Finite-dimensional observer-based boundary stabilization of reaction-diffusion equations with either a Dirichlet or Neumann boundary measurement - Archive ouverte HAL
Article Dans Une Revue Automatica Année : 2022

Finite-dimensional observer-based boundary stabilization of reaction-diffusion equations with either a Dirichlet or Neumann boundary measurement

Hugo Lhachemi

Résumé

This paper investigates the output feedback boundary control of reaction-diffusion equations with either distributed or boundary measurement by means of a finite-dimensional observer. A constructive method dealing with the design of finite-dimensional observers for the feedback stabilization of reaction-diffusion equations was reported in a recent paper in the case where either the control or the observation operator is bounded and also satisfies certain regularity assumptions. In this paper, we go beyond by demonstrating that a finite-dimensional state-feedback combined with a finite-dimensional observer can always be successfully designed in order to achieve the Dirichlet boundary stabilization of reaction-diffusion systems with a either Dirichlet or Neumann boundary measurement.
Fichier principal
Vignette du fichier
autosam.pdf (722.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03377119 , version 1 (14-10-2021)
hal-03377119 , version 2 (14-10-2021)

Identifiants

Citer

Hugo Lhachemi, Christophe Prieur. Finite-dimensional observer-based boundary stabilization of reaction-diffusion equations with either a Dirichlet or Neumann boundary measurement. Automatica, 2022, 135 (January), pp.109955. ⟨10.1016/j.automatica.2021.109955⟩. ⟨hal-03377119v2⟩
166 Consultations
103 Téléchargements

Altmetric

Partager

More