Instability of algebraic standing waves for nonlinear Schr\"odinger equations with triple power nonlinearities
Résumé
We consider the following triple power nonlinear Schrödinger equation: iut + ∆u + a 1 |u|u + a 2 |u| 2 u + a 3 |u| 3 u = 0. We are interested in algebraic standing waves i.e standing waves with algebraic decay above equation in dimensions n (n = 1, 2, 3). We prove the instability of these solutions in the cases DDF (we use abbreviation D: defocusing (a i < 0), F: focusing (a i > 0)) and DFF when n = 2, 3 and in the case DFF with a 2 < 32 15 √ 6 when n = 1. In the case DFD, we only obtain an existence result of algebraic solution in dimension one.
Fichier principal
algebraic SW for triple power nonlinearity for Hal.pdf (441.03 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|