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T–Orbit Spaces of Multiplicative Actions
(for types A, B, C, D)

Evelyne Hubert∗, Tobias Metzlaff∗, Cordian Riener†
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Abstract

A finite group with an integer representation has a multiplicative action on the ring of Laurent poly-
nomials, which is induced by a nonlinear action on the compact torus. We study the structure of the
associated orbit space as the image of the fundamental invariants. For the Weyl groups of types A, B, C
and D, this image is a compact basic semi–algebraic set and we present the defining polynomial inequali-
ties explicitly. We show how orbits correspond to solutions in the compact torus of symmetric polynomial
systems and give a characterization of the orbit space as the positivity–locus of a real symmetric matrix
polynomial. The resulting domain is the region of orthogonality for two families of generalized Cheby-
shev polynomials, which have connections to topics such as Fourier analysis and representations of Lie
algebras.
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Polynomial description for the T–Orbit Spaces of Multiplicative Actions

1 Introduction

The set of all orbits of a compact Lie group with an action on an affine variety is called orbit space. The
coordinate ring of this affine variety contains the ring of invariants as a finitely generated subalgebra and the
orbit space can be embedded into the variety defined by the syzygy ideal of the fundamental invariants. For
a group with a linear action on a real representation space, the orbit space is, essentially, a semi–algebraic
set and the defining polynomial equations and inequalities are given by a result due to Procesi and Schwarz
[PS85, Main Theorem]. Our aim is to find such a polynomial description of the orbit space, when we consider
finite groups with an integer representation and a nonlinear action on the compact torus. The purpose of this
article is to show that in the case of Weyl groups, the orbit space as the image of the compact torus under
fundamental invariants is a compact basic semi–algebraic set, and to characterize it as the positivity–locus
of an explicitly known symmetric matrix polynomial. Being able to effectively describe the structure of an
orbit space allows for applications in equivariant dynamical systems theory [Gat00, Theorem 4.2.1], symmetry
reduction for polynomial optimization [ALRT13, Theorem 5.2], complex analysis [Sja93, Proposition 1.15],
differential geometry [Dub98, Lemma 2.1] and quantum systems [GKP13, Section 2].

A finite group with an integer representation G has a nonlinear action on the algebraic torus, which leaves the
maximal compact subgroup, the compact torus Tn, invariant and induces an action on the ring of Laurent
polynomials. Given a set of generators of the ring of invariants, so called fundamental invariants, the image
of Tn under these generators corresponds to the set of orbits Tn/G and we call it the T–orbit space of G. Such
an action is called multiplicative [Lor05] and the invariant theory for this setting is related to representations
of complex Lie algebras [Bou68, Hum72, Ser01, FH04]. Recent applications have been studied in the context
of Fourier analysis [Bee91, MKNR13], cubature [Xu00, LX10, LSX12, Xu15, CH18] and interpolation [HS21].

For the Weyl groups of types A, B, C and D, the ring of invariant Laurent polynomials is a polynomial
algebra. In these four cases, we find relations between the elementary symmetric polynomials and the
fundamental invariants. This gives rise to a symmetric polynomial system with complex variables. We show
that a point in the T–orbit space corresponds to such a system having all its solutions in Tn. This property
can be characterized by positivity of an explicit Hermite quadratic form.

In Section 2, we formally introduce T–orbit spaces of multiplicative actions by first defining the action of
a group with an integer representation on the ring of Laurent polynomials and then identifying it with the
multiplicative action on a group algebra of an invariant lattice. Here, we fix the notation for fundamental
invariants and explain the relevance of the four cases A, B, C and D. Following with Section 3, we establish
the necessary tools to study symmetric polynomial systems, which will later arise from the invariants. This
involves Sylvester’s characterization of a polynomial having all its roots in a real interval, which was also ap-
plied in [Pro78]. For the symmetric polynomial systems, which we shall encounter, we extract Corollaries 3.6
and 3.7.

We then proceed to the main results and give a polynomial description for the T–orbit space of G in terms
of an explicit symmetric matrix polynomial. In Sections 4 to 7, we work out the correspondence between
points in the T–orbit space and symmetric polynomial systems having all solutions in Tn. We give explicit
formulae for invariants in Propositions 4.1, 5.1, 6.1 and 7.1 and apply the results from Section 3 to obtain
Theorems 4.3, 5.3, 6.4 and 7.4. Examples accompany the main results.

Motivated by the characterization due to Procesi and Schwarz [PS85], we formulate an alternative charac-
terization in Section 8 with a proof of the necessary condition. We introduce differentials on the Laurent
polynomial ring and state Conjecture 8.5 for groups, which are not necessarily Weyl groups of crystallographic
root systems, but have only an integer representation.

The T–orbit spaces, that we describe here as basic semi–algebraic sets, also appear in other contexts of
interest to analysis. We review in Theorem 9.7 that the T–orbit space is the region of orthogonality for a
family of generalized Chebyshev polynomials of the first and second kind.

The following example demonstrates that a nonlinear action on the compact torus admits an orbit space,
which needs to be distinguished from the orbit space of a linear action on a real representation space.
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Example 1.1.

1. Consider the group G of order 8 with presentation 〈s1, s2 | s21 = s22 = 1, (s1 s2)4 = 1〉. We fix

s1 =

[
0 1
1 0

]
and s2 =

[
1 0
0 −1

]
,

so that G, as a subgroup of the orthogonal group O2(R), has a linear action on the real representation
space R2 by matrix multiplication. The G–invariant polynomials are those, which are invariant under
permutation and sign change of variables, and the ring of invariants is the polynomial algebra

Q[X1, X2]G = Q[π1 := X2
1 +X2

2 , π2 := X2
1 X

2
2 ].

The image of R2 under π1, π2 corresponds to the orbit space R2/G. The Gram matrix of the gradients
has G–invariant entries

〈∇πi,∇πj〉ij =

[
4X2

1 + 4X2
2 8X2

1 X
2
2

8X2
1 X

2
2 4X2

1 X
2
2 (X2

1 +X2
2 )

]
=

[
4π1 8π2
8π2 4π1 π2

]
=: M(π1, π2).

By [PS85, Main Theorem], the image of R2 under π1, π2 is {z = (z1, z2) ∈ R2 |M(z1, z2) � 0}. Hence,
the orbit space R2/G is identified with a basic semi–algebraic set, that is not compact (Figure 1a).

We will now explain the difference to so called multiplicative actions. The above group G is the Weyl
group of the B2 root system with fundamental weights

(
1
0

)
,
(
1/2
1/2

)
. For W :=

(
1 1/2
0 1/2

)
, the image of the

group homomorphism G→ GL2(Z), A 7→W−1AW is a group denoted G with generators

W−1 s1W =

[
−1 0
2 1

]
and W−1 s2W =

[
1 1
0 −1

]
.

Instead of R2, we consider the algebraic torus (C∗)2 and study the nonlinear action

G × (C∗)2 → (C∗)2,
(B, x) 7→ xB

−1

:= (x
B−1

11
1 x

B−1
21

2 , x
B−1

12
1 x

B−1
22

2 ).

The coordinate ring of the algebraic torus is the bivariate Laurent polynomial ring Q[x1, x
−1
1 , x2, x

−1
2 ]

and the algebraically independent fundamental invariants

θ1 :=
x1
4

+
1

4x−11

+
x22

4x1
+

x1
4x22

and θ2 :=
x2
4

+
1

4x2
+

x1
4x2

+
x2

4x1

generate the ring of G–invariant Laurent polynomials. We restrict the action to the compact torus T2.
In Theorem 2.4, we show that the T–orbit space T2/G corresponds to the image of T2 under θ1, θ2.
Furthermore, Theorem 5.3 states that this image is real and consists of all (z1, z2) ∈ R2, that satisfy
H(z) � 0 (Figure 1b), where

H(z) :=

[
−z21 + 2z22 − z1 −4z31 + 12z1z

2
2 − 6z21 − 2z1

−4z31 + 12z1z
2
2 − 6z21 − 2z1 −16z41 + 64z21z

2
2 − 32z42 − 32z31 + 32z1z

2
2 − 20z21 + 8z22 − 4z1

]
.

(a) M(z) � 0 (b) H(z) � 0

Figure 1: The orbit spaces R2/G of the linear action and T2/G of the nonlinear action.
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The action on the Laurent polynomials is called multiplicative, as the weight lattice Ω = 〈
(
1
0

)
,
(
1/2
1/2

)
〉Z

of the B2 root system is a multiplicative subgroup of the group algebra Q[Ω], which we identify with the
coordinate ring Q[x1, x

−1
1 , x2, x

−1
2 ].

2. Further interesting examples are the Weyl groups of the root systems A3, B3 and C3. Visualizations
of the associated T–orbit spaces are depicted below.

(a) A3 (b) B3 (c) C3

Figure 2: T–orbit spaces for root systems of rank n = 3.

2 Preliminaries

Let Q ⊆ K ⊆ C be a field of characteristic 0 and let n ∈ N.

In this section, we discuss the action of a finite group with a representation in GLn(Z) on the ring of
Laurent polynomials K[x±] = K[x1, x

−1
1 , . . . , xn, x

−1
n ], which is identified with the group algebra of a lattice.

We motivate the problem of computing the T–orbit space as the image of the compact n–torus under the
fundamental invariants and then specify the problem for Weyl groups of crystallographic root systems.

2.1 Group actions on K[x±]

Let G be a finite group with an integer representation

% : G→ GLn(Z). (2.1)

Denote by (C∗)n := (C \ {0})n the algebraic n–torus. For x = (x1, . . . , xn) ∈ (C∗)n and a column vector
α = [α1, . . . , αn]t ∈ Zn, define xα := xα1

1 . . . xαnn ∈ C∗. The matrix group G := %(G) has a nonlinear action
on (C∗)n, given by monomial maps

? : G × (C∗)n → (C∗)n,
(B, x) 7→ B ? x := (x1, . . . , xn)B

−1

= (xB
−1
·1 , . . . , xB

−1
·n ),

(2.2)

where B−1·i ∈ Zn denotes the i–th column vector of B−1 ∈ G for 1 ≤ i ≤ n. The coordinate ring of (C∗)n
with coefficients in K is the ring of multivariate Laurent polynomials K[x±] := K[x1, x

−1
1 , . . . , xn, x

−1
n ]. The

monomials of K[x±] are all xα = xα1
1 . . . xαnn for α ∈ Zn, and ? induces the linear action

· : G ×K[x±] → K[x±],
(B, xα) 7→ B · xα := xBα

(2.3)

on K[x±]. Hence, for f =
∑
α fα x

α ∈ K[x±] and B ∈ G, we write

(B · f)(x) = f(xB) =
∑
α

fα x
Bα. (2.4)
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If (B · f)(x) = f(x) for all B ∈ G, then f is called G–invariant. The set of all G–invariant Laurent
polynomials is a finitely generated, but not necessarily polynomial, K–algebra [Lor05, Corollary 3.3.2] and
denoted by K[x±]G .

Define T := {x ∈ C |xx = 1} ⊆ C∗, where x is the complex conjugate. Note that T is the maximal compact
subgroup of C∗, which is closed with respect to inversion x 7→ 1/x and whose elements satisfy 1/x = x. We
denote by Tn the compact n–torus.

Lemma 2.1. Tn is left invariant by the action ?, that is, G ? Tn = Tn.

Definition 2.2. Assume that K[x±]G = K[θ1, . . . , θm] for some m ∈ N and θ1, . . . , θm ∈ K[x±]G.

1. The generators θ1, . . . , θm are called fundamental invariants of G. We define the map

ϑ : Tn → Cm,
x 7→ (θ1(x), . . . , θm(x)).

2. For α ∈ Zn, we call

Θα(x) :=
1

|G|
∑
B∈G

xBα ∈ K[x±]G

the orbit polynomial associated to α.

A basis for K[x±]G as a K–vector space is given by {Θα |α ∈ Zn/G} [Lor05, Equation (3.4)].

Lemma 2.3. The image im(ϑ) of ϑ is compact in Cm.

Proof. im(ϑ) ⊆ Cm is compact as the image of the compact set Tn under a continuous map. �

Our goal is to describe with the fundamental invariants of K[x±]G the set of orbits Tn/G for the nonlinear
action ?. Thanks to the following statement, this is achievable.

Theorem 2.4. The map
Tn/G → im(ϑ),
G ? x 7→ ϑ(x)

is well defined and bijective.

Proof. We follow the proof of [CLO15, Chapter 7, §4, Theorem 10]. For x, y ∈ Tn with G ? x = G ? y, we
have θi(x) = θi(y) for all 1 ≤ i ≤ n by definition. Therefore, the map is well defined and surjective.

For injectiveness, assume that x, y ∈ Tn with G ? x∩G ? y = ∅. Define the set X := G ? x∪G ? y \ {y} ⊆ Tn.
Since G is finite, X is finite and there exists f̃ ∈ C[x1, . . . , xn] with f̃(X) = {0}, f̃(y) 6= 0. For example

f̃ =
∏
x′∈X

n∏
i=1

(xi − x′i)

has the desired property. Consider C[x±] as a ring extension of C[x1, . . . , xn] and define

f :=
1

|G|
∑
B∈G

B · f̃ ∈ C[x±]G .

Then f(x) = 0 and f(y) = |StabG(y)|/|G| f̃(y) 6= 0 by definition, where StabG(y) denotes the stabilizer
subgroup of y in G. Since K[x±]G = K[θ1, . . . , θm] and K ⊆ C is a field extension, we have C[x±]G =
C[θ1, . . . , θm]. With f(x) 6= f(y), we obtain θi(x) 6= θi(y) for some 1 ≤ i ≤ m and thus ϑ(x) 6= ϑ(y). �

6 Sunday 8th May, 2022
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We conclude that there is a one–to–one correspondence between the orbit space Tn/G and the image of ϑ.
In other words, ϑ separates the orbits of the action of G by ? on Tn.

Definition 2.5. We call T := im(ϑ) the T–orbit space of G.

The following statement admits a recurrence formula to iteratively compute orbit polynomials and we make
use of it in the proofs of Lemmas 6.2 and 7.2.

Proposition 2.6. Let α, β ∈ Nn. We have Θ0 = 1 and

|Gβ|Θα Θβ =
∑
β̃∈Gβ

Θα+β̃ .

2.2 Multiplicative actions and Weyl groups

Let Ω ⊆ Rn be an n–dimensional lattice and

π : G→ GLn(R) (2.5)

a real representation of G, such that Ω is left invariant by the linear action of π(G) on Rn by matrix
multiplication. For a fixed basis {ω1, . . . , ωn} of Ω, an isomorphism of Z–modules Ω ∼= Zn is

Zn → Ω = Zω1 ⊕ . . .⊕ Zωn,
[α1, . . . , αn]t 7→ Wα = α1 ω1 + . . .+ αn ωn,

(2.6)

where W ∈ Rn×n is the matrix with columns ω1, . . . , ωn. We obtain a K–algebra isomorphism between the
group algebra K[Ω] with basis {eµ |µ ∈ Ω} [Bou75, Chapitre VIII, §9.1] and the ring of Laurent polynomials
K[x±] with basis {xα |α ∈ Zn}, given by

K[x±] → K[Ω],
xα 7→ eα1ω1+...+αnωn .

(2.7)

Since Ω is left invariant, there exists a representation % : G → GLn(Z), such that %(g) = W−1 π(g)W
for all g ∈ G. Then K[Ω]G ∼= K[x±]G is finitely generated as a ring. The action of G on K[Ω] is called
multiplicative, as the basis {eµ |µ ∈ Ω} of K[Ω] is a multiplicative subgroup of the units in K[Ω].

For µ = Wα ∈ Ω, we say that the orbit polynomial Θα is associated to µ. From now on, we denote by
θi := Θei the orbit polynomial associated to ei ∈ Zn, which corresponds to ωi for 1 ≤ i ≤ n.

We deal with lattices, which are obtained from root systems. Therefore, we recall the following definitions.

Definition 2.7. Let V be an n–dimensional R–vector space with inner product 〈·, ·〉 and R be a finite subset
of V . We say that R is a root system in V , if the following conditions hold.

1. R spans V and does not contain 0.

2. If ρ, ρ̃ ∈ R, then sρ(ρ̃) ∈ R, where sρ is the reflection defined by sρ(u) = u− 2 〈u,ρ〉〈ρ,ρ〉ρ, u ∈ V .

3. For all ρ, ρ̃ ∈ R, 2 〈ρ̃,ρ〉〈ρ,ρ〉 ∈ Z.

4. For ρ ∈ R and c ∈ R, cρ ∈ R if and only if c = ±1.

In many texts, a root system is defined only using the first three of the above conditions and if the fourth
condition holds, one speaks of a “reduced” root system. Since we study the group generated by the reflections
sρ in this article, we only need to deal with such reduced root systems thanks to [Bou68, Chapitre VI, §1,

7
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Proposition 13] and may include the fourth condition in our definition. Less common is also to define a root
system without the second “crystallographic” property [Kan01]. The element

ρ∨ = 2
ρ

〈ρ, ρ〉

that appears in the definition of the reflection sρ is called the coroot of ρ ∈ R.

Definition 2.8. The Weyl group of a root system R in V is the subgroup of the orthogonal group, with
respect to the inner product 〈·, ·〉, generated by the reflections sρ for ρ ∈ R.

Definition 2.9. Let R be a root system in V .

1. A subset B = {ρ1, . . . , ρn} of R is a base if the following conditions hold.

(a) B is a basis of the vector space V .

(b) Every root ρ ∈ R can be written as ρ = α1 ρ1 + . . .+ αn ρn or ρ = −α1 ρ1 − . . .− αn ρn for some
α ∈ Nn.

The elements of B are called simple roots.

2. If B is a base, the roots of the form ρ = α1 ρ1 + . . .+ αn ρn for α ∈ Nn are called the positive roots
and the set of all positive roots is denoted by R+.

3. R contains a unique positive root ρ0 with maximal coefficients α ∈ Nn, called the highest root.

Existence of the highest root follows from [Bou68, Chapitre VI, §1, Proposition 25]. The Weyl group is
generated by the reflections associated to the simple roots [Hum72, Chapter III, §10.3].

The fundamental Weyl chamber in V relative to the base B = {ρ1, . . . , ρn} is ΛΛ := {u ∈ V | 〈u, ρi〉 > 0}.
The closure of ΛΛ in V is a fundamental domain for the Weyl group of R [Bou68, Chapitre V, §3, Théorème
2].

A root system defines the following lattice in V . This lattice and related concepts play an important role in
the representation theory of semi–simple Lie algebras [Hum72, Ser01, FH04].

Definition 2.10. Let B = {ρ1, . . . , ρn} be a base of R and B∨ = {ρ∨1 , . . . , ρ∨n} its dual.

1. An element µ of V is called a weight if
〈µ, ρ∨i 〉 ∈ Z

for 1 ≤ i ≤ n. The set of weights forms a lattice called the weight lattice.

2. The fundamental weights are the elements {ω1, . . . , ωn} such that 〈ωi, ρ∨j 〉 = δi,j , 1 ≤ i, j ≤ n.

3. A weight µ is strongly dominant if 〈µ, ρi〉 > 0 for all ρi ∈ B. A weight µ is dominant if 〈µ, ρi〉 ≥ 0
for all ρi ∈ B.

The weight lattice is left invariant under the Weyl group. Note that the set of strongly dominant weights is
contained in ΛΛ and the set of dominant weights is contained in the closure of ΛΛ. The fundamental weights
lie on the boundary or “walls” of ΛΛ.

For Weyl groups and weight lattices, we have the following specific result about the ring of invariants.

Theorem 2.11. [Bou68, Chapitre VI, §3, Théorème 1] Let R be a root system. Assume that Ω is the weight
lattice and G the Weyl group with integer representation G. Then θ1, . . . , θn are algebraically independent
and K[x±]G is the polynomial algebra

K[x±]G = K[θ1, . . . , θn].

8 Sunday 8th May, 2022
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The converse “K[x±]G polynomial algebra⇒ G Weyl group” of Theorem 2.11 is also true [Far86]. The above
theorem implies that the fundamental invariants of G are orbit polynomials as in Definition 2.2 and that
m = n. Therefore, T–orbit spaces satisfy the next property.

Lemma 2.12. Under the assumptions of Theorem 2.11, the following statements hold.

1. For z = (z1, . . . , zn) ∈ T , we have |zi| ≤ 1 for 1 ≤ i ≤ n.

2. If −In ∈ G, then T ⊆ [−1, 1]n ⊆ Rn.

Proof. Let z = ϑ(x) for some x ∈ Tn. Then |zi| = |θi(x)| ≤ 1
|G|
∑
B∈G |xBei | = 1.

Furthermore, if −In ∈ G we have θi(x) = θi(x
−In) = θi(x) ∈ R for all x ∈ T. Hence by the first statement,

T is contained in the cube [−1, 1]n. �

Proposition 2.13. Under the assumptions of Theorem 2.11, there exists a permutation σ ∈ Sn of order 2,
such that θi(x

−In) = θσ(i)(x) for all 1 ≤ i ≤ n.

Proof. Let B = {ρ1, . . . , ρn} be a base with fundamental weights ω1, . . . , ωn. We make use of Equation (2.6)
and prove that there exists a permutation σ ∈ Sn, such that −ωσ(i) ∈ Gωi for all 1 ≤ i ≤ n.

By [Bou68, Chapitre VI, §1 Theorem 2], there exist A ∈ G, σ ∈ Sn with Aρ∨i = −ρ∨σ(i) for all 1 ≤ i ≤ n.
We have

〈−ωσ(i),−ρ∨σ(j)〉 = δij = 〈ωi, ρ∨j 〉 = 〈Aωi, A ρ∨j 〉 = 〈Aωi,−ρ∨σ(j)〉,

because σ is a permutation and the inner product is G–invariant. Since −B∨ is a basis of V , Aωi = −ωσ(i).
Especially, −ωσ(i) ∈ Gωi ∩ Gωσ2(i) and so Gωi = Gωσ2(i) for all 1 ≤ i ≤ n. As the closure of ΛΛ is a
fundamental domain for G and ωi, ωσ2(i) lie on the walls of ΛΛ, we have σ2 = 1. �

To describe the T–orbit space of G as a basic semi–algebraic set in Rn, we can now make the following
adjustment for 1 ≤ i ≤ n. For i = σ(i), we leave the i–th coordinate of ϑ as it is. For i < σ(i), replace the
i–th and σ(i)–th coordinate of ϑ by θi,R := (θi + θσ(i))/2 and θσ(i),R := (θi − θσ(i))/(2i). The resulting map

ϑR : Tn → Rn,
x 7→ (θ1,R(x), . . . , θn,R(x))

(2.8)

has image TR ⊆ [−1, 1]n.

2.3 Contribution

For a finite group with an integer representation, the natural problem we pursue is to describe the image of
the compact n–torus Tn under the fundamental invariants in terms of polynomial inequalities. As seen in
Theorem 2.4, this image represents the orbit space Tn/G. The main results of this article do this explicitly
for Weyl groups of type A,B, C and D. We show the existence of an n–dimensional R–vector space Z ⊆ Cn
containing T and a symmetric matrix polynomial H ∈ K[z]n×n with the following property: For all z ∈ Z,
H(z) has real entries and z is contained in the T–orbit space T of G if and only if H(z) is positive semi–
definite. The reason that we specifically consider the Weyl groups of type A,B, C,D is the following.

A root system can be decomposed into irreducible components [Bou68, Chapitre VI, §1, Proposition 6]. This
leaves us with nine families, which are denoted by An−1, Bn, Cn (n ≥ 2), Dn (n ≥ 4) for fixed n ∈ N, as
well as E6, E7, E8, F4 and G2 [Bou68, Chapitre VI, §4, Théorème 3]. In this article, we study the four
infinite families An−1, Cn, Bn and Dn in Sections 4 to 7 for arbitrary n in this order. The associated Weyl
groups are An−1, Cn, Bn and Dn. For these cases, we present an explicit matrix polynomials H ∈ K[z] in
Theorems 4.3, 5.3, 6.4 and 7.4.

9
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For arbitrary groups with an integer representation, we present a conjecture in Section 8.

Convention. We work over the field K = Q. A root system in V ⊆ Rn is crystallographic, reduced,
and irreducible. Its Weyl group G is a finite subgroup of On(R). Stabilizer subgroups of G, respectively
its integer representation G, are denoted by StabG(. . .), respectively StabG(. . .), where the action by either
matrix multiplication, Equation (2.2), or Equation (2.3), is evident from the argument.

3 Symmetric polynomial systems

The four Weyl groups An−1, Bn, Cn and Dn each contain a subgroup isomorphic to the symmetric group Sn

and the formulae we give for some specific invariants involve the elementary symmetric polynomials. This
gives rise to a symmetric polynomial system. In this section, we give a characterization for all solutions of
such a system to be contained in the compact torus Tn.

3.1 Solutions in Tn

For 1 ≤ i ≤ n, the polynomial

σi(y1, . . . , yn) =
∑

J⊆{1,...,n}
|J|=i

∏
j∈J

yj ∈ Q[y1, . . . , yn] (3.1)

is called the i–th elementary symmetric polynomials in n indeterminates. We shall be confronted with
the following two types of polynomial systems in unknown y1, . . . , yn.

(I) σi(y1, . . . , yn) = (−1)i ci for 1 ≤ i ≤ n with c1, . . . , cn ∈ C
(II) σi(y1 + y−11 , . . . , yn + y−1n ) = (−1)i ci for 1 ≤ i ≤ n with c1, . . . , cn ∈ R

The goal of this section is to determine, whether all solutions y = (y1, . . . , yn) of system (I), respectively
system (II), are contained in Tn. Recall Vieta’s formula

n∏
k=1

(x− rk) = xn +

n∑
i=1

(−1)i σi(r1, . . . , rn)xn−i ∈ C[x] (3.2)

for r1, . . . , rn ∈ C.

Lemma 3.1.

1. System (I) always has a solution in Cn. It is is unique up to permutation of coordinates.

2. The map
C∗ → C,
x 7→ (x+ x−1)

is surjective and the preimage of [−2, 2] is T.

3. System (II) always has a solution in (C∗)n. It is is unique up to permutation and inversion of coordi-
nates.

Proof. 1. By Equation (3.2), a solution of system (I) is the vector of roots of a polynomial with coefficients
given by the right hand side of system (I). Such a polynomial always has n unique roots in C.

2. For r ∈ C, consider the polynomial p := x2 − r x + 1 ∈ C[x]. Then 0 is not a root of p and p = 0 if
and only if r = x+ x−1, that is r is in the image of the map. If r ∈ [−2, 2], then p ∈ R[x] has discriminant
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(r/2)2 − 1 ≤ 0 and its two roots are x, x = x, x−1 = r/2± i
√

1− (r/2)2 ∈ T. On the other hand for x ∈ T,
x+ x−1 = x+ x = 2<(x) ∈ [−2, 2].

3. By the second statement, we can write the roots r1, . . . , rn of the polynomial with coefficients given by
the right hand side of system (II) as ri = yi + y−1i for some y ∈ (C∗)n. Then y is a unique solution of (II)
up to permutation and inversion. �

From now on, we speak of “the” solution of system (I), respectively (II).

Proposition 3.2. For c1, . . . , cn ∈ R, the solution of system (II) is contained in Tn if and only if all the
roots of the univariate polynomial

xn + c1 x
n−1 + . . .+ cn ∈ R[x]

are contained in [−2, 2].

Proof. Let p := xn + c1 x
n−1 + . . . + cn ∈ R[x] with roots r1, . . . , rn ∈ C. If y ∈ (C∗)n is the solution of

system (II), then for all 1 ≤ i ≤ n, yi + y−1i is a root of p by Equation (3.2). Applying Lemma 3.1 yields
y ∈ Tn if and only if r1, . . . , rn ∈ [−2, 2]. �

The Chebyshev polynomial of the first kind associated to ` ∈ N is the unique univariate polynomial T` with
T`((x+x−1)/2) = (x`+x−`)/2. The set {T` | ` ∈ N} is a basis of R[x] as an R–vector space. For 0 6= p ∈ R[x]
or C[x], denote by Coeff(x`, p) the coefficient of the monomial x` in p for 0 ≤ ` ≤ deg(p).

Proposition 3.3. For c1, . . . , cn−1 ∈ C with ci = (−1)n cn−i and c0 := (−1)n cn := 1, the solution of system
(I) is contained in Tn if and only if all the roots of the univariate polynomial

Tn(x) + d1 Tn−1(x) + . . .+ dn−1 T1(x) +
dn
2
T0(x) ∈ R[x] with d` =

∑̀
i=0

ci c`−i ∈ R

are contained in [−1, 1].

Proof. By Equation (3.2), the solution of system (I) is contained in Tn if and only if all the roots of the
polynomial p := xn + c1 x

n−1 + . . .+ cn ∈ C[x] are contained in T.

Set p̃ := xn + c1 x
n−1 + . . .+ cn ∈ C[x]. The roots of p are nonzero, because p(0) = cn = (−1)n 6= 0. Since

p̃(x) = (−x)n p(x−1), the roots of pp̃ ∈ C[x] are the union of the roots of p and their inverses. Especially, all
the roots of pp̃ are contained in T if and only if the roots of p are. The coefficients of pp̃ satisfy

Coeff(x`, pp̃) =
∑̀
i=0

cn−i cn−`+i =
∑̀
i=0

ci c`−i =


∑̀
i=0

Coeff(xn−i, p̃) Coeff(xn−`+i, p) = Coeff(x2n−`, pp̃)

b(`−1)/2c∑
i=0

(ci c`−i + c`−i ci)︸ ︷︷ ︸
∈R

+

{
c`/2 c`/2, ` even

0, ` odd
∈ R

for 0 ≤ ` ≤ n. Thus, Coeff(x`, pp̃) = Coeff(x2n−`, pp̃) = d` ∈ R and we can write

pp̃ =

n∑
`=1

dn−`(x
n+`+xn−`)+dn = 2xn

(
n∑
`=1

dn−`T`

(
x+ x−1

2

)
+
dn
2
T0

(
x+ x−1

2

))
=: 2xng

(
x+ x−1

2

)
.

By Lemma 3.1, we have x ∈ T is a root of pp̃ if and only if (x+ x−1)/2 ∈ [−1, 1] is a root of g. �

11



E. Hubert, T. Metzlaff, C. Riener

3.2 Characterization of real roots via Hermite quadratic forms

Let p, q ∈ R[x] be monic univariate polynomials. The multiplication by q in the R–algebra R[x]/〈p〉 is the
homomorphism

mq : R[x]/〈p〉 → R[x]/〈p〉,
[f ] 7→ [q f ].

(3.3)

By [CLO05, Chapter 2, Proposition 4.2], we have for q1, q2 ∈ R[x]

mq1+q2 = mq1 +mq2 and mq1 q2 = mq1 ◦mq2 . (3.4)

If p = xn + c1 x
n−1 + . . .+ cn−1 x+ cn, then the matrix of mx in the basis {1, x, . . . , xn−1} of R[x]/〈p〉 is the

companion matrix 
0 0 −cn

1
. . .

...
. . . 0 −c2

0 1 −c1

 (3.5)

of p, since xxi = xi+1 for 0 ≤ i ≤ n − 2 and xxn−1 = xn ≡ −c1 xn−1 − . . . − cn−1 x − cn mod 〈p〉. On
the other hand, the univariate Chebyshev polynomials of the first kind up to degree n− 1 also form a basis
{T0, T1, . . . , Tn−1} of R[x]/〈p〉. If p = Tn + d1 Tn−1 + . . . + dn−1 T1 + dn/2T0 ∈ R[x] and n ≥ 3, then the
matrix of mx in this basis is 

0 1/2 0 −dn/4

1 0
. . . −dn−1/2

1/2
. . .

. . .
...

. . .
. . . 1/2 −d3/2
. . . 0 (1− d2)/2

0 1/2 −d1/2


, (3.6)

where the rows and columns are indexed by T0, T1, . . . , Tn−1. The entries in the columns originate from the
recurrence formula xT0 = T1 and 2xTj = Tj+1 + Tj−1 for 1 ≤ j ≤ n− 1. Especially,

2xTn−1 = Tn + Tn−2 ≡ −d1 Tn−1 + (1− d2)Tn−2 − d3 Tn−3 − . . .− dn−1 T1 − dn/2T0 mod 〈p〉 (3.7)

yields the last column.

Example 3.4. Let p = x3− c x2 + c x− 1 ∈ C[x] with c ∈ C and roots r1, r2, r3 ∈ T, such that r1 · r2 · r3 = 1.
Following the proof of Proposition 3.3, we consider the palindromic polynomial pp̃ ∈ R[x] with

1

2x3
pp̃

=
1

2x3

(
(x6 + 1)− (c+ c)(x5 + x) + (c c+ c+ c)(x4 + x2)− c2 + c2 + 2

2
x3
)

=
x3 + x−3

2
− (c+ c)

x2 + x−2

2
+ (c c+ c+ c)

x+ x−1

2
− c2 + c2 + 2

2

=T3

(
x+ x−1

2

)
− (c+ c)T2

(
x+ x−1

2

)
+ (c c+ c+ c)T1

(
x+ x−1

2

)
− c2 + c2 + 2

2
T0

(
x+ x−1

2

)
= g

(
x+ x−1

2

)
.
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The matrix of the multiplication by x in R[x]/〈g〉 in the basis of Chebyshev polynomials is0 1/2 (c2 + c2 + 2)/4
1 0 (1− c c− c− c)/2
0 1/2 (c+ c)/2

 ∈ R3×3.

To characterize univariate polynomial with roots in [−2, 2], respectively [−1, 1], we use the next statement,
which is an application of Sturm’s version for Sylvester’s theorem.

Theorem 3.5. Let p ∈ R[x] be a monic univariate polynomial of degree n and let mx be the associated
multiplication by x in R[x]/〈p〉. For 0 < a ∈ R, all the roots of p are contained in [−a, a] if and only if the
Hermite quadratic form

Hq(p) : R[x]/〈p〉 → R, [f ] 7→ Tr(mq f2), with q = (a− x) (a+ x) ∈ R[x],

is positive semi–definite.

Proof. Let H ∈ Rn×n be the symmetric matrix associated to Hq(p) for a fixed basis of R[x]/〈p〉. Denote
by N+, respectively N−, the number of strictly positive, respectively negative, eigenvalues of H, counting
multiplicities. By [BPR06, Theorem 4.57] or also [CLO05, Chapter 2, Theorem 5.2], rank and signature of
Hq(p) are

N+ +N− = Rank(Hq(p)) = |{x ∈ C |p(x) = 0 q(x) 6= 0}|,
N+ −N− = Sign(Hq(p)) = |{x ∈ R | p(x) = 0 q(x) > 0}|︸ ︷︷ ︸

=:n+

− |{x ∈ R | p(x) = 0 q(x) < 0}|︸ ︷︷ ︸
=:n−

.

If all roots of p are contained in [−a, a], then n− = 0 and thus N+ + N− = Rank(Hq(p)) = Sign(Hq(p)) =
n+ = N+ − N−. Therefore, N− = 0 and all eigenvalues of H are nonnegative, that is, Hq(p) is positive
semi–definite.

For the converse, assume that Hq(p) is positive semi–definite. Then N− = 0 and N+ = Sign(Hq(p)) =
n+−n− ≤ Rank(Hq(p)) = N+, that is, n+−n− = Rank(Hq(p)). On the other hand, Rank(Hq(p)) ≥ n++n−.
Hence, n− = 0 and Rank(Hq(p)) = n+ implies that all the roots of p are real and contained in [−a, a]. �

Note that the matrix H in the proof of Theorem 3.5 does not depend on the choice of a basis for R[x]/〈p〉,
as the trace is basis–invariant. As corollaries, we obtain explicit characterizations for solutions of symmetric
polynomial systems in Tn.

Corollary 3.6. Let n ≥ 3. For c1, . . . , cn ∈ C with ci = (−1)n cn−i for 1 ≤ i ≤ n−1 and c0 := (−1)n cn := 1,
the solution of system (I) is contained in Tn if and only if the matrix H ∈ Rn×n with entries

Hij = Tr(Ci+j−2 − Ci+j), where

C =



0 1/2 0 −dn/4

1 0
. . . −dn−1/2

1/2
. . .

. . .
...

. . .
. . . 1/2 −d3/2
. . . 0 (1− d2)/2

0 1/2 −d1/2


∈ Rn×n and d` =

∑̀
i=0

ci c`−i for 1 ≤ ` ≤ n,

is positive semi–definite.
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Proof. H is the matrix associated to the Hermite quadratic form Hq(p) from Theorem 3.5 with q = 1− x2
in the basis {1, x, x2, . . . , xn−1}. Indeed, by Equation (3.4), the entries of the associated matrix are

Tr(mq xi−1 xj−1) = Tr(mxi+j−2−xi+j ) = Tr(mi+j−2
x −mi+j

x )

for 1 ≤ i, j ≤ n. Since the trace is independent of the basis for R[x]/〈p〉, we can consider the matrix of mx

in the basis of univariate Chebyshev polynomials of the first kind, which according to Equation (3.6) is C.
The statement now follows from Proposition 3.3. �

Analogously, we obtain the following statement for systems of type (II).

Corollary 3.7. For c1, . . . , cn ∈ R, the solution of system (II) is contained in Tn if and only if the matrix
H ∈ Rn×n with entries

Hij = Tr(4Ci+j−2 − Ci+j), where

C =


0 · · · 0 −cn
1 0 −cn−1

. . .
...

0 1 −c1

 ∈ Rn×n,

is positive semi–definite.

4 Type A

In Sections 4 to 7 we study the Weyl groups G of types A, B, C and D. First, we give an explicit formula for
some of the orbit polynomials in terms of the elementary symmetric polynomials. This induces a symmetric
system of type (I), respectively (II). Afterwards, we present an explicit symmetric matrix polynomial H to
characterize the solution of this symmetric system in Tn. Such a solution then corresponds to a point in T ,
the image of ϑ, representing the T–orbit space. An example to visualize the 2–dimensional case accompanies
the main result of each section, except D.

Convention. We abuse notation and speak of “the orbit polynomial Θµ associated to µ = W α ∈ Ω”
with α ∈ Zn, to refer to the orbit polynomial Θα associated to α. Furthermore for f ∈ Q[x±] and G ∈
{An−1,Bn, Cn,Dn}, we write G · f for the orbit G · f of f with respect to the action from Equation (2.3).

For An−1, we shall encounter a system of type (I) in n indeterminates. To be consistent with the notation
of Section 3, we consider An−1 as a root system of rank n − 1. In particular, we denote the Laurent
polynomial ring and the polynomial ring in n− 1 indeterminates by Q[x±] = Q[x1, x

−1
1 , . . . , xn−1, x

−1
n−1] and

Q[z] = Q[z1, . . . , zn−1].

4.1 Fundamental invariants for An−1

The group Sn acts on Rn by permutation of coordinates and leaves the subspace V := {u ∈ Rn |u1+. . .+un =
0} invariant. The root system An−1 given in [Bou68, Planche I] is a root system of rank n − 1 in V with
simple roots and fundamental weights

ρi = ei − ei+1 and ωi =

i∑
j=1

ej −
i

n

n∑
j=1

ej =
1

n
[n− i, . . . , n− i︸ ︷︷ ︸

i times

,−i, . . . ,−i︸ ︷︷ ︸
n−i times

]t (4.1)

for 1 ≤ i ≤ n− 1. The Weyl group of An−1 is An−1 ∼= Sn and the graph

s1 s2 . . . sn−2 sn−1 (4.2)
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is the associated Coxeter diagram, where the si := sρi are the reflections from Definition 2.7, which generate
An−1. Thus, −ωn−i ∈ An−1 ωi and the orbit An−1 ωi has cardinality

(
n
i

)
for 1 ≤ i ≤ n− 1.

The orbit polynomials associated to the fundamental weights of An−1 and the elementary symmetric poly-
nomials from Equation (3.1) satisfy the following relations.

Proposition 4.1. In Q[x±], define the monomials

y1 = x1, yk = xk x
−1
k−1 for 2 ≤ k ≤ n− 1 and yn = x−1n−1.

Then

σi(y1(x), . . . , yn(x)) =

(
n

i

)
θi(x)

for 1 ≤ i ≤ n− 1.

Proof. We first show that the orbit of the monomial xe1 = x1 is An−1 ·x1 = {y1, . . . , yn}, and then infer the
orbit of the xi.

It follows from Equation (4.1), that W e1 = ω1 = (n e1 −
∑n
j=1 ej)/n and

ωi − ωi−1 =

i∑
j=1

ej −
i

n

n∑
j=1

ej −
i−1∑
j=1

ej +
i− 1

n

n∑
j=1

ej =
1

n

n ei − n∑
j=1

ej


for 2 ≤ i ≤ n − 1. Hence, ωi − ωi−1 is obtained from ω1 by permutation of coordinates. Furthermore,
−ωn−1 = ω1 = (n en −

∑n
j=1 ej)/n ∈ An−1 ω1. Thus, we have {ω1, ω2 − ω1, . . . , ωn−1 − ωn−2,−ωn−1} ⊆

An−1 ω1. Since these n weights are distinct and the orbit of ω1 has cardinality n, we also have “⊇”. The
monomials in Q[x±], which correspond to ω1, ω2 − ω1, . . . , ωn−1 − ωn−2,−ωn−1 are y1, . . . , yn.

For 1 ≤ i ≤ n− 1, we have xei = xi = y1 . . . yi. Since the linear action of An−1 on Q[x±] by Equation (2.3)
permutes the monomials yi, we have An−1 · xi = {

∏
j∈J yj | J ⊆ {1, . . . , n}, |J | = i}. Hence,

θi =
|StabAn−1

(xi)|
|An−1|

∑
J⊆{1,...,n}
|J|=i

∏
j∈J

yj =
1

|An−1 · xi|
σi(y1, . . . , yn) =

(
n

i

)−1
σi(y1, . . . , yn).

�

4.2 Hermite matrix for An−1

We introduce the subset Tn1 := {y = (y1, . . . , yn) ∈ Tn | y1 . . . yn = 1} of the compact torus. The proof of
the following fact is straightforward.

Proposition 4.2. The map

ψ : (C∗)n−1 → (C∗)n,
x 7→ (x1, x2 x

−1
1 , . . . , xn−1 x

−1
n−2, x

−1
n−1)

is injective and the preimage of Tn1 is Tn−1.

We state the main result for Weyl groups of type A. Note that for n = 2, we are in the univariate case
A1
∼= S2

∼= {±1}, where T = [−1, 1].
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Theorem 4.3. Let n ≥ 3. Consider the R–vector space Z := {z ∈ Cn−1 | ∀ 1 ≤ j ≤ n− 1 : zj = zn−j} and
define the matrix H ∈ Q[z]n×n by

H(z)ij = Tr((C(z))i+j−2 − (C(z))i+j) with

C(z) =



0 1/2 0 −dn(z)/4

1 0
. . . −dn−1(z)/2

1/2
. . .

. . .
...

. . .
. . . 1/2 −d3(z)/2
. . . 0 (1− d2(z))/2

0 1/2 −d1(z)/2


, where

d`(z) = (−1)`

((
n

`

)
(z` + zn−`) +

`−1∑
i=1

(
n

i

)(
n

`− i

)
zi zn−`+i

)
for 1 ≤ ` ≤ n− 1 and

dn(z) = (−1)n

(
2 +

n−1∑
i=1

(
n

i

)2

z2i

)
.

For all z ∈ Z, H(z) ∈ Rn×n and T = {z ∈ Z |H(z) � 0}.

Proof. Let z ∈ Cn−1 and define c0 := (−1)n cn := 1, ci := (−1)i
(
n
i

)
zi ∈ C for 1 ≤ i ≤ n − 1 as well as

d` := d`(z) for 1 ≤ ` ≤ n.

To show “⊆”, assume that z ∈ T and fix x ∈ Tn−1, such that θi(x) = zi. By Proposition 4.1, the solution of

(I) σi(y1, . . . , yn) = (−1)i ci for 1 ≤ i ≤ n

is given by y = ψ(x) ∈ Tn1 , where ψ is the map from Proposition 4.2. Note that θj(x) and θn−j(x) are

complex conjugates, because −ωj ∈ An−1 ωn−j . Therefore, z ∈ Z and d` =
∑`
i=0 ci c`−i ∈ R yields the last

column of C(z). Applying Corollary 3.6 with coefficients d` yields H(z) � 0.

For “⊇” on the other hand, assume z ∈ Z with H(z) � 0. By Corollary 3.6, the solution y of system (I) is
contained in Tn and satisfies y1 . . . yn = (−1)n cn = 1, that is, y ∈ Tn1 . Let x ∈ Tn−1 be the unique preimage
of y under ψ. Then

zi = (−1)i
(
n

i

)−1
ci =

(
n

i

)−1
σi(y1, . . . , yn) = θi(x)

by Proposition 4.1 and thus z = ϑ(x) ∈ T . �

We finish this subsection with a remark on the embedding of T in Rn−1 and on the degree of the entries of
the Hermite matrix polynomial.

Remark 4.4.

1. In the case of An−1, we have T 6⊆ Rn−1, because −In /∈ An−1. Following Equation (2.8), we consider
the image TR of the map

ϑR : Tn−1 → Rn−1, x 7→ (θ1,R(x), . . . , θn−1,R(x)) with

θi,R(x) =
θi(x) + θn−i(x)

2
, θn−i,R(x) =

θi(x)− θn−i(x)

2i
for 1 ≤ i ≤ b(n− 1)/2c and

θn/2,R(x) = θn/2(x), when n is even.
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2. The entries of the last column of the matrix polynomial C(z) have degree 2, except C(z)nn = −f1(z),
which has degree 1. All other entries are constant. Hence, the degree of H(z)ij is i+j. The determinant
of H(z) has degree 4n− 2 for n ≥ 3.

4.3 Example A2

In this subsection, we further investigate the case n = 3 and give a visualization for the embedding of the
T–orbit space in R2.

ρ2

ρ1

ω1

ω2 A2
∼= S3

ω1 = [2,−1,−1]t/3
ω2 = [1, 1,−2]t/3

ρ1 = [1,−1, 0]t

ρ2 = [0, 1,−1]t

Figure 3: The root system A2 in V ⊆ R3 with fundamental weights ω1, ω2 and simple roots ρ1, ρ2.

In Figure 3, the hexagon is the orbit of the blue shaded triangle with vertices 0, ω1, ω2 under A2.

Let z1, z2 ∈ R and z = (z1 + iz2, z1 − iz2) ∈ Z. Then the matrix C(z) ∈ R[z]3×3 from Theorem 4.3 is

C(z) =

0 1/2 (1 + 9 z21 − 9 z22)/2
1 0 (1− 9 z21 − 9 z22 − 6 z1)/2
0 1/2 3 z1

 . (4.3)

We already computed this matrix (up to a substitution) in Example 3.4. Following Theorem 4.3, define the
matrix H(z) ∈ R[z]3×3 with entries (H(z))ij = 4 Tr(C(z)i+j−2)−Tr(C(z)i+j). Then (z1, z2) is contained in
TR if and only if H(z) is positive semi–definite. Assume that Det(x I3 −H(z)) = x3 − h2(z)x2 + h1(z)x−
h0(z) ∈ R[x] is the characteristic polynomial of H(z) for some hi(z) ∈ R[z]. By [BPR06, Theorem 4.58],
H(z) is positive semi–definite if and only if hi(z) ≥ 0 for 0 ≤ i ≤ 2.

17
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(a) h0(z) ≥ 0 (b) h1(z) ≥ 0

(c) h2(z) ≥ 0 (d) h0(z), h1(z), h2(z) ≥ 0

Figure 4: Vanishing points and positivity regions for the coefficients of the characteristic polynomial of H(z).

Of particular interest are the vertices, which correspond to the fundamental weights and the origin. They
are given by

Vertex1 := ϑR(exp(−2πi 〈ω1, ω1〉), exp(−2πi 〈ω2, ω1〉)) = ϑR

(
exp

(
−4

3
πi

)
, exp

(
−2

3
πi

))
=

(
−1

2
,

√
3

2

)
,

Vertex2 := ϑR(exp(−2πi 〈ω1, ω2〉), exp(−2πi 〈ω2, ω2〉)) = ϑR

(
exp

(
−2

3
πi

)
, exp

(
−4

3
πi

))
=

(
−1

2
,−
√

3

2

)
,

Vertex3 := ϑR(exp(−2πi 〈ω1, 0〉), exp(−2πi 〈ω2, 0〉)) = ϑR(1, 1) = (1, 0) .

We visualize the problem “(z1, z2) ∈ TR?” by evaluating h0, h1, h2 at z. In the above images, a solid red line,
blue dots and green dashes indicate the varieties of these three polynomials. The plots indicate an invariance
under the dihedral groups D3. Let g1(z) := z21 + z22 , g2(z) := z1 (z21 − 3 z22). Then R[z]D3 = R[g1(z), g2(z)]
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and we have

h0(z) = −Coeff(t0,Det(t I3 −H(z))) (solid)
= 2187/64 z42 (3 z1 + 1)2 (−3 z41 − 6 z21 z

2
2 − 3 z42 + 8 z31 − 24 z1 z

2
2 − 6 z21 − 6 z22 + 1)

= 2187/64 z42 (3 z1 + 1)2 (−6 g1(z)− 3 g1(z)2 + 8 g2(z) + 1)︸ ︷︷ ︸
D3–invariant

,

h1(z) = Coeff(t1,Det(t I3 −H(z))) (dots)
= 243/256 z22 (−243 z81 − 972 z61 z

2
2 − 1458 z41 z

4
2 − 972 z21 z

6
2 − 243 z82 + 324 z71 − 1620 z51 z

2
2

−4212 z31 z
4
2 − 2268 z1 z

6
2 − 432 z61 − 2052 z41 z

2
2 − 5400 z21 z

4
2 − 324 z62 + 180 z51 − 3384 z31 z

2
2

−684 z1 z
4
2 + 18 z41 − 804 z21 z

2
2 + 42 z42 + 76 z31 + 404 z1 z

2
2 − 8 z21 − 108 z22 + 60 z1 + 25),

h2(z) = −Coeff(t2,Det(t I3 −H(z))) (dash)
= 1/32 (−729 z61 + 1458 z51 + (10935 z22 − 1215) z41 + (−2916 z22 + 540) z31 + 351 z22 + 63

+(−10935 z42 + 1458 z22 − 135) z21 + (−4374 z42 + 972 z22 + 18) z1 + 729 z62 − 1215 z42).

For a generic point z ∈ Z, H(z) has rank 3. We observe an intersection of all three varieties in Vertex3, in
which case the rank of H(Vertex3) vanishes. This also occurs at

ϑR

(
exp

(
−2πi〈ω1,

ω1 + ω2

2
〉
)
, exp

(
−2πi〈ω2,

ω1 + ω2

2
〉
))

= ϑR(exp(−πi), exp(πi)) =

(
−1

3
, 0

)
.

Furthermore, the rank of both H(Vertex1), H(Vertex2) is 1, we only have an intersection of “h0(z) = 0” with
“h1(z) = 0”. Two more intersection of “h0(z) = 0” with “h1(z) = 0” lie at (−1/3, 2/3) and (−1/3,−2/3).
Every other point on the boundary of TR admits rank 2.

5 Type C

In Sections 5 to 7, we will encounter symmetric systems similarly to Section 4, however they will be of type
(II) and therefore, we dealt with the type A first. The dimension of the root system and the number of
indeterminates of the symmetric system are from now on both n.

5.1 Fundamental invariants for Cn
The groups Sn and {±1}n act on Rn by permutation of coordinates, and multiplication of coordinates by ±1.
The root system Cn given in [Bou68, Planche III] is a root system in Rn with simple roots and fundamental
weights

ρi = ei − ei+1, ρn = 2 en and ωi = e1 + . . .+ ei. (5.1)

for 1 ≤ i ≤ n. The Weyl group of Cn is Cn ∼= Sn n {±1}n and the graph

s1 s2 . . . sn−1 sn (5.2)

is the associated Coxeter diagram, where the si := sρi are the reflections from Definition 2.7, which generate
Cn. We have −In ∈ Cn and thus, −ωi ∈ Cn ωi. Furthermore, the orbit Cn ωi has cardinality 2i

(
n
i

)
for

1 ≤ i ≤ n.

The orbit polynomials associated to the fundamental weights of Cn and the elementary symmetric polyno-
mials from Equation (3.1) satisfy the following relations.

Proposition 5.1. In Q[x±], define the monomials

y1 = x1 and yk = xk x
−1
k−1 for 2 ≤ k ≤ n.

Then

σi(y1(x) + y1(x)−1, . . . , yn(x) + yn(x)−1) = 2i
(
n

i

)
θi(x)

for 1 ≤ i ≤ n.
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Proof. We follow the proof of Proposition 4.1.

It follows from Equation (5.1), that ±ω1 = ±e1 and ±(ωi−ωi−1) = ±ei for 2 ≤ i ≤ n, which is obtained from
ω1 by permutation and sign change of coordinates. Thus, {±ω1,±(ω2−ω1), . . . ,±(ωn−ωn−1)} ⊆ Cn ω1. Since
these 2n weights are distinct and the orbit of ω1 has cardinality 2n, we also have “⊇”. The corresponding
monomials in Q[x±] are given by y1, . . . , yn and their inverses.

For 1 ≤ i ≤ n, we have xi = y1 . . . yi. Since the linear action of Cn on Q[x±] by Equation (2.3) permutes and

inverts the yi, we have Cn · xi = {
∏
j∈J y

δj
j | J ⊆ {1, . . . , n}, |J | = i, δ ∈ {±1}J}. Thus,

θi =
|StabCn(xi)|
|Cn|

∑
J⊆{1,...,n}
|J|=i

∑
δ∈{±1}J

∏
j∈J

y
δj
j =

1

|Cn · xi|
∑

J⊆{1,...,n}
|J|=i

∏
j∈J

(yj + y−1j )

with |Cn · xi| = 2i
(
n
i

)
yields the statement. �

5.2 Hermite matrix for Cn
The proof of the next statement is straightforward.

Proposition 5.2. The map

ψ : (C∗)n → (C∗)n,
x 7→ (x1, x2 x

−1
1 , . . . , xn x

−1
n−1)

is bijective and the preimage of Tn is Tn.

We state the main result of this section, which we applied in Example 1.1.

Theorem 5.3. Define the matrix H ∈ Q[z]n×n by

H(z)ij = Tr(4 (C(z))i+j−2 − (C(z))i+j) with

C(z) =


0 · · · 0 −cn(z)
1 0 −cn−1(z)

. . .
...

0 1 −c1(z)

 , where ci(z) = (−2)i
(
n

i

)
zi for 1 ≤ i ≤ n.

Then T = {z ∈ Rn |H(z) � 0}.

Proof. Let z ∈ Rn and set ci := ci(z) ∈ R for 1 ≤ i ≤ n.

To show “⊆”, assume that z ∈ T . Then there exists x ∈ Tn, such that θi(x) = zi for 1 ≤ i ≤ n. By
Proposition 5.1, the solution of the symmetric polynomial system

(II) σi(y1 + y−11 , . . . , yn + y−1n ) = (−1)i ci for 1 ≤ i ≤ n

is y = ψ(x) ∈ Tn, where ψ is the map from Proposition 5.2. Applying Corollary 3.7 yields H(z) � 0.

For “⊇” on the other hand, assume H(z) � 0. By Corollary 3.7, the solution y of the above system (II)
is contained in Tn. Let x ∈ Tn be the unique preimage of y under ψ. Then zi = θi(x) and so z = ϑ(x) is
contained in T . �

We finish this subsection with a remark on the degree of the entries of the Hermite matrix polynomial.

Remark 5.4. The entries of the last column of the matrix polynomial C(z) from Theorem 5.3 have degree
1, all other entries are constant. The degree of H(z)ij is i+ j and the determinant of H(z) has degree 2n.
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5.3 Example C2

In this subsection, we further investigate the case n = 2.

ρ2

ρ1

ω2

ω1

C2 ∼= S2 n {±1}2

ω1 = [1, 1]t

ω2 = [1, 0]t

ρ1 = [1,−1]t

ρ2 = [0, 2]t

Figure 5: The root system C2 in R2 with fundamental weights ω1, ω2 and simple roots ρ1, ρ2.

In Figure 5, the square is the orbit of the blue shaded triangle with vertices 0, ω1/2, ω2/2 under reflection
by C2.

Let z = (z1, z2) ∈ R2. The matrix C(z) ∈ Q[z]2×2 from Theorem 5.3 evaluated in z is

C(z) =

[
0 −4 z2
1 4 z1

]
. (5.3)

Then z is contained in T if and only if the resulting Hermite matrix

H(z) = 8

[
−2z21 + z2 + 1 −8z31 + 6z1z2 + 2z1

−8z31 + 6z1z2 + 2z1 −32z41 + 8z21 + 32z21z2 − 4z22 − 4z2

]
(5.4)

is positive semi–definite, which is equivalent to its determinant and trace being nonnegative. The varieties
of these two polynomials in z1, z2 are depicted below.

(a) Det(H(z) ≥ 0 (b) Tr(H(z) ≥ 0 (c) Det(H(z),Tr(H(z) ≥ 0

Figure 6: Vanishing points and positivity regions for determinant and trace of H(z).

Det(H(z)) = 256 (z2 − z21) (2 z1 + z2 + 1) (2 z1 − z2 − 1) (solid)
Tr(H(z)) = 8 (−32z41 + 32z21z2 + 6z21 − 4z22 − 3z2 + 1) (dots)

We observe three intersections of “Det(H(z)) = 0” (red solid line) and “Tr(H(z)) = 0” (blue dots) in the
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the vertices

Vertex1 := ϑ(exp(−2πi 〈ω1,
ω1

2
〉), exp(−2πi 〈ω2,

ω1

2
〉)) = ϑ(−1,−1) = (0,−1)

Vertex2 := ϑ(exp(−2πi 〈ω1,
ω2

2
〉), exp(−2πi 〈ω2,

ω2

2
〉)) = ϑ(−1, 1) = (−1, 1)

Vertex3 := ϑ(exp(−2πi 〈ω1, 0〉), exp(−2πi 〈ω2, 0〉)) = ϑ(1, 1) = (1, 1)

The shape of this domain is dictated by the determinant, but from the positivity condition one can observe
that the trace is also required. Alternatively the inequation given by the trace could be replaced by the
constraint that the orbit space is contained in the square [−1, 1]n.

6 Type B

The Weyl group of Bn is isomorphic to that of Cn and we find a similar formula for the orbit polynomials
in Proposition 6.1 with a deviation at σn that leads to a different Hermite matrix in Theorem 6.4.

6.1 Fundamental invariants for Bn
Similar to the case Cn, the root system Bn given in [Bou68, Planche II] is a root system in Rn and the simple
roots and fundamental weights are

ρi = ei − ei+1, ρn = en and ωi = e1 + . . .+ ei, ωn = (e1 + . . .+ en)/2. (6.1)

for 1 ≤ i ≤ n. The Weyl group of Bn is Bn ∼= Cn ∼= Sn n {±1}n and the graph

s1 s2 . . . sn−1 sn (6.2)

is the associated Coxeter diagram, where the si := sρi are the reflections from Definition 2.7, which generate
Bn. We have −In ∈ Bn and thus, −ωi ∈ Cn ωi. Furthermore, the orbit Cn ωi has cardinality 2i

(
n
i

)
for

1 ≤ i ≤ n.

The orbit polynomials associated to the fundamental weights of Bn and the elementary symmetric polyno-
mials from Equation (3.1) satisfy the following relations.

Proposition 6.1. In Q[x±], define the monomials

y1 = x1, yk = xk x
−1
k−1 for 2 ≤ k ≤ n− 1 and yn = x2n x

−1
n−1.

Then

σi(y1(x) + y1(x)−1, . . . , yn(x) + yn(x)−1) = 2i
(
n

i

)
θi(x) for 1 ≤ i ≤ n− 1 and

σn(y1(x) + y1(x)−1, . . . , yn(x) + yn(x)−1) = 2n Θ2ωn(x).

Proof. Since Bn ∼= Cn, the proof is analogous to the one of Proposition 5.1, when we replace ωn with 2ωn.
Then the corresponding monomial in Q[x±] is x2en = x2n. �

The orbit polynomial Θ2ωn is Bn–invariant. Hence, it can be expressed as a polynomial in the fundamental
invariants of Q[x±]Bn . We give the explicit equation in the next lemma.
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Lemma 6.2. In Q[x±], the orbit polynomial associated to 2ωn ∈ Ω satisfies

Θ2ωn = 2n θ2n −
n−1∑
j=1

(
n

j

)
θj − 1.

Proof. The cardinality of the orbit Bn ωn is 2n. Let µ ∈ Bn ωn and distinguish between the following three
cases.

1. If µ = ωn, then Θωn+µ = Θ2ωn is the term on the left–hand side of the statement, for which we search
an explicit formula.

2. If µ = −ωn, then Θωn+µ = Θ0 = 1.

3. For any other µ ∈ Bn ωn, there exists 1 ≤ j ≤ n−1, such that µ contains exactly j positive coordinates.
Therefore, µ+ ωn has exactly j nonzero entries and is contained in the orbit of ωj under Bn, that is,
Θµ+ωn = Θωj . The number of µ, for which this is the case, is

(
n
j

)
.

From this and Proposition 2.6, we conclude that

2n θ2n =
∑

µ∈Bn ωn

Θωn+µ = Θ2ωn + 1 +

n−1∑
j=1

(
n

j

)
θj

to obtain the equation for Θωn+µ. �

6.2 Hermite matrix for Bn
Proposition 6.3. Define the map

ψ : (C∗)n → (C∗)n,
x 7→ (x1, x2 x

−1
1 , . . . , xn−1 x

−1
n−2, x

2
n x
−1
n−1).

1. ψ is surjective. The preimage of Tn under ψ is Tn.

2. Every point in Tn has exactly two distinct preimages x, x′ ∈ Tn with x1 = x′1, . . . , xn−1 = x′n−1 and
xn = −x′n.

3. If x, x′ ∈ Tn with ψ(x) = ψ(x′) and xn = −x′n, then θn(x) = −θn(x′).

Proof. 1. and 2. For all y ∈ (C∗)n, there exists x ∈ (C∗)n with x1 = y1, x2 = y1 x1, . . . , xn−1 = yn−1 xn−2
and x2n = yn xn−1. Thus, x is a preimage of y under ψ and uniquely determined by y up to a sign in the last
coordinate. We have y ∈ Tn if and only if x ∈ Tn.

3. We deduce from the Coxeter diagram in Equation (6.2) that StabBn(ωn) ∼= An−1 ∼= Sn. Hence, Bn ωn =
{±1}n ωn and by Proposition 6.1 this orbit consists of elements

µ =
ε1
2
e1 + . . .+

εn
2
en =

ε1
2
ω1 +

n−1∑
i=2

εi
2

(ωi − ωi−1) +
εn
2

(2ωn − ωn−1) = εn ωn + ν ∈ Ω

with εi ∈ {±1} for 1 ≤ i ≤ n and ν ∈ Zω1 ⊕ . . . ⊕ Zωn−1. Let α, β ∈ Zn be the coordinates of µ, ν in Ω.

Then βn = 0 and the monomial in θn corresponding to µ is xα = xβ1

1 . . . x
βn−1

n−1 xεnn . Thus, xα is linear in xn.
Since every monomial in θn can be written in terms of such β, ε, θn is linear in xn and with x, x′ from the
hypothesis we have θn(x) = −θn(x′). �
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We state the main result for Weyl groups of type B.

Theorem 6.4. Define the matrix H ∈ Q[z]n×n by

H(z)ij = Tr(4 (C(z))i+j−2 − (C(z))i+j) with

C(z) =


0 · · · 0 −cn(z)
1 0 −cn−1(z)

. . .
...

0 1 −c1(z)

 , where ci(z) = (−2)i
(
n

i

)
zi for 1 ≤ i ≤ n− 1 and

cn(z) = (−2)n

(
2n z2n −

n−1∑
i=1

(
n

i

)
zi − 1

)
.

Then T = {z ∈ Rn |H(z) � 0}.

Proof. Let z ∈ Rn and set ci := ci(z) ∈ R for 1 ≤ i ≤ n.

To show “⊆”, assume that z ∈ T . Then there exists x ∈ Tn, such that θi(x) = zi for 1 ≤ i ≤ n. By
Proposition 6.1 and Lemma 6.2, the solution of

(II) σi(y1 + y−11 , . . . , yn + y−1n ) = (−1)i ci for 1 ≤ i ≤ n

is y = ψ(x) ∈ Tn, where ψ is the map from Proposition 6.3. Applying Corollary 3.7 yields H(z) � 0.

For “⊇” on the other hand, assume H(z) � 0. By Corollary 3.7, the solution y of system (II) with coefficients
ci is contained in Tn. According to Proposition 6.3, y has exactly two distinct preimages x, x′ ∈ Tn under
ψ with x1 = x′1, . . . , xn−1 = x′n−1 and xn = −x′n. We have zi = θi(x) = θi(x

′) for 1 ≤ i ≤ n − 1 and
z2n = θn(x)2 = θn(x′)2 with θn(x) = −θn(x′). Therefore, zn = θn(x) or zn = θn(x′) = −θn(x) and thus, z is
contained in T . �

Remark 6.5. The entries of the last column of the matrix polynomial C(z) from Theorem 6.4 have degree
1, except C(z)1n, which has degree 2. All other entries are constant. The degree of H(z)ij is i + j and the
degree of the determinant of H(z) is 3n.

6.3 Example B2

In this subsection, we further investigate the case n = 2.

ρ2

ρ1

ω2

ω1

B2 ∼= S2 n {±1}2

ω1 = [1, 1]t/2
ω2 = [1, 0]t

ρ1 = [1,−1]t

ρ2 = [0, 1]t

Figure 7: The root system B2 in R2 with fundamental weights ω1, ω2 and simple roots ρ1, ρ2.

In Figure 7, the square is the orbit of the blue shaded triangle with vertices 0, ω1, ω2 under reflection by B2.
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Let z = (z1, z2) ∈ R2. The matrix C(z) ∈ Q[z]2×2 from Theorem 6.4 evaluated in z is

C(z) =

[
0 −16 z22 + 8 z1 + 4
1 4 z1

]
. (6.3)

Then z is contained in T if and only if the resulting Hermite matrix

H(z) = 16

[
−z21 + 2z22 − z1 −4z31 + 12z1 z

2
2 − 6z21 − 2z1

−4z31 + 12z1 z
2
2 − 6z21 − 2z1 −16z41 + 64z21 z

2
2 − 32z42 − 32z31 + 32z1 z

2
2 − 20z21 + 8z22 − 4z1

]
is positive semi–definite, which is equivalent to its determinant and trace being nonnegative. The varieties
of these two polynomials in z1, z2 are depicted below.

(a) Det(H(z) ≥ 0 (b) Tr(H(z) ≥ 0 (c) Det(H(z),Tr(H(z) ≥ 0

Figure 8: Vanishing points and positivity regions for determinant and trace of H(z).

Det(H(z)) = 4096 z22 (z1 − z22) (z1 + 2 z2 + 1) (z1 − 2 z2 + 1) (solid)
Tr(H(z)) = 16 (−16z41 + 64z21 z

2
2 − 32z42 − 32z31 + 32z1 z

2
2 − 21z21 + 10z22 − 5z1) (dots)

The T–orbit space in the B2–case is obtained from the C2–case in Figure 6 by swapping z1, z2. Apart from
a rotation, we also observe that the rank of H(z) reduces from 2 to 1 on the line “z2 = 0”. Furthermore,
there is a fourth intersection of the varieties of the determinant and the trace at z = (0, 0).

7 Type D

The Weyl group Dn is isomorphic to a subgroup of Cn ∼= Bn of index 2, which lead to a symmetric system of
type (II). The explicit formula between fundamental invariants and the elementary symmetric polynomials
is similar to Proposition 5.1, but with deviations in σn−1 and σn that additionally depend on the parity of
n. If n is odd, then the orbit space of Dn contains complex points, but a real description is possible with a
change of variables as in Equation (2.8).

7.1 Fundamental invariants for Dn

The groups Sn and {±1}n+ := {ε ∈ {±1}n | ε1 . . . εn = 1} act on Rn by permutation of coordinates, and
multiplication of coordinates by ±1, where only an even amount of sign changes is admissible. The root
system Dn given in [Bou68, Planche IV] is a root system in Rn with simple roots and fundamental weights

ρi = ei − ei+1, ρn = en−1 + en and
ωi = e1 + . . .+ ei, ωn−1 = (e1 + . . .+ en−1 − en)/2, ωn = (e1 + . . .+ en)/2.

(7.1)
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The Weyl group of Dn is Dn ∼= Sn n {±1}n+ and the graph

s1 s2 . . . sn−2

sn−1

sn

(7.2)

is the associated Coxeter diagram, where the si := sρi are the reflections from Definition 2.7, which generate
Dn. For all 1 ≤ i ≤ n, we have −ωi ∈ Dn ωi, except when n is odd, where −ωn−1 ∈ Dn ωn. Furthermore,
the orbit Dn ωi has cardinality 2i

(
n
i

)
for 1 ≤ i ≤ n− 2 and |Dn ωn−1| = |Dn ωn| = 2n−1.

The orbit polynomials associated to the fundamental weights of Dn and the elementary symmetric polyno-
mials from Equation (3.1) satisfy the following relations.

Proposition 7.1. In Q[x±], define the monomials

y1 = x1, yk = xk x
−1
k−1 for 2 ≤ k ≤ n− 2, yn−1 = xn xn−1 x

−1
n−2 and yn = xn x

−1
n−1.

Then

σi(y1(x) + y1(x)−1, . . . , yn(x) + yn(x)−1) = 2i
(
n

i

)
θi(x) for 1 ≤ i ≤ n− 2,

σn−1(y1(x) + y1(x)−1, . . . , yn(x) + yn(x)−1) = 2n−1 nΘωn−1+ωn(x) and

σn(y1(x) + y1(x)−1, . . . , yn(x) + yn(x)−1) = 2n−1 (Θ2ωn−1
(x) + Θ2ωn(x)).

Proof. We follow the proof of Proposition 4.1.

It follows from Equation (7.1), that ±ω1 = ±e1 and

±(ωi − ωi−1) = ± ei for 2 ≤ i ≤ n− 2,
±(ωn + ωn−1 − ωn−2) = ± en−1 and

±(ωn − ωn−1) = ± en,

are obtained from ω1 by permutation and admissible sign changes of coordinates. Those 2n weights are
distinct and thus form the orbit Dn ω1. The corresponding monomials in Q[x±] are given by y1, . . . , yn and
their inverses.

For 1 ≤ i ≤ n−2, we have xi = y1 . . . yi. Then the statement for θi is proven analogously to Proposition 5.1.
With xn xn−1 = y1 . . . yn−1, we obtain the equation for Θωn−1+ωn as well.

Finally, apply x2n−1 = y1 . . . yn−1 y
−1
n and x2n = y1 . . . yn−1 yn to obtain

2n−1 (Θ2ωn−1 + Θ2ωn) =
∑

ε∈{±1}n
ε1...εn=−1

yε +
∑

ε∈{±1}n
ε1...εn=1

yε =
∑

ε∈{±1}n
yε =

n∏
i=1

yi + y−1i ,

where yε := yε11 . . . yεnn . This proves the last equation. �

The orbit polynomials associated to ωn + ωn−1, 2ωn−1 and 2ωn ∈ Ω are invariant. Hence, they can be
expressed in terms of the generators θi of Q[x±]Dn . The formula depends on the parity of n as follows.

Lemma 7.2. In Q[x±], the following equations hold.

26 Sunday 8th May, 2022



Polynomial description for the T–Orbit Spaces of Multiplicative Actions

1. If n is even, then

Θωn−1+ωn =
2n−1

n
θn−1 θn −

1

n

(n−2)/2∑
j=1

(
n

2j − 1

)
θ2j−1,

Θ2ωn−1
= 2n−1 θ2n−1 −

(n−2)/2∑
j=1

(
n

2j

)
θ2j − 1 and

Θ2ωn = 2n−1 θ2n −
(n−2)/2∑
j=1

(
n

2j

)
θ2j − 1.

2. If n is odd, then

Θωn−1+ωn =
2n−1

n
θn−1 θn −

1

n

(n−3)/2∑
j=1

(
n

2j

)
θ2j −

1

n
,

Θ2ωn−1
= 2n−1 θ2n−1 −

(n−3)/2∑
j=0

(
n

2j + 1

)
θ2j+1 and

Θ2ωn = 2n−1 θ2n −
(n−3)/2∑
j=0

(
n

2j + 1

)
θ2j+1.

Proof. We have |Dn ωn−1| = |Dn ωn| = 2n−1. The equations can be obtained from the recurrence formula
Proposition 2.6 and the following combinatorial steps.

1. Assume that n is even. We first prove the equation for Θ2ωn in detail. For 0 ≤ j ≤ n/2, consider
µ ∈ Dn ωn with 2j positive coordinates. There are precisely

(
n
2j

)
such elements in Dn ωn and an odd amount

of positive coordinates is not possible. We distinguish three cases. If j = 0, then ωn−1 + µ = 0, and if
j = n/2, then ωn+µ = 2ωn. Otherwise, ωn+µ has 2j nonzero coordinates and must therefore be contained
in Dn ω2j . All in all, we obtain

2n−1 θ2n =
∑

µ∈Dn ωn

Θωn+µ = Θ2ωn +

(n−2)/2∑
j=1

(
n

2j

)
θ2j + 1.

Next for 1 ≤ j ≤ n/2, consider µ ∈ Dn ωn−1 with 2j − 1 positive coordinates. Then

ωn−1 + µ


= 0, if j = 1, µn =

1

2

= 2ωn−1, if j =
n

2
, µn = −1

2

∈ Dn ω2j , otherwise

and ωn + µ

{
∈ Dn (ωn + ωn−1), if j =

n

2
∈ Dn ω2j−1, otherwise

.

After counting the number of possibilities in each case, we obtain the two equations

2n−1 θ2n−1 = 1 + Θ2ωn−1
+

(n−2)/2∑
j=1

(
n

2j

)
θ2j and 2n−1 θn−1 θn = nΘωn+ωn−1

+

(n−2)/2∑
j=1

(
n

2j − 1

)
θ2j−1.

2. Now assume that n is odd. For 1 ≤ j ≤ (n+ 1)/2, consider µ ∈ Dn · ωn with 2j − 1 positive coordinates.
If j = (n + 1)/2 then ωn + µ = 2ωn. Otherwise, ωn + µ has 2j − 1 nonzero coordinates. The equation for
Θ2ωn is

2n−1 θ2n = Θ2ωn +

(n−1)/2∑
j=1

(
n

2j − 1

)
θ2j−1.
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Finally for 0 ≤ j ≤ (n− 1)/2, consider µ ∈ Dn ωn−1 with 2j positive coordinates. Then

ωn−1 + µ


= 2ωn−1, if j =

n− 1

2
, µn = −1

2

∈ Dn ω2j+1, otherwise
and ωn + µ


= 0, if j = 0

∈ Dn (ωn + ωn−1), if j =
n− 1

2
∈ Dn ω2j , otherwise

.

After counting the number of possibilities in each case, we obtain the two equations

2n−1 θ2n−1 = Θ2ωn−1 +

(n−3)/2∑
j=0

(
n

2j + 1

)
θ2j+1 and 2n−1 θn−1 θn = 1 + nΘωn+ωn−1

+

(n−3)/2∑
j=1

(
n

2j

)
θ2j .

This completes the proof. �

7.2 Hermite matrix for Dn

Proposition 7.3. Define the map

ψ : (C∗)n → (C∗)n,
x 7→ (x1, x2 x

−1
1 , . . . , xn−2 x

−1
n−3, xn xn−1 x

−1
n−2, xn x

−1
n−1).

1. ψ is surjective. The preimage of Tn under ψ is Tn.

2. Every point in Tn has exactly two distinct preimages x, x′ ∈ Tn with x′ = (x1, . . . , xn−2,−xn−1,−xn).

3. If x 6= x′ ∈ Tn with ψ(x) = ψ(x′), then θi(x) = θi(x
′) for 1 ≤ i ≤ n−2 and θn−1(x) = −θn−1(x′), θn(x) =

−θn(x′).

4. For all x ∈ T, there exists x̃ ∈ T, such that θi(x) = θi(x̃) for 1 ≤ i ≤ n−2 and θn−1(x) = θn(x̃), θn(x) =
θn−1(x̃).

Proof. 1. and 2. For all y ∈ (C∗)n, there exists x ∈ (C∗)n with x1 = y1, x2 = y1 x1, . . . , xn−2 = yn−2 xn−3
and x2n−1 = y−1n yn−1 xn−2, xn = yn xn−1. Hence, x is uniquely determined by y up to a sign in xn−1, xn.
We have y ∈ Tn if and only if x ∈ Tn.

3. We deduce from the Coxeter diagram in Equation (5.2) that StabDn(ωn) ∼= StabDn(ωn−1) ∼= An−1 ∼= Sn.
Hence, Dn ωn−1 = {±1}n+ ωn−1, respectively Dn ωn = {±1}n+ ωn, and by Proposition 7.1, this orbit consists
of elements

µ =
ε1
2
e1 + . . .+

εn
2
en =

ε1
2
ω1 +

n−2∑
i=2

εi
2

(ωi − ωi−1) +
εn−1

2
(ωn + ωn−1 − ωn−2) +

εn
2

(ωn − ωn−1)

=
εn−1 + εn

2
ωn +

εn−1 − εn
2

ωn−1 + ν ∈ Ω

with εi ∈ {±1} for 1 ≤ i ≤ n satisfying

ε1 . . . εn =

{
−1, if µ ∈ Dn ωn−1

1, if µ ∈ Dn ωn

and ν ∈ Zω1⊕ . . .⊕Zωn−2. Let α, β ∈ Zn be the coordinate vectors of µ, ν in Ω. Then βn−1 = βn = 0 and
the monomial in θn−1, respectively θn, corresponding to µ is

xα = xβ1

1 . . . x
βn−2

n−2 x
(εn−1−εn)/2
n−1 x(εn−1+εn)/2

n
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with (εn−1 ± εn)/2 ∈ {−1, 0, 1}. Therefore, xα is linear in xn−1 and independent of xn or vice versa. With
x, x′ from the hypothesis we have xα = −(x′)α. Since every monomial in θn−1, respectively θn, can be
written in terms of such β, ε, we obtain θn−1(x) = −θn−1(x′) as well as θn(x) = −θn(x′). Furthermore,
θi(x) = θi(x

′) holds according to Proposition 7.1, since yk(x) = yk(x′) for all 1 ≤ k ≤ n.

4. Following the proof for the third statement, this holds for x̃ := (x1, . . . , xn−2, xn, xn−1). �

We state the main result for Weyl groups of type D.

Theorem 7.4. Consider the n–dimensional R–vector space

Z :=

{
Rn, if n is even

{z ∈ Cn | z1, . . . , zn−2 ∈ R, zn = zn−1}, if n is odd

and define the matrix H ∈ Q[z]n×n by

H(z)ij = Tr(4 (C(z))i+j−2 − (C(z))i+j) with

C(z) =


0 · · · 0 −cn(z)
1 0 −cn−1(z)

. . .
...

0 1 −c1(z)

 , where ci(z) = (−2)i
(
n

i

)
zi for 1 ≤ i ≤ n− 2 and

cn−1(z) = (−2)n−1


2n−1 zn zn−1 −

(n−2)/2∑
j=1

(
n

2j−1
)
z2j−1, if n is even

2n−1 zn zn−1 −
(n−3)/2∑
j=1

(
n
2j

)
z2j − 1, if n is odd

,

cn(z) = (−2)n


2n−2 (z2n + z2n−1) −

(n−2)/2∑
j=1

(
n
2j

)
z2j − 1, if n is even

2n−2 (z2n + z2n−1) −
(n−3)/2∑
j=0

(
n

2j+1

)
z2j+1, if n is odd

.

For all z ∈ Z, H(z) ∈ Rn×n and T = {z ∈ Z |H(z) � 0}.

Proof. Let z ∈ Cn and set ci := ci(z) for 1 ≤ i ≤ n.

To show “⊆”, assume that z ∈ T . Then there exists x ∈ Tn, such that θi(x) = zi for 1 ≤ i ≤ n. Furthermore,
we have z ∈ Z and ci ∈ R. By Proposition 7.1 and Lemma 7.2, the solution of

(II) σi(y1 + y−11 , . . . , yn + y−1n ) = (−1)i c̃i for 1 ≤ i ≤ n

is y = ψ(x) ∈ Tn, where ψ is the map from Proposition 7.3. Applying Corollary 3.7 yields H(z) � 0.

For “⊇” on the other hand, assume z ∈ Z with H(z) � 0. Hence, ci ∈ R and by Corollary 3.7, the solution y
of the above system (II) is contained in Tn. According to Proposition 7.3, y has two distinct preimages x, x′ ∈
Tn. We have zi = θi(x) = θi(x

′) for 1 ≤ i ≤ n− 2 and θn−1(x) = −θn−1(x′), θn(x) = −θn(x′). Furthermore,
z2n−1 + z2n = θn−1(x)2 + θn(x)2 = θn−1(x′)2 + θn(x′)2 and zn−1 zn = θn−1(x) θn(x) = θn−1(x′) θn(x′)
. Therefore, {zn−1, zn} ∈ {{θn−1(x), θn(x)}, {θn−1(x′), θn(x′)}}. If zn−1 = θn−1(x), zn = θn(x), then
z = ϑ(x). Otherwise by Proposition 7.3, there exists x̃, such that zn−1 = θn−1(x̃), zn = θn(x̃) and z = ϑ(x̃).
An analogous argument applies to x′ and thus, z is contained in T . �
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Remark 7.5.

1. If n is odd, we have −ωn−1 ∈ Dn ωn. In this case, T * Rn. We follow Equation (2.8) and substitute
zn = <(z̃n) and zn−1 = =(z̃n). This leaves us with the substitutions zn zn−1 7→ z2n + z2n−1 in cn−1(z)
and z2n + z2n−1 7→ 2 (z2n − z2n−1) in cn(z). The image of this new map ϑR is contained in [−1, 1]n.

2. The entries H(z)ij ∈ Q[z] have degree i+ j. Independent of the parity of n, the determinant of H(z)
has degree 3n+ 1.

7.3 Example D4

In this subsection, we further investigate the case n = 4.

D4
∼= S4 n {±1}4+

ω1 = [1, 0, 0, 0]t

ω2 = [1, 1, 0, 0]t

ω3 = [1, 1, 1,−1]t/2
ω4 = [1, 1, 1, 1]t/2

Figure 9: A partial projection of the root system D4 in R4 with fundamental weights ω1, ω2, ω3, ω4.

The 4–simplex with vertices 0, ω1, ω2/2, ω3, ω4 is mapped under reflection by D4
∼= S4 n {±1}4+ to an

icositetrachoron. This is a polytope in R4 with boundary consisting of 24 octahedral cells. In Figure 9, we
depict a projection of the unique cell with center ω2/2 and three out of six vertices ω1, ω3, ω4 to R3. The
blue shaded region is the 3–simplex with projected vertices ω1, ω2/2, ω3, ω4.

Let z = (z1, z2, z3, z4) ∈ R4. Then the matrix H(z) from Theorem 7.4 has determinant

Det(H(z)) = 4294967296 (z3 − z4)2 (z3 + z4)2 (−512 z31 z
3
3 z

3
4 − 432 z41 z

4
3 − 96 z41 z

2
3 z

2
4 − 432 z41 z

4
4

+864 z31 z2 z
3
3 z4 + 864 z31 z2 z3 z

3
4 + 144 z21 z

2
2 z

2
3 z

2
4 − 96 z21 z

4
3 z

2
4 − 96 z21 z

2
3 z

4
4

+864 z1 z2 z
3
3 z

3
4 − 432 z43 z

4
4 − 384 z51 z3 z4 + 864 z41 z2 z

2
3 + 864 z41 z2 z

2
4 − 1440 z31 z

2
2 z3 z4

+96 z31 z
3
3 z4 + 96 z31 z3 z

3
4 − 216 z21 z

3
2 z

2
3 − 216 z21 z

3
2 z

2
4 + 864 z21 z2 z

4
3 + 576 z21 z2 z

2
3 z

2
4

+864 z21 z2 z
4
4 − 1440 z1 z

2
2 z

3
3 z4 − 1440 z1 z

2
2 z3 z

3
4 − 384 z1 z

5
3 z4 + 96 z1 z

3
3 z

3
4 − 384 z1 z3 z

5
4

−216 z32 z
2
3 z

2
4 + 864 z2 z

4
3 z

2
4 + 864 z2 z

2
3 z

4
4 + 64 z61 − 288 z41 z

2
2 + 192 z41 z

2
3 + 192 z41 z

2
4

+288 z31 z2 z3 z4 + 324 z21 z
4
2 − 1872 z21 z

2
2 z

2
3 − 1872 z21 z

2
2 z

2
4 + 192 z21 z

4
3 − 240 z21 z

2
3 z

2
4

+192 z21 z
4
4 + 2376 z1 z

3
2 z3 z4 + 288 z1 z2 z

3
3 z4 + 288 z1 z2 z3 z

3
4 + 324 z42 z

2
3 + 324 z42 z

2
4

−288 z22 z
4
3 − 1872 z22 z

2
3 z

2
4 − 288 z22 z

4
4 + 64 z63 + 192 z43 z

2
4 + 192 z23 z

4
4 + 64 z64 − 288 z41 z2

+192 z31 z3 z4 + 864 z21 z
3
2 − 792 z21 z2 z

2
3 − 792 z21 z2 z

2
4 + 792 z1 z

2
2 z3 z4 + 192 z1 z

3
3 z4

+192 z1 z3 z
3
4 − 486 z52 + 864 z32 z

2
3 + 864 z32 z

2
4 − 288 z2 z

4
3 − 792 z2 z

2
3 z

2
4 − 288 z2 z

4
4 − 48 z41

+576 z21 z
2
2 − 96 z21 z

2
3 − 96 z21 z

2
4 − 72 z1 z2 z3 z4 − 729 z42 + 576 z22 z

2
3 + 576 z22 z

2
4 − 48 z43

−96 z23 z
2
4 − 48 z44 + 144 z21 z2 − 24 z1 z3 z4 − 432 z32 + 144 z2 z

2
3 + 144 z2 z

2
4 + 12 z21 − 126 z22

+12 z23 + 12 z24 − 18 z2 − 1).
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8 Conjecture

In this section, we formulate the conjecture that the T–orbit space can be computed as the negativity–locus
of another matrix polynomial, which is closer to the characterization of the real orbit space for the linear
action of a compact Lie group [PS85, Main Theorem].

8.1 Euler derivations

We return to the general case of a finite group with an integer representation G as in Equation (2.1).
Assume that Q[x±]G = Q[θ1, . . . , θm] for some n ≤ m ∈ N. On Q[x±], define the Euler derivation
xi ∂/∂xi with xi ∂/∂xi(xi) = xi and xi ∂/∂xi(xj) = 0 for 1 ≤ i 6= j ≤ n as well as the associated gradient

∇̃ := [x1 ∂/∂x1, . . . , xn ∂/∂xn]t. We fix a symmetric positive definite matrix S ∈ Qn×n with Bt S B = S
for all B ∈ G. For example, S = 1/|G|

∑
B∈G B

tB has the desired property. For F, F ′ ∈ Q[x±]n, write
〈F, F ′〉S := F t S F ′. This is an S–induced inner product, which is G–invariant. First, we show that the
S–induced inner product of two gradients of G–invariant Laurent polynomials is again G–invariant.

Proposition 8.1. Let f, f ′ ∈ Q[x±]G.

1. For all B ∈ G, B (∇̃ f)(xB) = ∇̃ f(x).

2. We have 〈∇̃ f, ∇̃ f ′〉S = (∇̃ f)t S (∇̃ f ′) ∈ Q[x±]G.

Proof. We obtain the first statement from

∇̃ f(x) = ∇̃ (B · f)(x) = B

[
xB·1

∂f

∂x1
(xB), . . . , xB·n

∂f

∂xn
(xB)

]t
= B (∇̃ f)(xB),

where we applied the hypothesis that f is G–invariant and then the chain rule. Therefore,

(B · ((∇̃ f)t S (∇̃ f ′)))(x) = ((∇̃ f)(xB))t S ((∇̃ f ′)(xB))

= (B−1 ∇̃ f(x))t S (B−1 ∇̃ f ′(x))

= (∇̃ f(x))t (B−1)t S B−1 (∇̃ f ′(x))

= ((∇̃ f)t S (∇̃ f ′))(x)

proves the second statement. �

For f ∈ Q[x±], define f̂ ∈ Q[x±] by f̂(x) = f(x−In).

Proposition 8.2. Let f ∈ Q[x±].

1. We have ∇̃ f̂(x) = −(̂∇̃f)(x).

2. If f ∈ Q[x±]G, then f̂ ∈ Q[x±]G.

Proof. By the chain rule, we have

∇̃ f̂(x) = −
[
x(−In)·1

∂f

∂x1
(x−In), . . . , x(−In)·n

∂f

∂xn
(x−In)

]t
= −(∇̃f)(x−In) = −(̂̃∇ f)(x).

The second statement follows from the fact that for all B ∈ G, (B · f̂)(x) = f(x−B) = f(x−In) = f̂(x), if f
is G–invariant. �
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Lemma 8.3. For f ∈ Q[x±]G and x ∈ Tn, 〈∇̃ f, ∇̃ f̂〉S(x) ≤ 0.

Proof. By Proposition 8.2, we have

〈∇̃ f, ∇̃ f̂〉S(x) = −(∇̃ f(x))t S ((̂∇̃ f)(x)) = −(∇̃ f(x))t S ((∇̃ f)(x−In)).

Since x ∈ Tn, x = (x1, . . . , xn) = (x−11 , . . . , x−1n ) = x−In and thus,

〈∇̃ f, ∇̃ f̂〉S(x) = −(∇̃ f(x))t S ((∇̃ f)(x)) = −(∇̃ f(x))t S (∇̃ f(x)) ≤ 0

completes the proof. �

We can now state a necessary condition for points in Cn to be contained in the T–orbit space of G given by
the image of Tn under ϑ.

Corollary 8.4. Define the matrix M̃ ∈ (Q[x±]G)m×m with entries M̃ij = 〈∇̃ θi, ∇̃ θ̂j〉S. For x ∈ Tn, M̃(x)
is Hermitian negative semi–definite.

Proof. Let J := [∇̃ θ1 | . . . | ∇̃ θm] be the Jacobian transpose of ϑ with respect to the Euler derivations and
assume that S = Ct C is the Cholesky decomposition of S for an upper triangular matrix C ∈ Qn×n. We
write M̃(x) = J(x)t S Ĵ(x). Since x ∈ Tn, x = x−In and consequently Ĵ(x) = −J(x). Then

M̃(x) = J(x)t Ct C J(x) = −(C J(x)t (C J(x))

is Hermitian negative semi–definite. �

8.2 Characterization of the T–orbit space

The following characterization is similar to the one we used in the introductory Example 1.1 for the linear
case in the sense that we compute derivations of the fundamental invariants, but now consider a negativity
locus.

Conjecture 8.5. Let M ∈ Q[z1, . . . , zm]m×m, such that M̃(x) = M(θ1(x), . . . , θm(x)). Furthermore, let
I ⊆ Q[z] be the ideal of relations among the θ1, . . . , θm and denote by V(I) ⊆ Cm the variety of I.

If z ∈ V(I) is such that M(z) is Hermitian negative semi–definite, then z ∈ T .

With Corollary 8.4, we obtain a necessary and sufficient condition and therefore a characterization of the
T–orbit space as a basic semi–algebraic set. There are upsides and downsides for using M instead of the
Hermite matrix polynomial H for Weyl groups. Generically, the matrix M admits the same number of
necessary polynomial inequalities, respectively one less in the case of An−1. There is to our knowledge no
closed expression for M . Therefore, one needs to express the entries of M(θ1, . . . , θn) as polynomials in the
fundamental invariants.

Remark 8.6. The entry Hij of the Hermite matrix polynomial has degree i+j for 1 ≤ i, j ≤ n. Remarks 4.4,
5.4, 6.5 and 7.5 state that the degree of the determinant of H can be expected to be linear in n. In general,
the degree of the entries Mij can not be predicted. For G ∼= D4, we have deg(M22) = 3 and deg(Det(M)) = 9.

To support Conjecture 8.5, we give a visualization of the two–dimensional cases for the groups, which we
treated in the main results of this article.
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Example 8.7.

1. Let z = (z1 + i z2, z1− i z2) ∈ C2 and consider G = A2. The matrix H(z) ∈ Q[z]3×3 from Theorem 4.3,
which characterizes the T–orbit space of A2, was computed in Section 4.3, so that we obtain a de-
scription of T in terms of polynomials h0(z), h1(z), h2(z) ∈ Q[z]. The Hermitian matrix M(z) from
Conjecture 8.5 is

M(z) =
2

3

[
z21 + z22 − 1 2 (z1 + i z2)2 − 2 (z1 − i z2)

2 (z1 − i z2)2 − 2 (z1 + i z2) z21 + z22 − 1

]
∈ Q[z]2×2.

(a) Det(−M(z)) ≥ 0 (b) Tr(−M(z)) ≥ 0 (c) Det(−M(z)),Tr(−M(z)) ≥ 0

Figure 10: Vanishing points and positivity regions for determinant and trace of M(z) in the case A2.

As in Section 4.3, we observe a D3–invariance

Det(−M(z)) = 1/9 (−12 z41 − 24 z21 z
2
2 − 12 z42 + 32 z31 − 96 z1 z

2
2 − 24 z21 − 24 z22 + 4) (solid)

= 4/9 (−3 g1(z)2 − 6 g1(z) + 8 g2(z) + 1),
Tr(−M(z)) = −4/3 (z21 + z22 − 1) (dots)

= −4/3 (g1(z)− 1),

where g1(z) := z21 + z22 , g2(z) := z1 (z21 − 3 z22) generate the ring of D3–invariant polynomials. One can
observe that Det(−M(z)) divides h0(z) = Det(H(z)) and the quotient (3z1 + 1)2 z42 (up to a positive
scalar) is a square.

2. The property “Det(−M(z)) divides Det(H(z)) in Q[z]” is also true for the other two–dimensional
cases. We have

A2 : Det(H(z)) = 19683/256 (3z1 + 1)2 z42 Det(−M(z)) (solid) ,
B2 : Det(H(z)) = 16384/9 z22Det(−M(z)) (solid) ,
C2 : Det(H(z)) = 1024/9 Det(−M(z)) (solid) ,

which are depicted in Figure 11.
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(a) A2: H(z) � 0 (b) B2: H(z) � 0 (c) C2: H(z) � 0

(d) A2: M(z) � 0 (e) B2: M(z) � 0 (f) C2: M(z) � 0

Figure 11: The regions “H(z) � 0” and “M(z) � 0” for A2,B2, C2.

9 Orthogonality of Chebyshev polynomials

The content of this section was the original motivation to study T–orbit spaces. In [HMMR22], we apply the
results of this article to solve an optimization problem for symmetric trigonometric functions as a polynomial
optimization problem on the T–orbit space. A specific application is the computation of the spectral bound
for the chromatic number of an infinite graph.

The image T of ϑ that we describe in this article also appears in other contexts of interest to analysis. The
equations were known for specific examples such as the deltoid in Figure 4 and Steiner’s hypocycloid in
Figure 2. These domains contain sampling points with logarithmic Lebesgue number [MKNR13, Theorem
1.24] and minimal cubature points [LSX12, HMP16]. They are also the region of orthogonality for a family
of generalized Chebyshev polynomials [EL82, HW88, LU13]. As far as we know, we give in this paper their
first explicit general characterization as semi–algebraic sets.

In this section, we review the orthogonality of generalized Chebyshev polynomials in terms of multiplicative
invariants and characterize the determinant of the matrix M from Conjecture 8.5.

9.1 Generalized cosine functions

Assume that G is the Weyl group of a rank n root system R, which is represented over Rn equipped with the
Euclidean scalar product 〈·, ·〉. G is the subgroup of the orthogonal matrix group On(R), that is generated
by the orthogonal reflections sρ for ρ ∈ R. The affine Weyl group is the semi–direct product of G with
the Abelian group of translations with respect to the lattice of coroots Λ, that is the Z–module generated
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by R∨ [Bou68, Chapitre VI, §2, Proposition 1]. Assume that ρ1, . . . , ρn form a base of R and that ρ0 is the
highest root. For µ in the weight lattice Ω, define the map

eµ : Rn → C,
u 7→ exp(−2πi 〈µ, u〉).

(9.1)

Lemma 9.1.

1. A fundamental domain for Gn Λ is the closed alcove

4 := {u ∈ Rn | 〈u, ρ0〉 ≤ 1, 〈u, ρ1〉 ≥ 0, . . . , 〈u, ρn〉 ≥ 0}.

and G4 =
⋃
A∈GA4 is the closure of a fundamental domain for the group of translations Λ.

2. {eµ |µ ∈ Ω} is an orthonormal basis for both

• the Λ–periodic locally square integrable function L2(Rn/Λ) and

• the square integrable functions on G4

with respect to the inner product

(f, g) 7→ 1

|G|Vol(4)

∫
G4

f(u) g(u) du,

where Vol(4) is the Lebesgue measure of 4 in Rn.

Proof. The first assertion of 1. is [Bou68, Chapitre VI, §2.1]. The second assertion of 1. follows from [LX10,
Equation (3.3)].

The second statement is a consequence of [Fug74, Section 5]. �

Definition 9.2. The generalized cosine function associated to µ ∈ Ω is the G–invariant Λ–periodic
function

cµ : Rn → C,

u 7→ 1

|G|
∑
A∈G

eAµ(u).

The generalized sine function associated to µ ∈ Ω is the G–anti–invariant Λ–periodic function

sµ : Rn → C,

u 7→ 1

|G|
∑
A∈G

Det(A) eAµ(u).

Let µ, ν ∈ Ω. By Lemma 9.1 and the G–invariance, we have

1

Vol(4)

∫
4

cµ cν du =


|StabG(µ)|
|G|

, if µ ∈ G ν

0, otherwise
. (9.2)

For α ∈ Nn \ ([1, . . . , 1]t + Nn), µ = W α lies on a wall of a Weyl chamber [Bou68, Chapitre V, §1.4] and
thus sµ = 0. For α ∈ [1, . . . , 1]t + Nn on the other hand, µ = W α is strongly dominant and we have
|StabG(µ)| = 1. Hence, for strongly dominant weights µ, ν ∈ Ω,

1

Vol(4)

∫
4

sµ sν du =


1

|G|
, if µ ∈ G ν

0, otherwise.
(9.3)

We show that the image of the generalized cosine functions associated to the fundamental weights is precisely
the T–orbit space T as in Definition 2.5.
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Lemma 9.3. We have T = c(4) = c(Rn), where c(u) := (cω1
(u), . . . , cωn(u)) ∈ Cn for u ∈ Rn.

Proof. Note that for µ ∈ Ω, α ∈ Zn with W α = µ, we have cµ = Θα ◦ (eω1 , . . . , eωn). Indeed, eα1
ω1
. . . eαnωn = eµ,

and if A ∈ G, B ∈ G with A = W BW−1 and β := B α ∈ Zn, then eAµ = eβ1
ω1
. . . eβnωn . Now, the map

Rn → Tn,
u 7→ (eω1

(u), . . . , eωn(u))

is surjective, because the fundamental weights form a basis of Rn. Hence, c(Rn) = ϑ(Tn) = T . We have
c(Rn) = c(4), because cωj is G–invariant, Λ–periodic for all 1 ≤ j ≤ n, and, by Lemma 9.1, 4 is a
fundamental domain for Gn Λ. �

9.2 Generalized Chebyshev polynomials

Recall that Q[x±]G = Q[θ1, . . . , θn] from Theorem 2.11. For α ∈ Zn, there thus exists a unique multivariate
polynomial Tα ∈ Q[z] = Q[z1, . . . , zn], such that Tα(θ1, . . . , θn) = Θα. We call {Tα ∈ Q[z] |α ∈ Zn} the
generalized Chebyshev polynomials of the first kind associated to the root system R.

If µ ∈ Ω is such that W α = µ, then cµ = Θα ◦ (eω1
, . . . , eωn) = Tα ◦ (cω1

, . . . , cωn). Thus, Definition 9.2 is a
generalization of the univariate case T`(cos(u)) = cos(` u) for ` ∈ N, that corresponds to the root system A1.

The second kind Chebyshev polynomials are defined through the character polynomials. Thanks to Weyl’s
character formula [Bou75, Chapitre VIII, §9, Théorème 1], those are given by

Ξα(x) =
Υα+δ(x)

Υδ(x)
∈ Q[x±]G (9.4)

for α ∈ Zn, where δ := [1, . . . , 1]t ∈ Zn and Υα :=
∑
B∈G Det(B)xBα ∈ Q[x±] is anti–invariant. The

anti–invariant Laurent polynomials form a free Q[x±]G–module of rank 1, which is generated by Υδ. Υδ is
also known as the “Weyl denominator”. The generalized Chebyshev polynomials of the second kind
associated to the root system R are the unique {Uα ∈ Q[z] |α ∈ Zn} satisfying Uα(θ1, . . . , θn) = Ξα. Hence,
for W α = µ ∈ Ω and ω0 := W δ = ω1 + . . .+ ωn,

Uα ◦ (cω1
, . . . , cωn) =

Υα+δ

Υδ
◦ (eω1

, . . . , eωn) =
sµ+ω0

sω0

. (9.5)

In the classical univariate case G = A1 = {±1}, we have

Ξ`(x) =
x`+1 − x−`−1

x− x−1
= x` + x`−1 + . . .+ x1−` + x−` (9.6)

and thus U`(cos(u)) = sin((`+ 1)u)/ sin(u) for ` ∈ N.

Lemma 9.4. We have Υ−δ(x) = ±Υδ(x) and Υδ(Tn)2 ⊆ R.

Proof. Recall the proof of Proposition 2.13, where we showed the existence of A ∈ G, σ ∈ Sn, such that
Aωi = −ωσ(i) for all 1 ≤ i ≤ n. Then

−W δ = −
n∑
i=1

ωi =

n∑
i=1

−ωσ(i) = A

n∑
i=1

ωi = AW δ

and thus Υ−δ(x) = Det(A) Υδ(x). Especially, Υδ(x) is either real or pure imaginary for x ∈ Tn and so its
square is real. �

36 Sunday 8th May, 2022



Polynomial description for the T–Orbit Spaces of Multiplicative Actions

We shall review now that T is the domain of orthogonality of the generalized Chebyshev polynomials and
show that the weight of orthogonality can be given in terms of Υδ.

Lemma 9.5. Let J := [∇̃ θ1| . . . |∇̃ θn] ∈ Q[x±]n×n. Then Det(J) ∈ Q[x±] is anti–invariant with

Det(J) =

n∏
i=1

|StabG(ei)|

|G|n
Υδ.

Proof. By Proposition 8.1, we have J(xB) = B J(x) for any B ∈ G. Hence, Det(J) is anti–invariant in
Q[x±] and thus there exists a unique f ∈ Q[x±]G , such that Det(J) = f Υδ. We show that xδ is the highest
monomial of Det(J) in the partial ordering given in [Bou75, Chapitre VIII, §6, Lemma 2]. Note that

Jij =
[
∇̃ θ1| . . . |∇̃ θn

]
ij

= xi ∂/∂xi θj =
|StabG(ej)|
|G|

xi
∂

∂ xi

∑
α∈G ej

xα =
|StabG(ej)|
|G|

xi
∂

∂ xi
(xj +

∑
α≺ej

cα x
α),

where cα ∈ {0, 1} and α ≺ ej if and only if W (ei − α) is a sum of positive roots. The diagonal elements
of the matrix J have maximal monomial xi, while the non–diagonal entries have maximal monomial xα for
some α ≺ ej . It follows that there exist coefficient cα ∈ N, such that

Det(J) =

n∏
i=1

|StabG(ei)|

|G|n

x1 . . . xn︸ ︷︷ ︸
=xδ

+
∑
α≺δ

cα x
α

 = f Υδ.

Thus, f must be the constant, which is the given quotient that appears as the coefficient of xδ in the
determinant. �

On the set of square integrable functions on G4 with basis {eµ |µ ∈ Ω}, we define the gradient ∇ :=

[∂/∂u1, . . . , ∂/∂un]t. The relation to the gradient of Euler derivations ∇̃ is given by the next statement.

Lemma 9.6. We have
[∇ cω1 | . . . |∇ cωn ] (u) = 2πiW J(eω1(u), . . . , eωn(u)),

where J = [∇̃ θ1| . . . |∇̃ θn] ∈ Q[x±]n×n.

Proof. This is a straightforward computation from the definition

[∇ cω1
| . . . |∇ cωn ]ij (u) =

∂cωj
∂ui

(u) = 2πi
n∑
k=1

(ωk)i xk
∂ θj
∂xk

(eω1
(u), . . . , eωn(u))

= 2πi
n∑
k=1

Wik Jkj(eω1(u), . . . , eωn(u)) = 2πi(W J(eω1(u), . . . , eωn(u)))ij .

�

The generalized Chebyshev polynomials satisfy the following orthogonality property. This was also shown
for instance in [HW88, Theorem 5.1].

Theorem 9.7. For α, β ∈ Nn,

∫
T
Tα(z)Tβ(z) |φ(z)|−1/2 dz =

2π |Det(W )|
n∏
i=1

|G ei|
Vol(4) |StabG(α)|

|G|
, if α = β

0, otherwise

and
∫
T
Uα(z)Uβ(z) |φ(z)|1/2 dz =

2π |Det(W )| Vol(4)

|G|
, if α = β

0, otherwise
,
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where the weight function is defined via

φ(θ1, . . . , θn) = (Υδ)
2 ∈ Q[x±]G

with δ = [1, . . . , 1]t ∈ Zn.

Proof. Assume that W α = µ,W β = ν ∈ Ω. By Lemma 9.3 and the definition of generalized Chebyshev
polynomials of the first kind, we can conduct the transformation

∫
T
Tα(z)Tβ(z) |φ(z)|−1/2 dz =

∫
4
cµ(u) cν(u)

|Det([∇ cω1
| . . . |∇ cωn ] (u))|

|Υδ(eω1(u), . . . , eωn(u))|
du

=
∫
4
cµ(u) cν(u)

|G|n
n∏
i=1

|StabG(ei)|

|2πi Det(W ) Det(J)|
|Det(J)|

(eω1
(u), . . . , eωn(u)) du

=
n∏
i=1

|G ei| |2πi Det(W )|
∫
4
cµ(u) cν(u) du.

According to Equation (9.2),∫
T

Tα(z)Tβ(z) (φ(z))−1/2dz = 2π |Det(W )|
n∏
i=1

|G ei|Vol(4)
|StabG(α)|
|G|

if µ ∈ G ν and 0 otherwise.

The result on generalized Chebyshev polynomials of the second kind is analogous with

Uα(c(u))Uβ(c(u)) =
sµ+ω0

sω0

(u)
sν+ω0

sω0

(u) =
sµ+ω0

(u) sν+ω0
(u)

|Υδ(eω1
(u), . . . , eωn(u))|2

and then applying Equation (9.3). �

Remark 9.8. In Section 8 we make use of M̃ = J t S Ĵ ∈ (Q[x±]G)m×m to give the equations of the T–
orbit space. According to Proposition 2.13 in the present case of Weyl groups, the fundamental invariants
θ1, . . . , θn are such that there exists a permutation σ ∈ Sn with θ̂i = θσ(i). Hence, Det(Ĵ) = sgn(σ) Det(J)
and thus the determinant of the matrix M from Conjecture 8.5 is a scalar multiple of φ in Q[z].

Example 9.9.

1. In the univariate case A1, we have T = [−1, 1] and Υδ = x− x−1. Therefore,

(Υδ)
2 = x2 − 2 + x−2 = 2T2

(
x+ x−1

2

)
− 2T0

(
x+ x−1

2

)
= 4T1

(
x+ x−1

2

)2

− 4T0

(
x+ x−1

2

)
and φ(z) = 4 (z2 − 1).

2. For A2, T is the compact basic semi–algebraic set in Figure 4 and

(Υδ)
2 =

(
−x1 x2 − x1/x22 − x2/x21 + 1/(x1 x2) + x21/x2 + x22/x1

)2
= 6 Θ2ω1+2ω2

− 6 Θ3ω1
− 6 Θ3ω2

+ 12 Θω1+ω2
− 6 Θ0.

We have φ(z) = 81 z21 z
2
2 − 108 z31 − 108 z32 + 162 z1 z2 − 27 = 243/3 Det(M).
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3. For B2, T is the compact basic semi–algebraic set in Figure 8 and

(Υδ)
2 =

(
−x1/x32 − x2/x21 + 1/(x1 x2) + x21/x

3
2 + x32/x

2
1 − x21/x2 − x32/x1 + x1 x2

)2
= −8 Θ4ω2 − 8 Θ3ω1 + 8 Θ2ω1+2ω2 + 16 Θω1+2ω2 − 8 Θ2ω2 − 8 Θω1 + 8 Θ0.

We have φ(z) = 256 z21 z
2
2 − 1024 z42 − 256 z31 + 1536 z1 z

2
2 − 512 z21 + 256 z22 − 256 z1 = 1024/9 Det(M).

4. For C2, T is the compact basic semi–algebraic set in Figure 6 and

(Υδ)
2 =

(
−x1/x22 − x2/x31 + 1/(x1 x2) + x31/x

2
2 + x22/x

3
1 − x31/x2 − x22/x1 + x1 x2

)2
= −8 Θ4ω1 + 8 Θ2ω1+2ω2 + 16 Θ2ω1+ω2 − 8 Θ3ω2 − 8 Θ2ω1 − 8 Θω2 + 8 Θ0.

We have φ(z) = −1024 z41 + 256 z21 z
2
2 + 1536 z21 z2 − 256 z32 + 256 z21 − 512 z22 − 256 z2 = 256 Det(M).

5. In the main results Theorems 4.3, 5.3, 6.4 and 7.4, we have presented the matrix H in the standard
monomial basis. In the basis of generalized Chebeshev polynomials of the first kind, this matrix is
“much sparser”, in the sense that the entries consist of less terms with smaller coefficients. For D4,
the matrix is

H = 8


T0 − T2ω1

Tω1
− T3ω1

T0 − T4ω1
2Tω1

− T3ω1
− T5ω1

Tω1
− T3ω1

T0 − T4ω1
2Tω1

− T3ω1
− T5ω1

2T0 + T2ω1
− 2T4ω1

− T6ω1
T0 − T4ω1

2Tω1
− T3ω1

− T5ω1
2T0 + T2ω1

− 2T4ω1
− T6ω1

5Tω1
− T3ω1

− 3T5ω1
− T7ω1

2Tω1
− T3ω1

− T5ω1
2T0 + T2ω1

− 2T4ω1
− T6ω1

5Tω1
− T3ω1

− 3T5ω1
− T7ω1

5T0 + 4T2ω1
− 4T4ω1

− 4T6ω1
− T8ω1

 .

10 Conclusion

To our knowledge, we have given the first explicit and general characterization for the orbit space of a
nonlinear action of a Weyl group on the compact torus. The fact that the T–orbit space is a compact basic
semi–algebraic set in these cases is already in itself a new result.

Future work revolves around finding such explicit descriptions also for the Weyl groups associated to root
systems of types E,F,G. Using a computer algebra system, such characterizations can be given, but a
unifying theory for all root systems is desirable. With a conjecture we support computations for these
remaining cases, and beyond that, for any nonlinear action of a finite group on the compact torus.
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