Orbit spaces of Weyl groups acting on compact tori: a unified and explicit polynomial description - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Orbit spaces of Weyl groups acting on compact tori: a unified and explicit polynomial description

Résumé

The Weyl group of a crystallographic root system has a nonlinear action on the compact torus. The orbit space of this action is a compact basic semi-algebraic set. We present a polynomial description of this set for the Weyl groups of type A, B, C, D and G. Our description is given through a polynomial matrix inequality. The novelty lies in an approach via Hermite quadratic forms and a closed formula for the matrix entries. The orbit space of the nonlinear Weyl group action is the orthogonality region of generalized Chebyshev polynomials. In this polynomial basis, we show that the matrices obtained for the five types follow the same, surprisingly simple pattern. This is applied to the optimization of trigonometric polynomials with crystallographic symmetries.
Fichier principal
Vignette du fichier
Hermite.pdf (2.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03590007 , version 1 (26-02-2022)
hal-03590007 , version 2 (11-05-2022)
hal-03590007 , version 3 (26-06-2023)
hal-03590007 , version 4 (26-02-2024)

Identifiants

  • HAL Id : hal-03590007 , version 3

Citer

Evelyne Hubert, Tobias Metzlaff, Cordian Riener. Orbit spaces of Weyl groups acting on compact tori: a unified and explicit polynomial description. 2022. ⟨hal-03590007v3⟩
396 Consultations
215 Téléchargements

Partager

More