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INSTABILITY OF ALGEBRAIC STANDING WAVES FOR NONLINEAR
SCHRÖDINGER EQUATIONS WITH TRIPLE POWER NONLINEARITIES

PHAN VAN TIN

ABSTRACT. We consider the following triple power nonlinear Schrödinger equation:

iut +∆u+ a1|u|u+ a2|u|2u+ a3|u|3u = 0.

We are interested in algebraic standing waves i.e standing waves with algebraic decay above equa-

tion in dimensions n (n = 1, 2, 3). We prove the instability of these solutions in the cases DDF

(we use abbreviation D: defocusing (ai < 0), F: focusing (ai > 0)) and DFF when n = 2, 3 and

in the case DFF with a1 = −1, a3 = 1 and a2 < 32
15

√
6

when n = 1. Under these assumptions,

the standing waves are orbitally unstable in the case of small positive frequency. When the highest

power is L2(Rn)-supercritical power (for n = 2, 3), a1 = −1, a3 = 1 and a2 > −ε for ε > 0 small

enough in the case n = 3, we prove that standing waves with positive frequency are unstable by

blow up.
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1. Introduction. In this paper, we are interested in the following triple power nonlinear Schrödinger

equation:

iut +∆u+ a1|u|u+ a2|u|2u+ a3|u|3u = 0, (t, x) ∈ R× Rn, (1.1)

where a1, a2, a3 ∈ R and n ∈ {1, 2, 3}.

In the cases n = 1, 2, 3, (1.1) is inH1(Rn)-subcritical case. This ensures that (1.1) is locally well

posed in H1(Rn) (see e.g [5]). The standing waves of (1.1) are solutions of the form uω(t, x) =

eiωtϕω(x), where ϕω solves:

−ωϕω +∆ϕω + a1|ϕω|ϕω + a2|ϕω|2ϕω + a3|ϕω|3ϕω = 0. (1.2)

Consider the focusing nonlinear Schrödinger equation with single power |u|p−1u. In this case,

the standing waves are orbitally stable if p < 1 + 4
n

(L2(Rn)-subcritical) and orbitally unstable if

p > 1 + 4
n

(L2(Rn)-supercritical). In this paper, we study the stability and instability of stand-

ing waves with multiple power nonlinearity combining L2(Rn)-subcritical power and L2(Rn)-

supercritical power (for n = 2, 3) and all L2(Rn)-subcritical powers (for n = 1).

In [14], the authors study existence and stability of standing waves of (1.1) in one dimension.

Existence of standing waves is obtained by ODE arguments. By studying the properties of the

nonlinearity, the authors give domains of parameters for existence and nonexistence of standing

waves. Stability results are obtained by studying the sign of an integral found by Iliev and Kirchev

[9], based on the criteria of stability of Grillakis, Shatah and Strauss [7, 8, 18]. Using this criteria,

in [15], the author proved the stability and the instability of standing waves for 1-dimensional

nonlinear Schrödinger equation with double power and triple power nonlinearity. In the case of

triple power nonlinearity, the author showed that stability of standing waves change by ω, two and

three times. This does not occur in the cases of single power and double power.

In the special case ω = 0, the profile ϕ0, which for convenience we denote by ϕ, satisfies:

∆ϕ+ a1|ϕ|ϕ+ a2|ϕ|2ϕ+ a3|ϕ|3ϕ = 0. (1.3)
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The equation (1.3) can be rewritten as S ′(ϕ) = 0 where S is defined by

S(v) :=
1

2
∥∇v∥2L2 −

a1
3
∥v∥3L3 −

a2
4
∥v∥4L4 −

a3
5
∥v∥5L5 . (1.4)

Define

X := Ḣ1(Rn) ∩ L3(Rn), and ∥u∥X := ∥∇u∥L2 + ∥u∥L3 , (1.5)

d := inf{S(v) : v ∈ X \ {0}, S ′(v) = 0}. (1.6)

The algebraic standing waves are standing waves with algebraic decay. In this paper, we are

only interested in a special kind of algebraic standing waves which are minimizers of the problem

(1.6). Throughout this paper, for convenience, we define an algebraic standing wave as a solution

of (1.3) solving problem (1.6). Thus, the function ϕ is an algebraic standing wave of (1.1) if ϕ ∈ G,

where G is defined by

G := {v ∈ X \ {0} : S ′(v) = 0, S(v) = d}. (1.7)

The instability of algebraic standing waves was studied in [6] for double power nonlinearities.

Using similar arguments as in [6], we study existence and instability of algebraic standing waves

for the nonlinear Schrödinger equation with triple power nonlinearities (1.1).

First, we study the existence of algebraic standing waves of (1.1). As in [14], we will use the

abbreviation D: defocusing when ai < 0 and F: focusing when ai > 0. In Section 2, we prove the

following result.

Proposition 1.1. Let n = 1. The equation (1.3) has a unique even positive solution ϕ in the space

H1(R) in the following cases: DFF, DDF, DFD and a1 = a3 = −1, a2 > 8√
15

. Moreover, all

solutions of (1.3) are of the form eiθϕ(x− x0) for some θ, x0 ∈ R. They are all algebraic standing

waves of (1.1).

In high dimensions, the situation is more complex than in the one dimension. The solutions of

(1.3) are very diverse. It is not easy to describe all such solutions as in the dimension one. Thus,

classifying the algebraic standing waves of (1.1) is not easy problem. It turns out that a radial
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positive solutions of (1.3) is also an algebraic standing wave of (1.1). To study the positive radial

solutions of (1.3), we prove the following result in Section 2.

Proposition 1.2. Let n = 2, 3 and DDF or DFF. Then there exists a unique radial positive solution

of (1.3).

Before stating the next results, we need some definitions. Firstly, we define the Nehari functional

as follows:

K(v) := ⟨S ′(v), v⟩ = ∥∇v∥2L2 − a1∥v∥3L3 − a2∥v∥4L4 − a3∥v∥5L5 . (1.8)

The rescaled function is defined by:

vλ(x) := λ
n
2 v(λx). (1.9)

The following is Pohozhaev functional:

P (v) := ∂λS(v
λ)|λ=1 = ∥∇v∥2L2 −

na1
6

∥v∥3L3 −
na2
4

∥v∥4L4 −
3na3
10

∥v∥5L5 . (1.10)

The Nehari manifold is defined by:

K := {v ∈ X \ {0} : K(v) = 0}.

Moreover, we consider the following minimization problem:

µ := inf {S(v) : v ∈ K} . (1.11)

The following is the set of minimizers of problem (1.11):

M := {v ∈ K : S(v) = µ}. (1.12)

Finally, we define a specific set which uses in our proof:

B :=
{
v ∈ H1(Rn) : S(v) < µ, P (v) < 0

}
. (1.13)
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It turns out that the solution of (1.3) given by Proposition 1.2 satisfies a variational characteri-

zation and each algebraic standing wave of (1.1) is up to phase shift and translation of this special

solution. More precise, in Section 3, we prove the following result.

Proposition 1.3. Let n = 1, 2, 3 and DDF or DFF. Then the radial positive solution ϕ of (1.3)

given by Proposition 1.1 and Proposition 1.2 satisfies

S(ϕ) = µ.

where S and µ are defined as in (1.4), (1.11) respectively. Moreover, all algebraic standing waves

of equation (1.1) are of the form

eiθ0ϕ(· − x0),

for some θ ∈ R and x0 ∈ Rn.

Remark 1.4. (1) In case DFD, we only obtain the result on existence of algebraic standing

waves when n = 1 (see Proposition 1.1). The variational characterization of algebraic

standing waves and stability or instability of these solutions are open problems, even in

dimension one.

(2) By using similar arguments as in [6, Proof of Proposition 3.5], we prove that the algebraic

standing waves in higher dimensions (n = 2, 3) are also in H1(Rn).

(3) By scaling invariance of (1.1), we may assume |a1| = |a3| = 1 without loss of generality.

This assumption will be made throughout the rest of this paper.

Before stating the main result, we define the orbital stability and orbital instability of standing

waves.

Definition 1.5. Let uω(t, x) = eiωtϕω(x) be a standing wave solution of (1.1). We say that this

solution is orbitally stable if for all ε > 0 there exists δ > 0 such that for each u0 ∈ H1(Rn) such

that ∥u0 − φω∥H1 < δ then the associated solution u of (1.1) is global and satisfies

inf
θ∈R, y∈Rn

∥u(t)− eiθφω(· − y)∥H1 < ε.
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Otherwise, uω is orbitally unstable.

Our main result is the following.

Theorem 1.6. Let n = 1, 2, 3. Assume that the parameters of (1.1) satisfy DDF or DFF when

n = 2, 3 or DFF and a2 < 32
15

√
6

when n = 1. Then the algebraic standing wave ϕ given as in

Proposition 1.1 and Proposition 1.3 is orbitally unstable in H1(Rn).

Remark 1.7. In [6], the authors proved instability of algebraic standing waves in the case a1 =

−1, a2 = 0, a3 = 1. Our result can be seen as a small extension of this result for a2 ̸= 0.

We predict that a similar result holds in the case of multiple nonlinearity of the form −|u|u +

a1|u|p1u + ... + am|u|pmu + |u|3u, for 1 < p1 < ... < pm < 3 are given and some conditions on

a1, ..., am. More general, we may expect a similar result with more general nonlinearity of form

−|u|p1 + a2|u|p2u + ... + am|u|pm + |u|pm+1 , where 0 < p1 < p2 < ... < pm+1 <
4

n−2
. However,

we do not consider these cases in this paper.

When the highest power is L2(Rn)-supercritical, standing waves usually are unstable by blow

up (see [10] for focusing simple power nonlinearity, [6] for double power nonliearity). In our case,

this is conserved. We prove the following result.

Theorem 1.8. Let n = 2, 3, D*F and a2 > −ε when n = 3, for ε > 0 small enough. Let ω > 0

and ϕω be a ground state of (1.1) i.e ϕω is a minimizer of the following variational problem

inf{Sω(v) : v ∈ H1(Rn) \ {0}, Kω(v) = 0},

where

Sω(v) :=
1

2
∥∇v∥2L2 +

ω

2
∥v∥2L2 +

1

3
∥v∥3L3 −

a2
4
∥v∥4L4 −

1

5
∥v∥5L5 , (1.14)

Kω(v) := ⟨S ′
ω(v), v⟩ = ∥∇v∥2L2 + ω∥v∥2L2 + ∥v∥3L3a2∥v∥4L4 − ∥v∥5L5 . (1.15)

Then the standing waves eiωtϕω(x) of (1.1) are unstable by blow up.

The rest of this paper is organized as follows. In Section 2, we find the region of parameters

a1, a2, a3 in which there exist solutions of the elliptic equation (1.3). Specially, in one dimension,
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all solution of (1.3) are algebraic standing waves. In Section 3, we establish the variational char-

acterization of solutions given in Section 2. The existence of algebraic standing waves in high

dimensions is also proved in section 3. In Section 4, we prove instability of algebraic standing

waves Theorem 1.6 and instability by blow up of standing waves in the case of positive frequency

Theorem 1.8.

2. Existence of solution of the elliptic equation. First, we find the region of parameters a1, a2,

a3 in which there exist solutions of (1.3).

2.1. In dimension one. Let n = 1. To study the existence of algebraic standing waves, we use

the following lemma (see [2], [14, Proposition 2.1])

Lemma 2.1. Let g be a locally Lipschitz continuous function with g(0) = 0 and let G(t) =∫ t

0
g(s) ds. A necessary and sufficient condition for the existence of a solution ϕ of the problem

ϕ ∈ C2(R), limx→±∞ ϕ(x) = 0, ϕ(0) > 0,

ϕxx + g(ϕ) = 0,

(2.1)

is that c = inf {t > 0 : G(t) = 0} exists, c > 0, g(c) > 0.

Using Lemma 2.1, we have the following result.

Lemma 2.2. Let g(u) = a1u
2 + a2u

3 + a3u
4 be such that g satisfies the assumptions of Lemma

2.1 for some a1, a2, a3 ∈ R. Then there exists a positive solution ϕ of (2.1). Moreover, all complex

valued solutions of (2.1) are of form:

eiθ0ϕ(x− x0),

for some θ0, x0 ∈ R.

Proof. By Lemma 2.1, there exists a real valued solution ϕ of (2.1). We have

ϕxx + a1ϕ
2 + a2ϕ

3 + a3ϕ
4 = 0. (2.2)
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Since limx→±∞ ϕ(x) = 0, there exists x0 such that ϕx(x0) = 0. Multiplying two sides of (2.2) by

ϕx and noting that limx→∞ ϕ(x) = 0 we obtain

1

2
ϕ2
x +

a1
3
ϕ3 +

a2
4
ϕ4 +

a3
5
ϕ5 = 0. (2.3)

We see that ϕ is not vanishing on R. Indeed, if ϕ(x1) = 0 for some x1 ∈ R then ϕx(x1) = 0 by

(2.3). Thus, ϕ ≡ 0 by uniqueness of solutions of (2.3) which is a contradiction. Then, we can

assume that ϕ > 0.

The value ϕ(x0) is a positive solution of G(u) = a1
3
u3 + a2

4
u4 + a3

5
u5 = 0. Since g satisfies the

condition in Lemma 2.1, it follows that G(u) = 0 has a first positive solution c such that g(c) > 0.

If ϕ(x0) ̸= c then G has another positive zero d > c such that d = ϕ(x0). By continuity of ϕ, there

exists x1 > x0 such that ϕ(x1) = c and by (2.3) ϕx(x1) = 0. This conclusion implies that every

positive solution of (2.2) has a critical point such that the value of solution at this point equals to c.

Let u be a complex valued solution of (2.1). We prove that u = eiθ0ϕ(x − x0), for some

θ0, x0 ∈ R. We use similar arguments as in [5, Theorem 8.1.4]. Multiplying the equation by ux

and taking real part, we obtain:

d

dx

(
1

2
|ux|2 +

a1
3
|u|3 + a2

4
|u|4 + a3

5
|u|5
)

= 0.

Thus,
1

2
|ux|2 +

a1
3
|u|3 + a2

4
|u|4 + a3

5
|u|5 = K.

Using limx→±∞ u(x) = 0 we have K = 0. In particular, |u| > 0. Indeed, if u vanishes then ux

vanish at the same point, hence, u ≡ 0. Therefore, we may write u = ρeiθ, where ρ > 0 and

ρ, θ ∈ C2(R). Substituting u = ρeiθ in (2.1) we have 2ρxθx + ρθxx = 0 which implies there exists

K̃ ∈ R such that ρ2θx = K̃ and so θx = K̃
ρ2

. Moreover, since |ux| is bounded, it follows that ρ2θ2x is

bounded. Thus, K̃2

ρ2
is bounded. Since ρ(x) → 0 as x→ ∞, we have K̃ = 0. Thus, since ρ > 0 we

have θ ≡ θ0 for some θ0 ∈ R. Thus u = eiθ0ρ. Since ρ is a positive solution of (2.2), there exists

x2 ∈ R such that ρ(x2) = c and ρx(x2) = 0. Thus, by uniqueness of solution of (2.2), there exists

x3 ∈ R such that ρ(x) = ϕ(x− x3) and u = eiθ0ϕ(x− x3). This implies the desired result. □
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Moreover, we have the following result.

Lemma 2.3. Let g and ϕ be as in Lemma 2.2. Then ϕ ∈ H1(R).

Proof. Firstly, since g satisfies the assumption of Lemma 2.1, we have a1 < 0 (see the arguments

in the proof of Proposition 1.1). As in the proof of Lemma 2.2, up to a translation, we may assume

that ϕx(0) = 0 and let c = ϕ(0). Then ϕ is an even function of x. Furthermore, ϕ satisfies

1

2
ϕ2
x +G(ϕ) = 0. (2.4)

Moreover, ϕxx(0) = −g(ϕ(0)) = −g(c) < 0. Therefore, there exists a > 0 such that ϕx < 0 on

(0, a). We claim that a = ∞. Otherwise, there would exists b > 0 such that ϕx < 0 on (0, b) and

ϕx(b) = 0. Thus, ϕ(b) < c is a positive zero ofG. This is a contradiction since c is the first positive

solution of G. Hence, ϕx < 0 on (0,∞). Thus, there exists 0 ⩽ l < c such that limx→∞ ϕ(x) = l.

In particular, there exists xm → ∞ such that ϕx(xm) → 0 as m→ ∞. Passing to the limit in (2.4)

we haveG(l) = 0 and hence l = 0 by definition of c. Therefore ϕ decreases to 0, as x→ ∞. Thus,

from (2.4), for |x| large enough, we have

ϕ2
x ≈ −a1

3
ϕ3.

Then

−ϕx ≈ cϕ
3
2 , for some c > 0.

Thus, for |x| large enough, we have

0 ⩾ ϕx + cϕ
3
2 .

It follows that ϕ ⩽ 1
(cx+d)2

for some c, d > 0. Hence ϕ ∈ L1(R) ∩ L∞(R), especially ϕ ∈ L2(R).

Combining this and (2.4), we obtain that ϕx ∈ L2(R). Thus, ϕ ∈ H1(R), this completes the proof

of Lemma 2.3. □

Now, we comeback to the proof of Proposition 1.1.
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Proof of Proposition 1.1. A solution of (1.3) in the space X satisfies

uxx + g(u) = 0, u ∈ C2(R), and lim
x→±∞

u(x) = 0, (2.5)

From Lemma 2.1, the necessary condition for existence of solutions of (2.5) is a1 < 0. Indeed, let

c is the first positive root of G(u) then G′(c) = g(c) > 0. Thus, G do not change sign on (0, c) and

is increasing in a neighborhood of c. It follows that G < 0 on (0, c) and hence a1 < 0.

To conclude the existence of solution of (2.5), we consider the three cases DDF, DFF, DFD. In the

case DDD we have G < 0 on (0,∞), therefore there is no solution of (2.5).

In the case DDF (i.e a1 = −1, a2 < 0, a3 = 1), we have

g(s) = −s2 + a2s
3 + s4,

G(s) = −1

3
s3 +

a2
4
s4 +

1

5
s5.

Thus ,

c =
−a2

4
+

√
a22
16

+ 4
15

2
5

,

and g(c) = c2(c2 + a2c− 1). It easy to check that c is larger than the largest root of x2 + a2x− 1.

Thus, g(c) > 0. It follows that in case DDF, there exists a solution of (2.5).

By similar arguments, in the case DFF, (2.5) has a solution. In the case DFD, (2.5) has a solution

if and only if a2 > 8√
15

.

Let ϕ be a solution of (2.5). From Lemma 2.2 all solution of (2.5) are of the form eiθϕ(x − x0),

and belong to H1(R) by Lemma 2.3. Thus, they are all algebraic standing waves of (1.1). This

completes the proof of Proposition 1.1. □

2.2. In higher dimensions. In this section, we prove existence and uniqueness of a radial positive

solution of (1.3) when a1 = −1, a3 = 1 and n = 2, 3. The existence result is a consequence of the

following theorem.

Theorem 2.4 ([3],Theorem I.1). Let g be a locally Lipschitz continuous function from R+ to R

with g(0) = 0, satisfying



ALGEBRAIC STANDING WAVES 11

(1) α = inf{ζ > 0, g(ζ) ⩾ 0} exists, and α > 0.

(2) There exists a number ζ > 0 such that G(ζ) > 0, where

G(t) =

∫ t

0

g(s) ds.

Define ζ0 = inf{ζ > 0, G(ζ) > 0}. Then, ζ0 exists, and ζ0 > α.

(3) lims↓α
g(s)
s−α

> 0.

(4) g(s) > 0 for s ∈ (α, ζ0]. Let β = inf{ζ > ζ0, g(ζ) = 0}. Then, ζ0 < β ⩽ ∞.

(5) If β = ∞ then g(s)
sl

= 0, with l < n+2
n−2

, (If n = 2, we may choose for l just any finite real

number).

Then there exists a number ζ ∈ (ζ0, β) such that the solution u ∈ C2(R+) of the Initial Value

problem 
−u′′ − n−1

r
u′ = g(u), for r > 0,

u(0) = ζ, u′(0) = 0

has the properties: u > 0 on R+, u′ < 0 on R+ and

lim
r→∞

u(r) = 0.

In our case, we have

g(s) = −s2 + a2s
3 + s4, (2.6)

G(s) =
−1

3
s3 +

a2
4
s4 +

1

5
s5. (2.7)

It is easy to check that the function g and G satisfy the conditions of Theorem 2.4 when n = 2, 3

with α =
−a2+

√
a22+4

2
(the positive zero of g), ζ0 =

−a2+
√

a22+
64
15

8
5

(the positive zero of G), β = ∞

and 4 < l < 5 when n = 3 and l > 4 when n = 2. Thus, in high dimensions (n = 2, 3), there

exists a decreasing radial positive solution of (1.3).

The uniqueness of a radial positive solution is obtained by following result.
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Theorem 2.5 ([17],Theorem 1). Let us consider, for n ⩾ 2, the following equation

∆u+ g(u) = 0, (2.8)

where g satisfies the following conditions:

(a) g is continuous on [0,∞) and g(0) = 0,

(b) g is a C1-function on (0,∞),

(c) There exists a > 0 such that g(a) = 0 and

g(u) < 0 for 0 < u < a,

g(u) > 0 for u > a.

(d) d
du

[
G(u)
g(u)

]
⩾ n−2

2n
, for u > 0, u ̸= a, where G(s) =

∫ s

0
f(τ)dτ .

Then (2.8) admits at most one radial positive solution.

The function g given in (2.6) satisfies conditions (a), (b), (c) of Theorem 2.5 for a the positive

root of g. When n = 2, 3, the condition (d) is satisfied if only if

d

ds

[ 1
5
s3 + a2

4
s2 − 1

3
s

s2 + a2s− 1

]
⩾
n− 2

2n
, for s > 0, s ̸= a. (2.9)

We prove that (2.9) holds. We only need to show that

d

ds

[ 1
5
s3 + a2

4
s2 − 1

3
s

s2 + a2s− 1

]
⩾

1

6
, for s ̸= a.

This is equivalent to
1

5
s4 +

2a2
5
s3 +

(
a22
2

+
2

5

)
− a2s+ 1 ⩾ 0,

which is true for all s > 0, a2 ∈ R by the fact that

1

5
s4 +

2a2
5
s3 +

(
a22
2

+
2

5

)
− a2s+ 1 =

1

5
(s2 + a2s)

2 +
3

10

(
a2 −

5

3

)2

+
2

5
s2 +

1

6
> 0.

Thus, there exists a unique radial positive solution of (1.3) by Theorem 2.5. This completes the

proof of Proposition 1.2.
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3. Variational characterization. Let n = 1, 2, 3. In this section, we prove Proposition 1.3. By

the assumption of Proposition 1.3, we may pick a1 = −1 and a3 = 1. We recall that S,K, P are

defined in (1.4), (1.8) and (1.10).

Let M and K be defined as (1.12) and (1.8). First, as in [6], we prove that M is not empty. We

set

J(v) =
1

4
∥∇v∥2L2 +

1

12
∥v∥3L3 +

1

20
∥v∥5L5 ,

which is well defined on X . The functional S is rewritten as

S(v) =
1

2
K(v)− 1

6
∥v∥3L3 +

a2
4
∥v∥4L4 +

3

10
∥v∥5L5 ,

S(v) =
1

4
K(v) + J(v).

We can rewrite µ as

µ = inf{J(v) : v ∈ K}. (3.1)

Lemma 3.1. Let v ∈ H1(Rn). If K(v) < 0 then µ < J(v). In particular,

µ = inf{J(v) : v ∈ X \ {0}, K(v) ⩽ 0}. (3.2)

Proof. Since K(v) < 0 and K(λv) > 0 if λ > 0 small enough, there exists λ1 ∈ (0, 1) such that

K(λ1v) = 0. Therefore, by (3.1) and since the function λ 7→ J(λv) on (0,∞) is increasing, we

have

µ ⩽ J(λ1v) < J(v).

This completes the proof. □

Lemma 3.2. The following is true:

µ > 0.



14 PHAN VAN TIN

Proof. Let v ∈ K. By using the Gagliardo-Nirenberg inequalities, for some θ ∈ (0, 5) and θ̃ ∈

(0, 4), we have

∥v∥5L5 ≲ ∥∇v∥θL2∥v∥5−θ
L3 ⩽ C1∥∇v∥5L2 + C2∥v∥5L3 ,

∥v∥4L4 ≲ ∥∇v∥θ̃L2∥v∥4−θ̃
L3 ⩽ C3∥∇v∥4L2 + C4∥v∥4L3 ,

we have

0 = K(v) ⩾ (1− C1∥∇v∥3L2 − |a2|C3∥∇v∥2L2)∥∇v∥2L2 + (1− C2∥v∥2L3 − |a2|C4∥v∥L3)∥v∥3L3 ,

It follows that 1 ⩽ C1∥∇v∥3L2 + |a2|C3∥∇v∥2L2 ⩽ C∥∇v∥3L2 +
1
2

or 1 ⩽ C2∥v∥2L3 + |a2|C4∥v∥L3 ⩽

C̃∥v∥2L3+
1
2
, for someC, C̃ > 0. Hence, ∥∇v∥L2 or ∥v∥3L3 bounded below by some constant. In two

cases, J(v) is bounded below by some constant. Combining with (3.1) we have the conclusion. □

We need the following results.

Lemma 3.3 ([1, 12]). Let p ⩾ 1. Let (fn) be a bounded sequence in Ḣ1(Rn)∩Lp+1(Rn). Assume

that there exists q ∈ (p, 2∗ − 1) such that lim supn→∞∥fn∥Lq+1 > 0. Then there exist (yn) ⊂ Rn

and f ∈ Ḣ1(Rn) ∩ Lp+1(Rn) \ {0} such that (fn(· − yn)) has a subsequence that converges to f

weakly in Ḣ1(Rn) ∩ Lp+1(Rn).

Lemma 3.4 ([4]). Let 1 ⩽ r < ∞. Let (fn) be a bounded sequence in Lr(Rn) and fn → f a.e in

Rn as n→ ∞. Then

∥fn∥rLr − ∥fn − f∥rLr − ∥f∥rLr → 0,

as n→ ∞.

Now, we comeback to prove the set M is not empty.

Lemma 3.5. If (vn) ∈ X is a minimizing sequence for µ, that is,

K(vn) → 0, S(vn) → µ,

then there exist (yn) ⊂ Rn, a subsequence (vnj
), and v0 ∈ X \ {0} such that vnj

(· − ynj
) → v0 in

X . In particular, v0 ∈ M.
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Proof. Since K(vn) → 0 and S(vn) → µ, we have

J(vn) → µ, (3.3)

−1

6
∥v∥3L3 +

a2
4
∥v∥4L4 +

3

10
∥v∥5L5 → µ. (3.4)

From (3.3), we infer that (vn) is bounded inX . Also, since µ > 0 by Lemma 3.2 and the Gagliardo-

Nirenberg inequality ∥v∥5L5 ≲ ∥∇v∥5L2+∥v∥5L4 , we have lim supn→∞∥vn∥L4 > 0. Then, by Lemma

3.3 there exist (yn) ⊂ Rn and v0 ∈ X \ {0} and a subsequence of (vn(· − yn)), which we still

denote by the same notation, such that vn(· − yn)⇀ v0 weakly in X . we put wn := vn(· − yn).

We can assume that wn → v0 a.e in Rn and we prove that wn → v0 strongly in X . By Lemma

3.4, we have

J(wn)− J(wn − v0) → J(v0), (3.5)

K(wn)−K(wn − v0) → K(v0). (3.6)

Since J(v0) > 0 by v0 ̸= 0, it follows from (3.5) and (3.3) that

lim
n→∞

J(wn − v0) = lim
n→∞

J(wn)− J(v0) < lim
n→∞

J(wn) = µ.

From this and (3.2) we have K(wn − v0) > 0 for n large. Thus, since K(vn) → 0 and (3.6) we

obtain K(vn) ⩽ 0. By (3.2) and weak lower semicontinuity of the norms, we have

µ ⩽ J(v0) ⩽ lim
n→∞

J(wn) = µ.

Combining with (3.5) imply that J(wn − v0) → 0 thus, wn → v0 strongly in X . This completes

the proof. □

Proof of Proposition 1.3. Firstly, we prove the variational characterization of ϕ as follows

S(ϕ) = µ.

This means that ϕ is a minimizer of (1.11). From Lemma 3.5, we have M ̸= ∅. Let φ ∈ M. We

divide the proof of this to three steps.
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Step 1. There exists θ ∈ R such that eiθφ is a positive function.

We use similar arguments as in [6, Lemma 2.10]. Put v := |Reφ|, w := |Imφ| and ψ := v + iw.

By a phase modulation, we may assume that v ̸= 0.

Since |ψ| = |φ| and |∇ψ| = |∇φ|, we have K(ψ) = K(φ) and S(ψ) = S(φ). Thus, ψ ∈ M.

Then, there exists γ ∈ R such that

S ′(ψ) = γK ′(ψ).

Hence,

γ ⟨K ′(ψ), ψ⟩ = ⟨S ′(ψ), ψ⟩ = K(ψ) = 0. (3.7)

Moreover, using K(ψ) = 0 we have

⟨K ′(ψ), ψ⟩ = ∂λK(λψ)|λ=1

= ∂λK(λψ)|λ=1 − 4K(ψ)

= (2∥∇ψ∥2L2 + 3∥ψ∥3L3 − 4a2∥ψ∥4L4 − 5∥ψ∥5L5)− 4(∥∇ψ∥2L2 + ∥ψ∥3L3 − a2∥ψ∥4L4 − ∥ψ∥5L5)

= −2∥∇ψ∥2L2 − ∥ψ∥3L3 − ∥ψ∥5L5 < 0.

Combining with (3.7), we deduce γ = 0. Thus, S ′(ψ) = 0. Hence, v solves the following equation

(−∆+ |φ| − a2|φ|2 − |φ|3)v = 0.

Since v is nonnegative and not identically equal to zero, using [13, Theorem 9.10], we infer that

v is positive function. Furthermore, since K(|ψ|) ⩽ K(ψ) and S(|ψ|) ⩽ S(ψ), it follows from

Lemma 3.1 we have K(|ψ|) = K(ψ) and S(|ψ|) = S(ψ). Then, ∥∇|ψ|∥L2 = ∥∇ψ∥L2 . By [13,

Theorem 7.8], there exists a constant c such that w = cv for some c ⩾ 0.

Since v is continuous and positive, Reφ and Imφ do not change sign. Then, there exist constants

λ = ±1 and η ∈ R such that Reφ = λv and Imφ = ηv. Taking θ ∈ R such that e−iθ = λ+iη
|λ+iη| , we

have eiθφ = eiθ(λ+ iη)v = |λ+ iη|v. This completes the step 1.

Step 2. Radial symmetry of minimizer.

Since [11, Theorem 1], there exists y ∈ Rn such that eiθφ(·−y) is a radial and decreasing function.
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Step 3. Conclusion.

Since ϕ and eiθφ(· − y) are positive radial solutions of (1.3), using Proposition 1.2, we obtain

ϕ = eiθφ(· − y),

Thus, S(ϕ) = S(φ) = µ, ϕ ∈ M and each element of M is of form eiθϕ(· − x0) for some

θ, x0 ∈ R.

It remains to classify all algebraic standing waves of (1.1). We only need to prove that G =

M ≠ ∅, where G and M are defined in (1.7) and (1.12), respectively. We use similar arguments

as in [6, Proof of Theorem 2.1]. We divide the proof of this in two steps.

Step 1. M ⊂ G.

Let ψ ∈ M. Then, S ′(ψ) = 0. Now, we show that ψ ∈ G. Let v ∈ X \ {0} such that S ′(v) = 0.

From K(v) = ⟨S ′(v), v⟩ = 0 and by definition of M, we have S(ψ) ⩽ S(v). Thus, ψ ∈ G and

M ⊂ G.

Step 2. G ⊂ M and conclusion.

Let ψ ∈ G. Then K(ψ) = ⟨S ′(ψ), ψ⟩ = 0. As the above, ϕ ∈ M. As in step 1, ϕ ∈ G.

Therefore, S(ψ) = S(ϕ) = µ, which implies ψ ∈ M. Thus G ⊂ M, which completes the proof

of Proposition 1.3. □

It turns out that the algebraic standing waves of (1.1) in high dimensions (n = 2, 3) belongs to

H1(Rn). To prove this, we need the following lemma (see [6, Lemma 3.4]).

Lemma 3.6. Let φ ∈ C1([0,∞)) be a positive function. If there exist ρ,A > 0such that

φ′(r) + Aφ(r)1+ρ ⩽ 0, for all r > 0,

then

φ(r) ⩽

(
1

ρAr

) 1
ρ

.

Proof of Remark 1.4(2). We use similar arguments as in [6, Proof of Proposition 3.5]. Firstly, we

denote ϕ(r) as function of ϕ respect to variable r = |x|. Since ϕ is positive decreasing radial
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function, we have

∥ϕ∥3L3 ⩾
∫
|x|⩽R

|ϕ|3 dx ⩾ |B(R)||ϕ(R)|3 = CRn|ϕ(R)|3,

for all R > 0. Hence,

ϕ(x) ⩽ |x|−
n
3 ∥ϕ∥L3 , for all x ∈ R.

For r > r0 large enough, we have

|a2|ϕ3 + ϕ4 ⩽
1

2
ϕ2,

Since ϕ solves (1.3) and is decreasing as a function of r, this implies

ϕ′′(r) ⩾ ϕ′′(r) +
n− 1

r
ϕ′(r) = ϕ2 − a2ϕ

3 − ϕ4 ⩾
1

2
ϕ2, for r > r0.

Multiplying the two sides by ϕ′ and integrating it on [r,∞), we get

ϕ′(r)2 ⩾
1

3
ϕ3, for r ⩾ r0.

Since ϕ′ < 0 we obtain that

ϕ′(r) +

√
1

3
ϕ

3
2 ⩽ 0, for r ⩾ r0.

By Lemma 3.6, we deduce that

ϕ(r) ⩽ Cr−2, for r ⩾ r0.

Thus, ϕ ∈ L2(Rn), for n = 1, 2, 3. From the proof of Proposition 1.3, we have ϕ ∈ M. Hence,

|∇ϕ| ∈ L2(Rn) and ϕ ∈ H1(Rn). This completes the proof. □

Remark 3.7. For each ω ⩾ 0, let ϕω be a radial positive solution of (1.2). In the cases ω > 0, it is

well known that ϕω exponential decays. In the case ω = 0, in special cases, we may find exactly

solution of (1.3) and hence shape decay of ϕ0. We may check that (1 + x2)−1 solves

ϕ′′ − 6ϕ2 + 8ϕ3 = 0.
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Hence, in this case, ϕ0 ≈ x−2 when x large. In our case, it is not easy to find exactly solution of

(1.3). Given a lower bounded for ϕ0 when x large is an unanswered question.

4. Instability of algebraic standing waves. Let n = 1, 2, 3. In this section, we prove Theorem

1.6. Throughout this section, we consider the case DDF or DFF and a2 small. Then we may

pick a1 = −1 and a3 = 1. First, we prove the following result by using similar arguments as in

[16] (see also [6, Proof of Proposition 5.1]).

Proposition 4.1. Assume that

∂2λS(ϕ
λ)|λ=1 < 0, where vλ(x) := λ

n
2 v(λx). (4.1)

Then the algebraic standing wave ϕ is unstable.

We define a tube around the standing wave by

Nε :=

{
v ∈ H1(Rn) : inf

(θ,y)∈R×Rn
∥v − eiθϕ(· − y)∥H1 < ε

}
.

Lemma 4.2. Assume (4.1) holds. Then there exist ε1, δ1 ∈ (0, 1) such that: For any v ∈ Nε1 there

exists Λ(v) ∈ (1− δ1, 1 + δ1) such that

µ ⩽ S(v) + (Λ(v)− 1)P (v).

Proof. First, we recall that S, K and P are defined as in (1.4), (1.8) and (1.10), respectively.

Since ∂2λS(ϕ
λ)|λ=1 < 0, by the continuity of the function

(λ, v) 7→ ∂2λS(v
λ),

there exist ε1, δ1 ∈ (0, 1) such that ∂2λS(v
λ) < 0 for any λ ∈ (1 − δ1, 1 + δ1) and v ∈ Nε1 .

Moreover, by the definition of P we have

S(vλ) ⩽ S(v) + (λ− 1)P (v), (4.2)
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for λ ∈ (1− δ1, 1 + δ1) and v ∈ Nε1 .

Moreover, consider the map:

(λ, v) 7→ K(vλ) = λ2∥∇v∥2L2 + λ
n
2 ∥v∥3L3 − a2λ

n∥v∥4L4 − λ
3n
2 ∥v∥5L5 .

Note that K(ϕ) = 0 and

∂λK(ϕλ)|λ=1 = 2∥∇ϕ∥2L2 +
n

2
∥ϕ∥3L3 − na2∥ϕ∥4L4 −

3n

2
∥ϕ∥5L5 .

Thus,

∂λK(ϕλ)|λ=1 = ∂λK(ϕλ)|λ=1 − 5P (ϕ)

= −3∥∇ϕ∥2L2 −
n

3
∥ϕ∥3L3 +

na2
4

∥ϕ∥4L4 .

Thus, in the case a2 < 0, we have ∂λK(ϕλ)|λ=1 < 0. In the case a2 ⩾ 0, using P (ϕ) = 0, we have

na2
4

∥ϕ∥4L4 = ∥∇ϕ∥2L2 +
n

6
∥ϕ∥3L3 −

3n

10
∥ϕ∥5L5

⩽ 3∥∇ϕ∥2L2 +
n

3
∥ϕ∥3L3 ,

hence we also have ∂λK(ϕλ)|λ=1 < 0. In all cases, by the implicit function theorem, taking ε1 and

δ1 small enough, for any v ∈ Nε1 there exists Λ(v) ∈ (1 − δ1, 1 + δ1) such that Λ(ϕ) = 1 and

K(vΛ(v)) = 0. Therefore, by definition of µ as in (1.11) we obtain:

µ ⩽ S(vΛ(v)) ⩽ S(v) + (Λ(v)− 1)P (v).

This completes the proof. □

Let u0 ∈ Nε and u(t) be the associated solution of (1.1). We define the exit time from the tube

Nε by

T±
ε (u0) := inf{t > 0 : u(±t) /∈ Nε}.

We set Iε(u0) := (−T−
ε (u0), T

+
ε (u0)).
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Lemma 4.3. Assume (4.1) holds and let ε1 be given by Lemma 4.2. Then for any u0 ∈ B ∩ Nε1 ,

where B is defined as in (1.13), there exists m = m(u0) > 0 such that P (u(t)) ⩽ −m for all

t ∈ Iε1(u0).

Proof. For t ∈ Iε1(u0), since u(t) ∈ Nε1 , it follows from Lemma 4.2 that

µ− S(u0) = µ− S(u(t)) ⩽ −(1− Λ(u(t)))P (u(t)).

In particular, since µ > S(u0) by u0 ∈ B, we have P (u(t)) ̸= 0. By continuity of the flow and

P (u0) < 0 we obtain

P (u(t)) < 0, 1− Λ(u(t)) > 0.

Therefore, we obtain

−P (u(t)) ⩾ µ− S(u0)

1− Λ(u(t))
⩾
µ− S(u0)

δ1
=: m(u0) > 0.

This completes the proof. □

Lemma 4.4. Assume (4.1) holds. Then |Iε1| <∞ for all u0 ∈ B ∩ Nε1 ∩ Σ, where

Σ =
{
v ∈ H1(R) : xv ∈ L2(R)

}
. (4.3)

Proof. Let u(t) be associated solution of u0 ∈ B ∩Nε1 ∩ Σ. By the virial identity and Lemma 4.3

we have
d2

dt2
∥xu(t)∥2L2 = 8P (u(t)) ⩽ −8m(u0)

for all t ∈ Iε1(u0), which implies |Iε1(u0)| <∞. This completes the proof. □

Let χ be a smooth cut-off function such that

χ(r) :=

1 if 0 ⩽ r ⩽ 1,

0 if r ⩾ 2.

and for R > 0 define χR(x) = χ
(

|x|
R

)
.

The following is similar as in [6, Lemma 4.5].
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Lemma 4.5. There exists a function R : (1,∞) → (0,∞) such that χR(λ)ϕ
λ ∈ B ∩ Σ ∩ Nε1 for

all λ > 1 close to 1, and that χR(λ)ϕ
λ → ϕ in H1(Rn) as λ ↓ 1.

Proof. We divide the proof in three steps.

Step 1: Prove ϕλ → ϕ in H1(Rn) as λ ↓ 1.

We have

∥ϕλ − ϕ∥Ḣ1 + ∥ϕλ − ϕ∥L2

⩽ ∥λ
n
2 ϕ(λ·)− ϕ(λ·)∥Ḣ1 + ∥ϕ(λ·)− ϕ(·)∥Ḣ1 + ∥λ

n
2 ϕ(λ·)− ϕ(λ·)∥L2 + ∥ϕ(λ·)− ϕ(·)∥L2

= (λ
n
2 − 1)(λ1−

n
2 ∥ϕ∥Ḣ1 + λ

−n
2 ∥ϕ∥L2) (4.4)

+ ∥ϕ(λ·)− ϕ(·)∥Ḣ1 + ∥ϕ(λ·)− ϕ(·)∥L2 . (4.5)

The term (4.4) converges to zero as λ → 1. To prove the term (4.5) converges to zero as λ → 1,

we prove for all ϕ ∈ Lp, 1 < p <∞, then the following holds

∥ϕ(λx)− ϕ(x)∥Lp → 0, as λ→ 1.

Indeed, we only need to consider ϕ is a integrable step function, by density of step function in

Lp(Rn). It is sufficient to consider ϕ = 1A, for some measurable set A. We have ϕ(λx) = 1 1
λ
A

and

∥ϕ(λx)− ϕ(x)∥pLp = ∥1 1
λ
A − 1A∥pLp

= µ({λx ∈ A, x ̸∈ A} ∪ {x ∈ A, λx ̸∈ A})

⩽ µ(A) + µ

(
1

λ
A
)
− 2µ

(
A ∩ 1

λ
A
)
,

this converges to zero when λ converges to 1. Thus, if we consider ∇ϕ as a vector function then

the term (4.5) converges to zero as λ converges to 1.

Step 2: χR(λ)ϕ
λ → ϕ as λ→ 1 for some function R.

Choosing R : (1,∞) → (0,∞) such that R(λ) → ∞ as λ → 1. Thus, for all v ∈ H1(Rn), we
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have

χR(λ)v → v, as λ→ 1

and χR(λ)ϕ
λ → ϕ in H1(Rn) as λ ↓ 1, since step 1.

Step 3: Conclusion.

We claim that ϕλ ∈ B for λ > 1 close to 1. Since ∂λS(ϕλ)|λ=1 = 0 and ∂2λS(ϕ
λ)|λ=1 < 0, there

exists λ1 > 1 such that ∂λS(ϕλ) < 0 and S(ϕλ) < µ for λ ∈ (1, λ1). We see that P (ϕλ) =

λ∂λS(ϕ
λ) < 0 for λ ∈ (1, λ1). Moreover, taking λ1 close to 1, we get ϕλ ∈ Nε1 for all λ ∈ (1, λ1).

Since χR(λ) has compact support and ∥χR(λ)ϕ
λ − ϕλ∥H1 → 0 as λ → 1, we have χR(λ)ϕ

λ ∈

B ∩Nε1 ∩ Σ for λ close to 1. This completes the proof. □

Proof of Proposition 4.1. By Lemma 4.5, there existsR : (1,∞) → (0,∞) such that χR(λ)ϕ
λ → ϕ

in H1(Rn) as λ ↓ 1. Moreover, χR(λ)ϕ
λ ∈ B ∩Σ∩Nε1 for λ > 1 close to 1. Thus, by Lemma 4.4,

|Iε1(χR(λ)ϕ
λ)| < ∞ for λ > 1 close to 1 and since χR(λ)ϕ

λ → ϕ as λ → 1 in H1(Rn) we have ϕ

is unstable. This completes the proof. □

Proof of Theorem 1.6. Using Proposition 4.1, we only need to check the condition (4.1). We have

∂2λS(ϕ
λ)|λ=1 = ∥∇ϕ∥2L2 +

n(n− 2)

12
∥ϕ∥3L3 −

n(n− 1)a2
4

∥ϕ∥4L4 −
3n(3n− 2)

20
∥ϕ∥5L5 .

We divide into three cases.

Case n = 1:

In this case, we have

∂2λS(ϕ
λ)|λ=1 = ∥ϕ′∥2L2 −

1

12
∥ϕ∥3L3 −

3

20
∥ϕ∥5L5 .

In the case DDF, using K(ϕ) = 0 and P (ϕ) = 0 we have

0 = P (ϕ)− 1

4
K(ϕ) =

3

4
∥ϕ′∥2L2 −

1

12
∥ϕ∥3L3 −

1

20
∥ϕ∥5L5 .

Thus,

∥ϕ′∥2L2 =
1

9
∥ϕ∥3L3 +

1

15
∥ϕ∥5L5 .
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It follows that

∂2λS(ϕ
λ)|λ=1 =

1

36
∥ϕ∥3L3 −

1

12
∥ϕ∥5L5

=
1

36
∥ϕ∥3L3 −

1

12

10

3

(
∥ϕ′∥2L2 +

1

6
∥ϕ∥3L3 −

a2
4
∥ϕ∥4L4 − P (ϕ)

)
= − 5

18
∥ϕ′∥2L2 −

1

54
∥ϕ∥3L3 +

5a2
72

∥ϕ∥4L4 . (4.6)

Thus,

∂2λS(ϕ
λ)|λ=1 < 0.

This implies the instability of algebraic standing waves in the case DDF.

In the case DFF, using (4.6) and the fact that a∥ϕ∥3L3 + b∥ϕ∥5L5 ⩾ 2
√
ab∥ϕ∥4L4 for all a, b > 0 we

have

∂2λS(ϕ
λ)|λ=1 = − 5

18

(
1

9
∥ϕ∥3L3 +

1

15
∥ϕ∥5L5

)
− 1

54
∥ϕ∥3L3 +

5a2
72

∥ϕ∥4L4

= − 4

81
∥ϕ∥3L3 −

1

54
∥ϕ∥5L5 +

5a2
72

∥ϕ∥4L4

⩽ − 4

27
√
6
∥ϕ∥4L4 +

5a2
72

∥ϕ∥4L4 < 0,

since we have assumed a2 < 32
15

√
6
. Thus, in the case DFF and a2 < 32

15
√
6

we obtain the instability

of algebraic standing waves.

Case n = 2:

In this case, we have

∂2λS(ϕ
λ)|λ=1 = ∥∇ϕ∥2L2 −

a2
2
∥ϕ∥4L4 −

6

5
∥ϕ∥5L5 . (4.7)

Moreover,

0 = P (ϕ) = ∥∇ϕ∥2L2 +
1

3
∥ϕ∥3L3 −

a2
2
∥ϕ∥4L4 −

3

5
∥ϕ∥5L5 .

Replacing a2
2
∥ϕ∥4L4 = ∥∇ϕ∥2L2 +

1
3
∥ϕ∥3L3 − 3

5
∥ϕ∥5L5 in (4.7), we obtain

∂2λS(ϕ
λ)|λ=1 = −1

3
∥ϕ∥3L3 −

3

5
∥ϕ∥5L5 < 0.
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The instability of algebraic standing waves in the case n = 2 follows.

Case n = 3:

In this case, we have

∂2λS(ϕ
λ)|λ=1 = ∥∇ϕ∥2L2 +

1

4
∥ϕ∥3L3 −

3a2
2

∥ϕ∥4L4 −
63

20
∥ϕ∥5L5 . (4.8)

Moreover,

0 = P (ϕ) = ∥∇ϕ∥2L2 +
1

2
∥ϕ∥3L3 −

3a2
4

∥ϕ∥4L4 −
9

10
∥ϕ∥5L5 .

Hence,

∂2λS(ϕ
λ)|λ=1 = ∂2λS(ϕ

λ)|λ=1 − 2P (ϕ)

= −∥∇ϕ∥2L2 −
3

4
∥ϕ∥3L3 −

27

20
∥ϕ∥5L5 < 0.

The instability of algebraic standing waves in case n = 3 follows. This completes the proof of

Theorem 1.6. □

Remark 4.6. We assume that the assumption of Theorem 1.6 holds. Let eiωtϕω(x) be standing

wave of (1.1) with ϕω is a radial positive solution of (1.2). By similar as Proposition 4.1, if

∂2λSω(ϕ
λ
ω)|λ=1 < 0 (4.9)

then the standing wave eiωtϕω(x) is orbitally unstable. By continuity of the maps ω 7→ ϕω and

ω 7→ Sω on R+, we see that for ω > 0 small enough, the condition (4.9) holds. This implies that

the standing waves are orbitally unstable in the case of small frequency. This goes back to the

result of [14] in dimension n = 1 for the case D*F (see Figure 3 [14]).

When n = 2, 3, the highest power of (1.1) is L2-supercritical. We use similar argument in [6] to

prove Theorem 1.8. From now on, we assume that the assumptions in Theorem 1.8 hold. Let Sω,
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Kω be defined as in (1.14), (1.15) respectively. We define

P (v) := ∥∇v∥2L2 +
n

6
∥v∥3L3 −

na2
4

∥v∥4L4 −
3n

10
∥v∥5L5 ,

µ(ω) := inf{Sω(v) : v ∈ H1(Rn) \ {0}, Kω(v) = 0},

Bω := {v ∈ H1(Rn) : Sω(v) < µ(ω), P (v) < 0}.

We can rewrite that

P (v) = ∂λSω(v
λ)|λ=1, where vλ(x) := λ

n
2 v(λx).

Since the assumption of Theorem 1.8, we have Sω(ϕω) = µ(ω). Let u0 ∈ Σ, where Σ is defined

by (4.3) and u be the associated solution of (1.1) with the initial data u(t = 0) = u0. We see that

u ∈ C(I,Σ), where 0 ∈ I is the maximal existence interval of u. Moreover, we have the following

identity
d2

dt2
∥xu(t)∥2L2 = 8P (u(t)), (4.10)

for all t ∈ I . We have the following result.

Lemma 4.7. If v ∈ H1(Rn), v ̸= 0 and P (v) ⩽ 0 then

1

2
P (v) ⩽ Sω(v)− µ(ω).

Proof. Define

f(λ) := Sω(v
λ)− λ2

2
P (v)

=
ω

2
∥v∥2L2 +

λ2

2
(∥∇v∥2L2 − P (v)) +

1

3
λ

n
2 ∥v∥3L3 −

a2
4
λn∥v∥4L4 −

1

5
λ

3n
2 ∥v∥5L5 .
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From the definition of P , we have f ′(1) = 0. Moreover, we have

f ′(λ) = λ(∥∇v∥2L2 − P (v)) +
n

6
λ

n
2
−1∥v∥3L3 −

na2
4
λn−1∥v∥4L4 −

3n

10
λ

3n
2
−1∥v∥5L5

= −λ
(
−n
6
∥v∥3L3 −

na2
4

∥v∥4L4 −
3n

10
∥v∥5L5

)
+
n

6
λ

n
2
−1∥v∥3L3 −

na2
4
λn−1∥v∥4L4 −

3n

10
λ

3n
2
−1∥v∥5L5

= −λ
(
n

6
∥v∥3L3(1− λ

n
2
−2) +

na2
4

∥v∥4L4(λn−2 − 1) +
3n

10
∥v∥5L5(λ

3n
2
−2 − 1)

)
.

When n = 2, f ′(λ) = λ(1− λ)
(

1
3λ
∥v∥3L3 +

3
5
∥v∥5L5

)
. Thus, f ′ is positive if λ < 1 and negative if

λ > 1. When n = 3,

f ′(λ) = λ(1− λ
1
2 )

(
1

2
∥v∥3L3λ

−1
2 +

3a2
2

∥v∥4L4(λ
1
2 + 1) +

9

10
∥v∥5L5

λ2 + λ
3
2 + ...+ 1

λ
1
2
+1

)
.

Since a2 > −ε for ε > 0 small enough, we may prove that the sign of f ′ is similar as in the

case n = 2 (we use Cauchy inequality and the fact that ∥v∥8L4 ⩽ ∥v∥3L3∥v∥5L5 and (λ
1
2 + 1)4 ≲

λ2 + λ
3
2 + ...+ 1). Thus, we have

f(1) = max{f(λ) : λ > 0}.

Since n ⩾ 2, we have Kω(v
λ) > 0 if λ = 0 and Kω(v

λ) < 0 if λ large enough. Thus, there exists

λ0 > 0 such that Kω(v
λ0) = 0. By the definition of µ(λ) and P (v) ⩽ 0, we have

µ(λ) < Sωv
λ0 < Sωv

λ0 − λ20
2
P (v) = f(λ0) ⩽ f(1) = Sω(v)−

1

2
P (v).

This completes the proof of Lemma 4.7. □

Lemma 4.8. The set Bω is invariant under flow of (1.1).

Proof. Let u0 ∈ Bω and u(t) be the associated solution of (1.1). Since Sω is conserved under flow

of (1.1), we have Sω(u(t)) = Sω(u0) < µ(ω). Now, we show that P (u(t)) < 0. Assume that,

this does nor hold. Then by continuity of the map t 7→ P (u(t)), there exists t0 > 0 such that

P (u(t0)) = 0. Using Lemma 4.7, we have Sω(u(t0)) ⩾ µ(ω). This contradict to the fact that

Sω(u(t)) < µ(ω) for all t. This completes the proof. □

We have the following result.
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Proposition 4.9. If u0 ∈ Bω ∩ Σ then the associated solution u(t) of (1.1) blows up in finite time.

Proof. By Lemma 4.8, we have u(t) ∈ Bω ∩ Σ, for all t ∈ I the maximal existence time of the

solution. From the virial identity and Lemma 4.8, we have

d2

dt2
∥xu(t)∥2L2 = 8P (u(t)) ⩽ 16(Sω(u(t))− µ(ω)) = 16(Sω(u0)− µ(ω)) < 0.

for all t ∈ I , which implies |I| <∞. We obtain the desired result. □

proof of Theorem 1.8. Using Proposition 4.9, it is sufficient to construct a sequence varphin ∈

Bω∩Σ such that φn → ϕω as n→ ∞. In our case, a1, a2, a3 satisfy the assumption of Theorem 1.6.

Thus, by using similar argument in the proof of Theorem 1.6, we may check that ∂2λSω(ϕ
λ
ω)|λ=1 <

0. Then, by using similar argument in the proof of Lemma 4.5, we may pick φn = ϕλn
ω , for λn > 1

such that λn → 1 as n→ ∞. This completes the proof. □
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