Instability of algebraic standing waves for nonlinear Schr\"odinger equations with triple power nonlinearities - Archive ouverte HAL
Article Dans Une Revue Complex Variables and Elliptic Equations Année : 2022

Instability of algebraic standing waves for nonlinear Schr\"odinger equations with triple power nonlinearities

Résumé

We consider the following triple power nonlinear Schrödinger equation: iut + ∆u + a 1 |u|u + a 2 |u| 2 u + a 3 |u| 3 u = 0. We are interested in algebraic standing waves i.e standing waves with algebraic decay above equation in dimensions n (n = 1, 2, 3). We prove the instability of these solutions in the cases DDF (we use abbreviation D: defocusing (ai < 0), F:focusing (ai > 0)) and DFF when n = 2, 3 and in the case DFF with a1 = −1, a3 = 1 and a2 < 32/15√6 when n = 1. Under these assumptions, the standing waves are orbitally unstable in the case of small positive frequency. When the highest power is L2(R^n)-supercritical power (for n = 2, 3), a1 = −1, a3 = 1 and a2 > −ε for ε > 0 small enough in the case n = 3, we prove that standing waves with positive frequency are unstable by blow up.
Fichier principal
Vignette du fichier
algebraic SW for triple power nonlinearity for Hal.pdf (422.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03379146 , version 1 (14-10-2021)
hal-03379146 , version 2 (21-03-2022)

Licence

Identifiants

Citer

Phan van Tin. Instability of algebraic standing waves for nonlinear Schr\"odinger equations with triple power nonlinearities. Complex Variables and Elliptic Equations, 2022, ⟨10.1080/17476933.2022.2146104⟩. ⟨hal-03379146v2⟩
121 Consultations
106 Téléchargements

Altmetric

Partager

More