Instability of algebraic standing waves for nonlinear Schr\"odinger equations with triple power nonlinearities - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Instability of algebraic standing waves for nonlinear Schr\"odinger equations with triple power nonlinearities

Résumé

We consider the following triple power nonlinear Schrödinger equation: iut + ∆u + a 1 |u|u + a 2 |u| 2 u + a 3 |u| 3 u = 0. We are interested in algebraic standing waves i.e standing waves with algebraic decay above equation in dimensions n (n = 1, 2, 3). We prove the instability of these solutions in the cases DDF (we use abbreviation D: defocusing (a i < 0), F: focusing (a i > 0)) and DFF when n = 2, 3 and in the case DFF with a 2 < 32 15 √ 6 when n = 1. In the case DFD, we only obtain an existence result of algebraic solution in dimension one.
Fichier principal
Vignette du fichier
algebraic SW for triple power nonlinearity for Hal.pdf (441.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03379146 , version 1 (14-10-2021)
hal-03379146 , version 2 (21-03-2022)

Identifiants

Citer

Phan van Tin. Instability of algebraic standing waves for nonlinear Schr\"odinger equations with triple power nonlinearities. 2021. ⟨hal-03379146v1⟩
121 Consultations
106 Téléchargements

Altmetric

Partager

More