}\right]$and thus there exists a unique $f \in \mathbb{Q}\left[x^{ \pm}\right]^{\mathcal{G}}$, such that $\operatorname{Det}(J)=f \Upsilon_{\delta}$. We show that x^{δ} is the highest monomial of $\operatorname{Det}(J)$ in the partial ordering given in [Bou75, Chapitre VIII, $\S 6$, Lemma 2]. Note that
$J_{i j}=\left[\tilde{\nabla} \theta_{1}|\ldots| \tilde{\nabla} \theta_{n}\right]_{i j}=x_{i} \partial / \partial x_{i} \theta_{j}=\frac{\left|\operatorname{Stab}_{\mathcal{G}}\left(e_{j}\right)\right|}{|\mathcal{G}|} x_{i} \frac{\partial}{\partial x_{i}} \sum_{\alpha \in \mathcal{G} e_{j}} x^{\alpha}=\frac{\left|\operatorname{Stab}_{\mathcal{G}}\left(e_{j}\right)\right|}{|\mathcal{G}|} x_{i} \frac{\partial}{\partial x_{i}}\left(x_{j}+\sum_{\alpha \prec e_{j}} c_{\alpha} x^{\alpha}\right)$,
where $c_{\alpha} \in\{0,1\}$ and $\alpha \prec e_{j}$ if and only if $W\left(e_{i}-\alpha\right)$ is a sum of positive roots. The diagonal elements of the matrix J have maximal monomial x_{i}, while the non-diagonal entries have maximal monomial x^{α} for some $\alpha \prec e_{j}$. It follows that there exist coefficient $c_{\alpha} \in \mathbb{N}$, such that

$$
\operatorname{Det}(J)=\frac{\prod_{i=1}^{n}\left|\operatorname{Stab}_{\mathcal{G}}\left(e_{i}\right)\right|}{|\mathcal{G}|^{n}}(\underbrace{x_{1} \ldots x_{n}}_{=x^{\delta}}+\sum_{\alpha \prec \delta} c_{\alpha} x^{\alpha})=f \Upsilon_{\delta}
$$

Thus, f must be the constant, which is the given quotient that appears as the coefficient of x^{δ} in the determinant.

On the set of square integrable functions on $\mathfrak{G} \triangle$ with basis $\left\{\mathfrak{e}_{\mu} \mid \mu \in \Omega\right\}$, we define the gradient $\nabla:=$ $\left[\partial / \partial u_{1}, \ldots, \partial / \partial u_{n}\right]^{t}$. The relation to the gradient of Euler derivations $\tilde{\nabla}$ is given by the next statement.
Lemma 9.6. We have

$$
\left[\nabla \mathfrak{c}_{\omega_{1}}|\ldots| \nabla \mathfrak{c}_{\omega_{n}}\right](u)=2 \pi \mathrm{i} W J\left(\mathfrak{e}_{\omega_{1}}(u), \ldots, \mathfrak{e}_{\omega_{n}}(u)\right)
$$

where $J=\left[\tilde{\nabla} \theta_{1}|\ldots| \tilde{\nabla} \theta_{n}\right] \in \mathbb{Q}\left[x^{ \pm}\right]^{n \times n}$.
Proof. This is a straightforward computation from the definition

$$
\begin{aligned}
{\left[\nabla \mathfrak{c}_{\omega_{1}}|\ldots| \nabla \mathfrak{c}_{\omega_{n}}\right]_{i j}(u) } & =\frac{\partial \mathfrak{c}_{\omega_{j}}}{\partial u_{i}}(u)=2 \pi \mathrm{i} \sum_{k=1}^{n}\left(\omega_{k}\right)_{i} x_{k} \frac{\partial \theta_{j}}{\partial x_{k}}\left(\mathfrak{e}_{\omega_{1}}(u), \ldots, \mathfrak{e}_{\omega_{n}}(u)\right) \\
& =2 \pi \mathrm{i} \sum_{k=1}^{n} W_{i k} J_{k j}\left(\mathfrak{e}_{\omega_{1}}(u), \ldots, \mathfrak{e}_{\omega_{n}}(u)\right)=2 \pi \mathrm{i}\left(W J\left(\mathfrak{e}_{\omega_{1}}(u), \ldots, \mathfrak{e}_{\omega_{n}}(u)\right)\right)_{i j}
\end{aligned}
$$

The generalized Chebyshev polynomials satisfy the following orthogonality property. This was also shown for instance in [HW88, Theorem 5.1].

Theorem 9.7. For $\alpha, \beta \in \mathbb{N}^{n}$,

$$
\begin{aligned}
\int_{\mathcal{T}} T_{\alpha}(z) \overline{T_{\beta}(z)}|\phi(z)|^{-1 / 2} \mathrm{~d} z & = \begin{cases}2 \pi|\operatorname{Det}(W)| \prod_{i=1}^{n}\left|\mathcal{G} e_{i}\right| \frac{\operatorname{Vol}(\triangle)\left|\operatorname{Stab}_{\mathcal{G}}(\alpha)\right|}{|\mathcal{G}|}, & \text { if } \alpha=\beta \\
0, & \text { otherwise }\end{cases} \\
\text { and } \quad \int_{\mathcal{T}} U_{\alpha}(z) \overline{U_{\beta}(z)}|\phi(z)|^{1 / 2} \mathrm{~d} z & = \begin{cases}2 \pi|\operatorname{Det}(W)| \frac{\operatorname{Vol}(\triangle)}{|\mathcal{G}|}, & \text { if } \alpha=\beta \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

where the weight function is defined via

$$
\phi\left(\theta_{1}, \ldots, \theta_{n}\right)=\left(\Upsilon_{\delta}\right)^{2} \in \mathbb{Q}\left[x^{ \pm}\right]^{\mathcal{G}}
$$

with $\delta=[1, \ldots, 1]^{t} \in \mathbb{Z}^{n}$.

Proof. Assume that $W \alpha=\mu, W \beta=\nu \in \Omega$. By Lemma 9.3 and the definition of generalized Chebyshev polynomials of the first kind, we can conduct the transformation

$$
\begin{aligned}
\int_{\mathcal{T}} T_{\alpha}(z) \overline{T_{\beta}(z)}|\phi(z)|^{-1 / 2} \mathrm{~d} z & =\int_{\triangle} \mathfrak{c}_{\mu}(u) \overline{\mathfrak{c}_{\nu}}(u) \frac{\left|\operatorname{Det}\left(\left[\nabla \mathfrak{c}_{\omega_{1}}|\ldots| \nabla \mathfrak{c}_{\omega_{n}}\right](u)\right)\right|}{\left|\Upsilon_{\delta}\left(\mathfrak{e}_{\omega_{1}}(u), \ldots, \mathfrak{e}_{\omega_{n}}(u)\right)\right|} \mathrm{d} u \\
& =\int_{\triangle} \mathfrak{c}_{\mu}(u) \overline{\mathfrak{c}_{\nu}}(u) \frac{|\mathcal{G}|^{n}}{\prod_{i=1}^{n}\left|\operatorname{Stab}_{\mathcal{G}}\left(e_{i}\right)\right|} \frac{|2 \pi \mathrm{i} \operatorname{Det}(W) \operatorname{Det}(J)|}{|\operatorname{Det}(J)|}\left(\mathfrak{e}_{\omega_{1}}(u), \ldots, \mathfrak{e}_{\omega_{n}}(u)\right) \mathrm{d} u \\
& =\prod_{i=1}^{n}\left|\mathcal{G} e_{i}\right||2 \pi i \operatorname{Det}(W)| \int_{\triangle} \mathfrak{c}_{\mu}(u) \overline{\mathfrak{c}_{\nu}}(u) \mathrm{d} u
\end{aligned}
$$

According to Equation (9.2),

$$
\int_{\mathcal{T}} T_{\alpha}(z) \overline{T_{\beta}(z)}(\phi(z))^{-1 / 2} \mathrm{~d} z=2 \pi|\operatorname{Det}(W)| \prod_{i=1}^{n}\left|\mathcal{G} e_{i}\right| \operatorname{Vol}(\triangle) \frac{\left|\operatorname{Stab}_{\mathcal{G}}(\alpha)\right|}{|\mathcal{G}|}
$$

if $\mu \in \mathfrak{G} \nu$ and 0 otherwise.
The result on generalized Chebyshev polynomials of the second kind is analogous with

$$
U_{\alpha}(\mathfrak{c}(u)) \overline{U_{\beta}(\mathfrak{c}(u))}=\frac{\mathfrak{s}_{\mu+\omega_{0}}}{\mathfrak{s}_{\omega_{0}}}(u) \frac{\overline{\mathfrak{s}_{\nu+\omega_{0}}}}{\overline{\mathfrak{s}_{\omega_{0}}}}(u)=\frac{\mathfrak{s}_{\mu+\omega_{0}}(u) \overline{\mathfrak{s}_{\nu+\omega_{0}}(u)}}{\left|\mathfrak{\Upsilon}_{\delta}\left(\mathfrak{e}_{\omega_{1}}(u), \ldots, \mathfrak{e}_{\omega_{n}}(u)\right)\right|^{2}}
$$

and then applying Equation (9.3).

Remark 9.8. In Section 8 we make use of $\tilde{M}=J^{t} S \widehat{J} \in\left(\mathbb{Q}\left[x^{ \pm}\right]^{\mathcal{G}}\right)^{m \times m}$ to give the equations of the \mathbb{T} orbit space. According to Proposition 2.13 in the present case of Weyl groups, the fundamental invariants $\theta_{1}, \ldots, \theta_{n}$ are such that there exists a permutation $\sigma \in \mathfrak{S}_{n}$ with $\widehat{\theta}_{i}=\theta_{\sigma(i)}$. Hence, $\operatorname{Det}(\widehat{J})=\operatorname{sgn}(\sigma) \operatorname{Det}(J)$ and thus the determinant of the matrix M from Conjecture 8.5 is a scalar multiple of ϕ in $\mathbb{Q}[z]$.

Example 9.9.

1. In the univariate case \mathcal{A}_{1}, we have $\mathcal{T}=[-1,1]$ and $\Upsilon_{\delta}=x-x^{-1}$. Therefore,

$$
\left(\Upsilon_{\delta}\right)^{2}=x^{2}-2+x^{-2}=2 T_{2}\left(\frac{x+x^{-1}}{2}\right)-2 T_{0}\left(\frac{x+x^{-1}}{2}\right)=4 T_{1}\left(\frac{x+x^{-1}}{2}\right)^{2}-4 T_{0}\left(\frac{x+x^{-1}}{2}\right)
$$

and $\phi(z)=4\left(z^{2}-1\right)$.
2. For $\mathcal{A}_{2}, \mathcal{T}$ is the compact basic semi-algebraic set in Figure 4 and

$$
\begin{aligned}
\left(\Upsilon_{\delta}\right)^{2} & =\left(-x_{1} x_{2}-x_{1} / x_{2}^{2}-x_{2} / x_{1}^{2}+1 /\left(x_{1} x_{2}\right)+x_{1}^{2} / x_{2}+x_{2}^{2} / x_{1}\right)^{2} \\
& =6 \Theta_{2 \omega_{1}+2 \omega_{2}}-6 \Theta_{3 \omega_{1}}-6 \Theta_{3 \omega_{2}}+12 \Theta_{\omega_{1}+\omega_{2}}-6 \Theta_{0}
\end{aligned}
$$

We have $\phi(z)=81 z_{1}^{2} z_{2}^{2}-108 z_{1}^{3}-108 z_{2}^{3}+162 z_{1} z_{2}-27=243 / 3 \operatorname{Det}(M)$.
3. For $\mathcal{B}_{2}, \mathcal{T}$ is the compact basic semi-algebraic set in Figure 8 and

$$
\begin{aligned}
\left(\Upsilon_{\delta}\right)^{2} & =\left(-x_{1} / x_{2}^{3}-x_{2} / x_{1}^{2}+1 /\left(x_{1} x_{2}\right)+x_{1}^{2} / x_{2}^{3}+x_{2}^{3} / x_{1}^{2}-x_{1}^{2} / x_{2}-x_{2}^{3} / x_{1}+x_{1} x_{2}\right)^{2} \\
& =-8 \Theta_{4 \omega_{2}}-8 \Theta_{3 \omega_{1}}+8 \Theta_{2 \omega_{1}+2 \omega_{2}}+16 \Theta_{\omega_{1}+2 \omega_{2}}-8 \Theta_{2 \omega_{2}}-8 \Theta_{\omega_{1}}+8 \Theta_{0}
\end{aligned}
$$

We have $\phi(z)=256 z_{1}^{2} z_{2}^{2}-1024 z_{2}^{4}-256 z_{1}^{3}+1536 z_{1} z_{2}^{2}-512 z_{1}^{2}+256 z_{2}^{2}-256 z_{1}=1024 / 9 \operatorname{Det}(M)$.
4. For $\mathcal{C}_{2}, \mathcal{T}$ is the compact basic semi-algebraic set in Figure 6 and

$$
\begin{aligned}
\left(\Upsilon_{\delta}\right)^{2} & =\left(-x_{1} / x_{2}^{2}-x_{2} / x_{1}^{3}+1 /\left(x_{1} x_{2}\right)+x_{1}^{3} / x_{2}^{2}+x_{2}^{2} / x_{1}^{3}-x_{1}^{3} / x_{2}-x_{2}^{2} / x_{1}+x_{1} x_{2}\right)^{2} \\
& =-8 \Theta_{4 \omega_{1}}+8 \Theta_{2 \omega_{1}+2 \omega_{2}}+16 \Theta_{2 \omega_{1}+\omega_{2}}-8 \Theta_{3 \omega_{2}}-8 \Theta_{2 \omega_{1}}-8 \Theta_{\omega_{2}}+8 \Theta_{0} .
\end{aligned}
$$

We have $\phi(z)=-1024 z_{1}^{4}+256 z_{1}^{2} z_{2}^{2}+1536 z_{1}^{2} z_{2}-256 z_{2}^{3}+256 z_{1}^{2}-512 z_{2}^{2}-256 z_{2}=256 \operatorname{Det}(M)$.
5. In the main results Theorems 4.3, 5.3, 6.4 and 7.4, we have presented the matrix H in the standard monomial basis. In the basis of generalized Chebeshev polynomials of the first kind, this matrix is "much sparser", in the sense that the entries consist of less terms with smaller coefficients. For \mathcal{D}_{4}, the matrix is

$$
H=8\left[\begin{array}{cccc}
T_{0}-T_{2 \omega_{1}} & T_{\omega_{1}}-T_{3 \omega_{1}} & T_{0}-T_{4 \omega_{1}} & 2 T_{\omega_{1}}-T_{3} \omega_{1}-T_{5 \omega_{1}} \\
T_{\omega_{1}}-T_{3 \omega_{1}} & T_{0}-T_{4 \omega_{1}} & 2 T_{\omega_{1}}-T_{3 \omega_{1}}-T_{5 \omega_{1}} & 2 T_{0}+T_{2 \omega_{1}}-2 T_{4 \omega_{1}}-T_{6 \omega_{1}} \\
T_{0}-T_{4 \omega_{1}} & 2 T_{\omega_{1}}-T_{3 \omega_{1}}-T_{5 \omega_{1}} & 2 T_{0}+T_{2 \omega_{1}-2 T_{4 \omega_{1}}-T_{6 \omega_{1}}} & 5 T_{\omega_{1}}-T_{3 \omega_{1}}-3 T_{5 \omega_{1}}-T_{7 \omega_{1}} \\
2 T_{\omega_{1}}-T_{3 \omega_{1}}-T_{5 \omega_{1}} & 2 T_{0}+T_{2 \omega_{1}}-2 T_{4 \omega_{1}}-T_{6 \omega_{1}} & 5 T_{\omega_{1}}-T_{3 \omega_{1}}-3 T_{5 \omega_{1}-T_{7 \omega_{1}}} & 5 T_{0}+4 T_{2 \omega_{1}}-4 T_{4 \omega_{1}}-4 T_{6 \omega_{1}}-T_{8 \omega_{1}}
\end{array}\right]
$$

10 Conclusion

To our knowledge, we have given the first explicit and general characterization for the orbit space of a nonlinear action of a Weyl group on the compact torus. The fact that the \mathbb{T}-orbit space is a compact basic semi-algebraic set in these cases is already in itself a new result.
Future work revolves around finding such explicit descriptions also for the Weyl groups associated to root systems of types $\mathrm{E}, \mathrm{F}, \mathrm{G}$. Using a computer algebra system, such characterizations can be given, but a unifying theory for all root systems is desirable. With a conjecture we support computations for these remaining cases, and beyond that, for any nonlinear action of a finite group on the compact torus.

Acknowledgments

The authors wish to acknowledge the insights that Claudio Procesi (Rome) shared and are grateful for discussions with Philippe Moustrou (Toulouse) and Robin Schabert (Troms \varnothing).
This work has been supported by European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions, grant agreement 813211 (POEMA).

References

[ALRT13] L. Andrén, J.-B. Lasserre, C. Riener, and T. Theobald. Exploiting Symmetries in SDPRelaxations for Polynomial Optimization. Mathematics of Operations Research, 38(1):122-141, 2013.
[Bee91] R. Beerends. Chebyshev polynomials in several variables and the radial part of the LaplaceBeltrami operator. Transactions of the American Mathematical Society, 328(2):779-814, 1991.
[Bou68] N. Bourbaki. Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337. Hermann, Paris, 1968.
[Bou75] N. Bourbaki. Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées. Actualités Scientifiques et Industrielles, No. 1364. Hermann, Paris, 1975.
[BPR06] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics. Springer, Berlin, Heidelberg, 2006.
[CH18] M. Collowald and E. Hubert. Algorithms for Computing Cubatures Based on Moment Theory. Studies in Applied Mathematics, 141(4):501-546, 2018.
[CLO05] D. Cox, J. Little, and D. O'Shea. Using algebraic geometry, volume 185 of Graduate Texts in Mathematics. Springer, New York, second edition, 2005.
[CLO15] D. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, New York, NY, 2015.
[Dub98] B. Dubrovin. Differential geometry of the space of orbits of a Coxeter group. Journal of Differential Geometry, 4:181-211, 1998.
[EL82] R. Eier and R. Lidl. A class of orthogonal polynomials in k variables. Mathematische Annalen, 260:93-100, 1982.
[Far86] D. Farkas. Reflection groups and multiplicative invariants. Rocky Mountain Journal of Mathematics, 16:215-222, 1986.
[FH04] W. Fulton and J. Harris. Representation Theory: A First Course. Graduate Texts in Mathematics. Springer, New York, NY, 2004.
[Fug74] B. Fuglede. Commuting self-adjoint partial differential operators and a group theoretic problem. Journal of Functional Analysis, 16:101-121, 1974.
[Gat00] K. Gatermann. Orbit space reduction. In Computer Algebra Methods for Equivariant Dynamical Systems, Lecture Notes in Mathematics, pages 105-134. Springer, Berlin, Heidelberg, 2000.
[GKP13] V. Gerdt, A. Khvedelidze, and Y. Palii. Describing the orbit space of the global unitary actions for mixed qudit states. Journal of Mathematical Sciences, 200, 2013.
[HMMR22] E. Hubert, T. Metzlaff, P. Moustrou, and C. Riener. Optimization of trigonometric polynomials with crystallographic symmetry and applications to spectral bounds of graphs. in preparation, 2022.
[HMP16] J. Hrivnák, L. Motlochová, and J. Patera. Cubature formulas of multivariate polynomials arising from symmetric orbit functions. Symmetry, 8:63, 2016.
[HS21] E. Hubert and M. Singer. Sparse Interpolation in Terms of Multivariate Chebyshev Polynomials. Foundations of Computational Mathematics, 2021.
[Hum72] J. E. Humphreys. Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics. Springer, New York, NY, 1972.
[HW88] M. Hoffman and W. Withers. Generalized Chebyshev polynomials associated with affine Weyl groups. Transactions of the American Mathematical Society, 308(1):91-104, 1988.
[Kan01] R. Kane. Reflection Groups and Invariant Theory. CMS Books in Mathematics. Springer, New York, NY, 2001.
[Lor05] M. Lorenz. Multiplicative Invariant Theory. Encyclopaedia of Mathematical Sciences. Springer, Berlin, Heidelberg, 2005.
[LSX12] H. Li, J. Sun, and Y. Xu. Discrete Fourier analysis and Chebyshev polynomials with G_{2} group. SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 8:67-96, 2012.
[LU13] V. Lyakhovsky and P. Uvarov. Multivariate Chebyshev polynomials. Journal of Physics A: Mathematical and Theoretical, 46(12):125-201, 2013.
[LX10] H. Li and Y. Xu. Discrete Fourier analysis on fundamental domain and simplex of A_{d} lattice in d variables. The Journal of Fourier Analysis and Applications, 16(3):383-433, 2010.
[MKNR13] H. Munthe-Kaas, M. Nome, and B. Ryland. Through the kaleidoscope: symmetries, groups and Chebyshev-approximations from a computational point of view. In Foundations of computational mathematics, Budapest 2011, London Mathematical Society Lecture Note Series, pages 188-229. Cambridge Univ. Press, Cambridge, 2013.
[Pro78] C. Procesi. Positive symmetric functions. Advances in Mathematics, 29(2):219-225, 1978.
[PS85] C. Procesi and G. Schwarz. Inequalities defining orbit spaces. Inventiones mathematicae, 81:539554, 1985.
[Ser01] J.-P. Serre. Complex Semisimple Lie Algebras. Springer Monographs in Mathematics. Springer, Berlin, Heidelberg, 2001.
[Sja93] R. Sjamaar. Holomorphic slices, symplectic reduction and multiplicities of representations. Annals of Mathematics, 141:87-129, 1993.
[Xu00] Y. Xu. Polynomial interpolation in several variables, cubature formulae, and ideals. Advances in Computational Mathematics, 12(4):363-376, 2000.
[Xu15] Y. Xu. Generalized characteristic polynomials and Gaussian cubature rules. SIAM Journal on Matrix Analysis and Applications, 36:1129-1142, 2015.
E. Hubert, InRIA Méditerranée, Université Côte d’Azur, 06902 Sophia Antipolis, France

E-mail address: evelyne.hubert@inria.fr
T. Metzlaff, INRIA MÉditerranée, Université Côte d'Azur, 06902 Sophia Antipolis, France

E-mail address: tobias.metzlaff@inria.fr
C. Riener, Department of Mathematics, Uit The Arctic University, 9037 Troms \varnothing, Norway

E-mail address: cordian.riener@uit.no

[^0]: *INRIA Méditerranée, Université Côte d'Azur
 \dagger UiT The Arctic University

