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This paper investigates the output feedback boundary control of reaction-diffusion equations with either distributed or boundary measurement by means of a finite-dimensional observer. A constructive method dealing with the design of finite-dimensional observers for the feedback stabilization of reaction-diffusion equations was reported in a recent paper in the case where either the control or the observation operator is bounded and also satisfies certain regularity assumptions. In this paper, we go beyond by demonstrating that a finite-dimensional state-feedback combined with a finite-dimensional observer can always be successfully designed in order to achieve the Dirichlet boundary stabilization of reaction-diffusion PDEs with a either Dirichlet or Neumann boundary measurement.

Introduction

Modal approximation methods have demonstrated to be efficient approaches for the design of state-feedback control strategies for parabolic PDEs. While the origins of these methods track back to the 1960s [START_REF] David | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF] their extensions in various directions is still an active topic of research [START_REF] Coron | Global steadystate controllability of one-dimensional semilinear heat equations[END_REF][START_REF] Coron | Global steadystate stabilization and controllability of 1D semilinear wave equations[END_REF][START_REF] Katz | Boundary delayed observer-controller design for reaction-diffusion systems[END_REF][START_REF] Lhachemi | Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF][START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF][START_REF] Lhachemi | PI regulation of a reaction-diffusion equation with delayed boundary control[END_REF][START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with robin boundary conditions and state-delay[END_REF][START_REF] Orlov | Discontinuous unit feedback control of uncertain infinite-dimensional systems[END_REF][START_REF] Orlov | Robust stabilization of infinite-dimensional systems using sliding-mode output feedback control[END_REF][START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF]. In particular, these methods allow the design of finite-dimensional state-feedback, making them particularly relevant for practical applications. However, due to the distributed nature of the state, the design of an observer is generally required. In this field, backstepping design has emerged as a very efficient tool for the design of observers taking the form of PDEs [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF], in particular because such an approach generally leads to a form of separation principle between controller and observer designs. Nevertheless, the infinite-Corresponding author H. Lhachemi. The work of the first author was supported by ANR PIA funding: ANR-20-IDEES-0002. The work of the second author has been partially supported by MIAI@Grenoble Alpes (ANR-19-P3IA-0003)
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dimensional nature of the observer implies the necessity to resort to late lumping approximations in order to obtain a finite-dimensional control strategy that is suitable for practical implementation. Such a late lumping approximation generally requires the completion of extra stability analyses [START_REF] Auriol | Latelumping backstepping control of partial differential equations[END_REF]. For this reason, the elaboration of finite-dimensional observer-based control strategies for PDEs is very appealing. However, such an approach is challenging due to the inherent introduction of a coupling between controller and observer designs.

One of the first contributions regarding the design of a finite-dimensional observer-based controller for PDEs was reported in [START_REF] Curtain | Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input[END_REF] under a number of restrictive assumptions ensuring that a form of separation principle holds. In the case of bounded input and output operators, the stability of the resulting closed-loop system was assessed in [START_REF] Mark | Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters[END_REF] for controllers with dimension large enough, but without explicit criterion for the selection of the dimension parameter. For a similar problem, explicit conditions on the order of the finite-dimensional observer-based controller were reported in [START_REF] Harkort | Finitedimensional observer-based control of linear distributed parameter systems using cascaded output observers[END_REF]. More recently, a LMI-based constructive method dealing with the design of finite-dimensional observers for the feedback stabilization of reaction-diffusion equations was reported in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF]. This approach, that takes advantage of a direct Lyapunov method, allows the cases where either the control or the observation operator is bounded and exhibits certain regularity assumptions. The extension to configurations with small input and output delays was reported in [START_REF] Katz | Delayed finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF].

This paper is concerned with the finite-dimensional observer-based boundary stabilization of reactiondiffusion equations. We extend the boundary control design strategy reported in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF] to the relevant and more stringent case of boundary measurements. More specifically, while the developments reported in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF] were limited to configurations where the either control or observation operator is bounded, we demonstrate in this paper how this type of control design strategy can be extended to the case where both control and observation operators are unbounded. We consider first as a preliminary step the case of a Dirichlet boundary control and a bounded observation operator. This setting was tackled in [START_REF] Katz | Delayed finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF] for state trajectory evaluated in L 2 norm using the classical approach consisting in transferring the control input from the boundary into the domain by a classical change of variable [START_REF] Ruth | An introduction to infinitedimensional linear systems theory[END_REF]Sec. 3.3], yielding an homogeneous representation of the PDE that is used for control design. In this paper, also leveraging such classical homogeneous representations, we first revisit this problem to assess the stability of the system trajectories in H 1 norm. This higher regularity of the norm is one of the keys to address the more complex case of boundary observations and is also particularly relevant because it implies the convergence of the system trajectories in L ∞ norm. Then, using controller architectures similar to [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF], we extend the control design procedure to the novel setting of a Dirichlet boundary control and either a Dirichlet or Neumann boundary observation.

Comparing to [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF][START_REF] Katz | Delayed finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF], the main technical idea is the introduction of a scaling procedure while writing the system output as series expansions of the modes of the PDE when expressed in homogeneous coordinates. This scaling procedure is the key to show that the derived LMI conditions are feasible when selecting the order of the observer large enough, by invoking the Lemma in Appendix which is a generalization of a result found in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF]. This allows to infer the stability of the resulting closed-loop system in H 1 norm provided the number of modes of the observer is selected large enough.

Independently and after the original submission of this paper, new developments were made available [START_REF] Katz | Finite-dimensional control of the heat equation: Dirichlet actuation and point measurement[END_REF][START_REF] Katz | Finite-dimensional control of the Kuramoto-Sivashinsky equation under point measurement and actuation[END_REF] and have been suggested to us by the reviewers. The boundary control of a Kuramoto-Sivashinsky with Dirichlet measurement was studied in [START_REF] Katz | Finite-dimensional control of the Kuramoto-Sivashinsky equation under point measurement and actuation[END_REF] by taking advantage of the fastest divergence properties of the spectrum. The case of a constant coefficients reaction-diffusion equation was studied in the preprint [START_REF] Katz | Finite-dimensional control of the heat equation: Dirichlet actuation and point measurement[END_REF] for a Dirichlet measurement. The authors did not employ a scaling procedure but invoked fractional powers of the eigenvalues that is similar to the one used in this paper in Section 5 when studying a Neumann measurement. We show in Section 4 using a scaling procedure that such an approach is actually not necessary in the Dirichlet measurement scheme. However, the combined use of a scaling procedure and of fractional powers of the eigenvalues seems to be necessary in the Neumann measurement scheme as described in Section 5.

The rest of this paper is organized as follows. After introducing a number of notations and properties in Section 2, the case of Dirichlet boundary control with a bounded observation operator is considered in Section 3. The control design procedure is then extended to the cases of a boundary Dirichlet and Neumann observation in Section 4 and Section 5, respectively. Numerical illustrations are provided in Section 6 while concluding remarks are formulated in Section 7.

Notation and properties

Spaces R n are endowed with the Euclidean norm denoted by • . The associated induced norms of matrices are also denoted by • . Given two vectors X and Y , col(X, Y ) denotes the vector [X , Y ] . L 2 (0, 1) stands for the space of square integrable functions on (0, 1) and is endowed with the inner product f, g = 1 0 f (x)g(x) dx with associated norm denoted by • L 2 . For an integer m ≥ 1, the m-order Sobolev space is denoted by H m (0, 1) and is endowed with its usual norm denoted by • H m . For a symmetric matrix P ∈ R n×n , P 0 (resp. P 0) means that P is positive semi-definite (resp. positive definite) while λ M (P ) (resp. λ m (P )) denotes its maximal (resp. minimal) eigenvalue.

Let p ∈ C 1 ([0, 1]) and q ∈ C 0 ([0, 1]) with p > 0 and q ≥ 0. Let the Sturm-Liouville operator A : D(A) ⊂ L 2 (0, 1) → L 2 (0, 1) be defined by Af = -(pf ) + qf on the domain D(A) ⊂ L 2 (0, 1) given by either

D(A) = {f ∈ H 2 (0, 1) : f (0) = f (1) = 0} or D(A) = {f ∈ H 2 (0, 1) : f (0) = f (1) = 0}.
The eigenvalues λ n , n ≥ 1, of A are simple, non negative, and form an increasing sequence with λ n → +∞ as n → +∞. Moreover, the associated unit eigenvectors φ n ∈ L 2 (0, 1) form a Hilbert basis and we also have D(A) = {f ∈ L 2 (0, 1) :

n≥1 |λ n | 2 | f, φ n | 2 < +∞}. Let p * , p * , q * ∈
R be such that 0 < p * ≤ p(x) ≤ p * and 0 ≤ q(x) ≤ q * for all x ∈ [0, 1], then it holds [START_REF] Orlov | On general properties of eigenvalues and eigenfunctions of a Sturm-Liouville operator: comments on "ISS with respect to boundary disturbances for 1-D parabolic PDEs[END_REF]:

0 ≤ π 2 (n -1) 2 p * ≤ λ n ≤ π 2 n 2 p * + q * (1) for all n ≥ 1. Moreover if p ∈ C 2 ([0, 1]), we have [19] that φ n (0) = O(1) and φ n (0) = O( √ λ n ) as n → +∞. For f ∈ D(A), we have Af, f = n≥1 λ n f, φ n 2 hence n≥1 λ n f, φ n 2 = 1 0 p(x)f (x) 2 + q(x)f (x) 2 dx. ( 2 
)
This implies that, for any f ∈ D(A), the series expansion f = n≥1 f, φ n φ n holds in H 1 (0, 1) norm. Then, using the definition of A and the fact that it is a Rieszspectral operator, we obtain that the latter series expansion holds in H 2 (0, 1) norm. Due to the continuous embedding H 1 (0, 1) ⊂ L ∞ (0, 1), we obtain that f (0) = n≥1 f, φ n φ n (0) and f (0) = n≥1 f, φ n φ n (0).

Case of a bounded observation operator

We first consider the reaction-diffusion PDE with right Dirichlet boundary actuation (modeling for example a source of temperature in the case of a heat equation) described for t > 0 and x ∈ (0, 1) by

z t (t, x) = (p(x)z x (t, x)) x + (q c -q(x))z(t, x) (3a) z x (t, 0) = 0, z(t, 1) = u(t) (3b) z(0, x) = z 0 (x) (3c)
y(t) = 1 0 c(x)z(t, x) dx (3d)
where

q c ∈ R is a constant, u(t) ∈ R is the command in- put, y(t) ∈ R with c ∈ L 2 (0, 1) is the measurement, z 0 ∈ L 2 (0, 1
) is the initial condition, and z(t, •) ∈ L 2 (0, 1) is the state. The objective is to achieve the stabilization of the closed-loop system in H 1 norm. Note that a time delayed version of this problem was tackled in [START_REF] Katz | Delayed finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF] but for state trajectories evaluated in L 2 (0, 1) norm. However, the ability to assess the stability in H 1 (0, 1) norm is a crucial step towards the ability to handle boundary measurements.

Spectral reduction

We introduce the change of variable (see, e.g., [START_REF] Ruth | An introduction to infinitedimensional linear systems theory[END_REF]Sec. 3.3] for generalities on boundary control systems)

w(t, x) = z(t, x) -x 2 u(t). (4) 
Note that, among all possible change of variables, we have selected one that preserves the left Dirichlet trace, i.e., such that w(t, 0) = z(t, 0). This is in perspective of the developments of Section 4 in the case of a Dirichlet measurement at the left boundary. With this change of variable we have

w t (t, x) = (p(x)w x (t, x)) x + (q c -q(x))w(t, x) (5a) + a(x)u(t) + b(x) u(t) w x (t, 0) = 0, w(t, 1) = 0 (5b) w(0, x) = w 0 (x) (5c) ỹ(t) = 1 0 c(x)w(t, x) dx (5d) with a, b ∈ L 2 (0, 1) defined by a(x) = 2p(x) + 2xp (x) + (q c -q(x))x 2 and b(x) = -x 2 , respectively, ỹ(t) = y(t)- 1 0 x 2 c(x) dx u(t), and w 0 (x) = z 0 (x) -x 2 u(0). With the auxiliary command input v(t) = u(t), we have u(t) = v(t) (6a) dw dt (t, •) = -Aw(t, •) + q c w(t, •) + au(t) + bv(t) (6b) with D(A) = {f ∈ H 2 (0, 1) : f (0) = f (1) = 0}. Introducing the coefficients of projection w n (t) = w(t, •), φ n , a n = a, φ n , b n = b, φ n , and c n = c, φ n , we obtain for n ≥ 1 u(t) = v(t) (7a) ẇn (t) = (-λ n + q c )w n (t) + a n u(t) + b n v(t) (7b) ỹ(t) = i≥1 c i w i (t) (7c)

Control design

Let N 0 ≥ 1 and δ > 0 be given such that -λ n + q c < -δ < 0 for all n ≥ N 0 + 1. Let N ≥ N 0 + 1 be arbitrary. Proceeding as in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF], we design an observer to estimate the N first modes of the plant while the state-feedback is performed on the N 0 first modes of the plant. Specifically, introducing

W N0 = w 1 . . . w N0 , A 0 = diag(-λ 1 + q c , . . . , -λ N0 + q c ), B 0,a = a 1 . . . a N0 , B 0,b = b 1 . . . b N0 ,
we have from (7b) that

Ẇ N0 (t) = A 0 W N0 (t) + B 0,a u(t) + B 0,b v(t). (8) 
Hence, defining

W N0 a (t) = u(t) W N0 (t) , A 1 = 0 0 B 0,a A 0 , B 1 = 1 B 0,b , we obtain that Ẇ N0 a (t) = A 1 W N0 a (t) + B 1 v(t).
We now define for 1 ≤ n ≤ N the observation dynamics:

ẇn (t) = (-λ n + q c ) ŵn (t) + a n u(t) + b n v(t) (9) 
-

l n 1 0 c(x) N i=1 ŵi (t)φ i (x) dx -ỹ(t)
where l n ∈ R are the observer gains. We select l n = 0 for N 0 + 1 ≤ n ≤ N and the initial condition of the observer as ŵn (0) = 0 for all 1 ≤ n ≤ N . We define for 1 ≤ n ≤ N the observation error as

e n (t) = w n (t) -ŵn (t). ( 10 
) With ζ(t) = i≥N +1 c i w i (t), we infer from (9) that ẇn (t) = (-λ n + q c ) ŵn (t) + a n u(t) + b n v(t) (11) 
+ l n N i=1 c i e i (t) + l n ζ(t) for 1 ≤ n ≤ N . Introducing Ŵ N0 = ŵ1 . . . ŵN0 , E N0 = e 1 . . . e N0 , E N -N0 = e N0+1 . . . e N , C 0 = c 1 . . . c N0 , C 1 = c N0+1 . . . c N , L = l 1 . . . l N0 ,
we have

Ẇ N0 (t) = A 0 Ŵ N0 (t) + B 0,a u(t) + B 0,b v(t) (12) 
+ LC 0 E N0 (t) + LC 1 E N -N0 (t) + Lζ(t). With Ŵ N0 a (t) = u(t) Ŵ N0 (t) , L = 0 L (13) 
we deduce that

Ẇ N0 a (t) = A 1 Ŵ N0 a (t) + B 1 v(t) (14) 
+ LC 0 E N0 (t) + LC 1 E N -N0 (t) + Lζ(t).
Setting the auxiliary command input as

v(t) = K Ŵ N0 a (t), (15) 
where K ∈ R 1×(N0+1) , we obtain that

Ẇ N0 a (t) = (A 1 + B 1 K) Ŵ N0 a (t) (16) 
+ LC 0 E N0 (t) + LC 1 E N -N0 (t) + Lζ(t)
and, using ( 8) and ( 12),

ĖN0 (t) = (A 0 -LC 0 )E N0 (t) -LC 1 E N -N0 (t) -Lζ(t). ( 17 
)
Remark 1 The pair (A 1 , B 1 ) is controllable. Indeed, since λ n are two by two distincts, the Kalman condition yields that (A 1 , B 1 ) is controllable if and only if a n + (-λ n + q c )b n = 0 for all 1 ≤ n ≤ N 0 . Using two integration by parts, one has a n + (-λ n + q c )b n = -p(1)φ n (1). Since φ n (1) = 0, Cauchy uniqueness gives a n + (-λ n + q c )b n = 0. Assuming now that c n = 0 for all 1 ≤ n ≤ N 0 , we also obtain that (A 0 , C 0 ) is observable.

We now define

Ŵ N -N0 = ŵN0+1 . . . ŵN , A 2 = diag(-λ N0+1 + q c , . . . , -λ N + q c ), B 2,a = a N0+1 . . . a N , B 2,b = b N0+1 . . . b N .
Since l n = 0 for N 0 + 1 ≤ n ≤ N , ( 9) and ( 15) yield

Ẇ N -N0 (t) = A 2 Ŵ N -N0 (t) + B 2,a u(t) + B 2,b v(t) = A 2 Ŵ N -N0 (t) + B 2,b K + B 2,a 0 Ŵ N0 a (t) (18)
and, using in addition (7b) and [START_REF] Katz | Finite-dimensional control of the Kuramoto-Sivashinsky equation under point measurement and actuation[END_REF],

ĖN-N0 (t) = A 2 E N -N0 (t). ( 19 
)
Putting together [START_REF] Lhachemi | PI regulation of a reaction-diffusion equation with delayed boundary control[END_REF][START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with robin boundary conditions and state-delay[END_REF][START_REF] Orlov | Discontinuous unit feedback control of uncertain infinite-dimensional systems[END_REF][START_REF] Orlov | On general properties of eigenvalues and eigenfunctions of a Sturm-Liouville operator: comments on "ISS with respect to boundary disturbances for 1-D parabolic PDEs[END_REF], we obtain with

X = col( Ŵ N0 a , E N0 , Ŵ N -N0 , E N -N0 ) (20) that Ẋ(t) = F X(t) + Lζ(t) (21) where 
F =        A 1 + B 1 K LC 0 0 LC 1 0 A 0 -LC 0 0 -LC 1 B 2,b K + B 2,a 0 0 A 2 0 0 0 0 A 2        , (22a) 
L = col L, -L, 0, 0 . (22b) 
Defining E = 1 0 . . . 0 and K = K 0 0 0 , we obtain from ( 13), [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF], and (20) that

u(t) = EX(t), v(t) = KX(t) (23) 
and, with g

= a 2 L 2 + b 2 L 2 K 2 , we can introduce G = a 2 L 2 E E + b 2 L 2 K K gI. ( 24 
)

Stability analysis

Theorem 2 Let p ∈ C 1 ([0, 1]) with p > 0, q ∈ C 0 ([0, 1]
) with q ≥ 0, q c ∈ R, and c ∈ L 2 (0, 1). Consider the reaction-diffusion PDE described by [START_REF] Coron | Global steadystate controllability of one-dimensional semilinear heat equations[END_REF]. Let N 0 ≥ 1 and δ > 0 be given such that -λ n + q c < -δ < 0 for all n ≥ N 0 + 1. Assume that c n = 0 for all 1 ≤ n ≤ N 0 . Let K ∈ R 1×(N0+1) and L ∈ R N0 be such that A 1 + B 1 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. For a given N ≥ N 0 + 1, assume that there exist P 0, α > 1, and β, γ > 0 such that Θ 1 0, Θ 2 ≤ 0 (25)

where

Θ 1 = F P + P F + 2δP + αγG P L L P -β , (26) 
Θ 2 = 2γ -1 - 1 α λ N +1 + q c + δ + β c 2 L 2 λ N +1 .
Then, for the closed-loop system composed of the plant (3), the integral action (6a), the observer dynamics [START_REF] Katz | Finite-dimensional control of the heat equation: Dirichlet actuation and point measurement[END_REF] with null initial condition ( ŵn (0) = 0), and the state feedback [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF], there exists M > 0 such that for any z 0 ∈ H 2 (0, 1) and any u(0) ∈ R such that z 0 (0) = 0 and z 0 (1) = u(0), the classical solution of the closed-loop system satisfies w(t,

•) ∈ C 0 (R + ; D(A)) ∩ C 1 (R + ; L 2 (0, 1)) and u(t) 2 + N n=1 ŵn (t) 2 + z(t, •) 2 H 1 ≤ M e -2δt (u(0) 2 + z 0 2 H 1 )
for all t ≥ 0. Moreover, constraints (25) are always feasible for N selected large enough.

Proof. Since the observation operator is bounded, the well-posedness of the closed-loop system follows from general results on C 0 -semigroups [21, Chap. 3, Thm. 1.1]. For classical solutions, which are in particular such that w(t, •) ∈ D(A) for all t ≥ 0, we define the Lyapunov functional candidate:

V (X, w) = X P X + γ n≥N +1 λ n w, φ n 2 (27)
with X ∈ R 2N +1 and w ∈ D(A). The computation of the time derivative of V along the system trajectories (7b) and ( 21) gives V + 2δV = X F P + P F + 2δP X

+ 2X P Lζ + 2γ n≥N +1 λ n (-λ n + q c + δ)w 2 n + 2γ n≥N +1 λ n (a n u + b n v)w n . ( 28 
)
Using Young's inequality, we have for any α > 0,

2 n≥N +1 λ n a n w n u ≤ 1 α n≥N +1 λ 2 n w 2 n + α a 2 L 2 u 2 (29a) 2 n≥N +1 λ n b n w n v ≤ 1 α n≥N +1 λ 2 n w 2 n + α b 2 L 2 v 2 . ( 29b 
) Since ζ = n≥N +1 c n w n , we obtain that ζ 2 ≤ c 2 L 2 n≥N +1 w 2
n . This implies, for any β > 0,

β c 2 L 2 n≥N +1 w 2 n -βζ 2 ≥ 0.
Hence, combining the latter estimates and using (23-24), we infer that

V + 2δV ≤ X ζ Θ 1 X ζ + n≥N +1 λ n Γ n w 2 n .
where

Γ n = 2γ -1 -1 α λ n + q c + δ + β c 2 L 2 λn ≤ Θ 2 for all n ≥ N + 1 because α > 1.
Thus the assumptions imply V + 2δV ≤ 0, showing that V (t) ≤ e -2δt V (0) for all t ≥ 0. On one hand we have

V (0) ≤ λ M (P ) X(0) 2 + γ n≥N +1 λ n w n (0) 2 .
As the initial conditions of the observer are null, we have X(0

) 2 = u(0) 2 + N n=1 w n (0) 2 . Using (2), we infer the existence of a constant M 1 > 0 such that V (0) ≤ M 1 (u(0) 2 + w 0 2 H 1 ). On the other hand, (2) shows that p * w(t, •) 2 L 2 ≤ n≥1 λ n w n (t) 2 ≤ λ N N n=1 w n (t) 2 + 1 γ V (t) with p * > 0. Moreover, w n (t) = e n (t)+ ŵn (t) hence N n=1 w n (t) 2 ≤ 2 X(t) 2 ≤ 2 λm(P ) V (t). This shows the existence of a constant M 2 > 0 such that V (t) ≥ M 2 w(t, •) 2 L 2 .
Recalling that w(t, 1) = 0, Poincaré's inequality yields the existence of a constant M 3 > 0 such that V (t) ≥ M 3 w(t, •) 2 H 1 . Overall, we have shown the existence of a constant M 4 > 0, independent of the initial condition, such that u(t

) 2 + N n=1 ŵn (t) 2 + w(t, •) 2 H 1 ≤ M 4 e -2δt (u(0) 2 + w 0 2 H 1 )
. Using (4), we obtain the claimed result.

It remains to show that we can select N ≥ N 0 + 1, P 0, α > 1, and β, γ > 0 such that Θ 1 0 and Θ 2 ≤ 0. By the Schur complement, Θ 1 0 is equivalent to F P + P F + 2δP + αγG + 1 β P LL P 0. We now note that A 1 + B 1 K + δI and A 0 -LC 0 + δI are Hurwitz while e (A2+δI)t ≤ e -κ0t with κ

0 = λ N0+1 -q c -δ > 0. Moreover, LC 1 ≤ L c L 2 , LC 1 ≤ L c L 2 , and
B 2,b K + B 2,a 0 ≤ b L 2 K + a L 2
where the right-hand sides are constants independent of N . Hence, applying Lemma 12 reported in Appendix to F + δI, we obtain for any N ≥ N 0 + 1 the existence of P 0 such that F P + P F + 2δP = -I with P = O(1) as N → +∞. Moreover, we have (24) and L = √ 2 L with g and L that are independent of N . Hence, fixing α > 1 arbitrarily and setting β = N and γ = N -1/2 , we infer from (1) the existence of a sufficiently large integer N ≥ N 0 + 1, independent of the initial conditions, such that (25) holds. 2 Remark 3 For a given number of observed modes N ≥ N 0 + 1, the constraints (25) of Theorem 2 are nonlinear w.r.t. the decision variables due to the decision variable α > 1. However, fixing the value of α > 1, the constraints now take the form of LMIs with decision variables P 0 and β, γ > 0, for which efficient solvers exist. As shown in the proof of Theorem 2, this LMI formulation of the constraints remains feasible for N selected large enough.

Case of a Dirichlet boundary measurement

We now consider the reaction-diffusion PDE with Dirichlet boundary observation (modeling for example a temperature measurement in the case of a heat equation) described for t > 0 and x ∈ (0, 1) by

z t (t, x) = (p(x)z x (t, x)) x + (q c -q(x))z(t, x) (30a) z x (t, 0) = 0, z(t, 1) = u(t) (30b) z(0, x) = z 0 (x) (30c) y(t) = z(t, 0) (30d)
in the case p ∈ C 2 ([0, 1]).

Spectral reduction

Since the only change compared to Subsection 3.1 is the modification of the nature of the observation, the spectral reduction is conducted identically but the observation (5d) is replaced by ỹ(t) = w(t, 0) = y(t). Considering classical solutions associated with any z 0 ∈ H 2 (0, 1) and any u(0) ∈ R such that z 0 (0) = 0 and z 0 (1) = u(0) (existence will be given by [21, Chap. 6, Thm. 1.7]), we have w(t, •) ∈ D(A) for all t ≥ 0. Hence, we obtain in replacement of (7c) that ỹ(t) = i≥1 φ i (0)w i (t).

Control design

Let N 0 ≥ 1 and δ > 0 be given such that -λ n + q c < -δ < 0 for all n ≥ N 0 + 1. Let N ≥ N 0 + 1 be arbitrary. We apply the same approach as the one of Subsection 3.2 in order to design an observer to estimate the N first modes of the plant while the state-feedback is performed on the N 0 first modes of the plant. Specifically, we replace the observer dynamics (9) by the following dynamics, defined for 1 ≤ n ≤ N by

ẇn (t) = (-λ n + q c ) ŵn (t) + a n u(t) + b n v(t) (31) -l n N i=1 φ i (0) ŵi (t) -ỹ(t)
where l n ∈ R are the observer gains. We also select l n = 0 for N 0 + 1 ≤ n ≤ N and the initial condition of the observer as ŵn (0) = 0 for all 1 ≤ n ≤ N . Then, defining ζ(t) = i≥N +1 φ i (0)w i (t) and recalling that e n is defined by [START_REF] Katz | Finite-dimensional control of the Kuramoto-Sivashinsky equation under point measurement and actuation[END_REF], we obtain from (31) that

ẇn (t) = (-λ n + q c ) ŵn (t) + a n u(t) + b n v(t) (32) + l n N0 i=1 φ i (0)e i (t) + l n N i=N0+1 φ i (0) √ λ i ẽi (t) + l n ζ(t)
for 1 ≤ n ≤ N with ẽn (t) = √ λ n e n (t); see Remark 4 for the rationale motivating this scaling. Then, replacing the definitions of C 0 and C 1 by the followings:

C 0 = φ 1 (0) . . . φ N0 (0) , C 1 = φ N0+1 (0) λ N0+1 . . . φ N (0) √ λ N , (33) 
and defining

ẼN-N0 = ẽN0+1 . . . ẽN , (34) 
we obtain in replacement of ( 12) and ( 14) that

Ẇ N0 (t) = A 0 Ŵ N0 (t) + B 0,a u(t) + B 0,b v(t) (35) 
+ LC 0 E N0 (t) + LC 1 ẼN-N0 (t) + Lζ(t)
and

Ẇ N0 a (t) = A 1 Ŵ N0 a (t) + B 1 v(t) (36) 
+ LC 0 E N0 (t) + LC 1 ẼN-N0 (t) + Lζ(t), respectively, while the command input is still given by [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF]. Hence, using ( 8) and (35), the error dynamics ( 17) is replaced by

ĖN0 (t) = (A 0 -LC 0 )E N0 (t) -LC 1 ẼN-N0 (t) -Lζ(t).
(37) Moreover, because ėn (t) = (-λ n + q c )e n (t) hence ėn (t) = (-λ n + q c )ẽ n (t) for all

N 0 + 1 ≤ n ≤ N , then (19) is replaced by ĖN-N0 (t) = A 2 ẼN-N0 (t). ( 38 
)
Putting together ( 15), [START_REF] Orlov | Discontinuous unit feedback control of uncertain infinite-dimensional systems[END_REF], and (36-38) along with the new vector:

X = col( Ŵ N0 a , E N0 , Ŵ N -N0 , ẼN-N0 ), (39) 
we infer that (21) holds with the matrices given by [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF].

Remark 4 Based on (31) and following the developments of the previous section, a natural approach would have been to define the matrix C 1 as C 1 = φ N0+1 (0) . . . φ N (0) , hence considering in the computations the vector E N -N0 instead of ẼN-N0 . However, since φ n (0) = O(1) when p ∈ C 2 ([0, 1]), one would have got C 1 = O( √ N ) as N → +∞, making Lemma 12 reported in Appendix inapplicable. We avoid this pitfall by rescaling the components of the vector E N -N0 into the ones of ẼN-N0 . By doing so, and as a consequence of (1), we obtain that the newly introduced matrix C 1 , defined by (33), is such that C 1 = O(1) as N → +∞ . Due to the particular structure of the error dynamics (38), such a rescaling will allow the application of Lemma 12 reported in Appendix to the matrix F defined by [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF].

Remark 5 Based on the arguments of Remark 1, we have that (A 1 , B 1 ) is controllable. Besides, (A 0 , C 0 ) is observable because φ n (0) = 0 for all n ≥ 1; otherwise φ n (0) = 0 along with the boundary condition φ n (0) = 0 would imply the contradiction φ n = 0.

Stability analysis

We introduce the constant M 1,φ = n≥2 φn(0) 2 λn , which is finite when p ∈ C 2 ([0, 1]) because we recall that φ n (0) = O(1) as n → +∞ and ( 1) hold.

Theorem 6 Let p ∈ C 2 ([0, 1]) with p > 0, q ∈ C 0 ([0, 1])
with q ≥ 0, and q c ∈ R. Consider the reaction-diffusion PDE described by (30). Let N 0 ≥ 1 and δ > 0 be given such that -λ n + q c < -δ < 0 for all n ≥ N 0 + 1. Let K ∈ R 1×(N0+1) and L ∈ R N0 be such that A 1 + B 1 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. For a given N ≥ N 0 + 1, assume that there exist P 0, α > 1, and β, γ > 0 such that Θ 1 0, Θ 2 ≤ 0 (40) where Θ 1 is defined by (26) and

Θ 2 = 2γ -1 - 1 α λ N +1 + q c + δ + βM 1,φ .
Then there exists M > 0 such that, for any z 0 ∈ H 2 (0, 1) and any u(0) ∈ R such that z 0 (0) = 0 and z 0 (1) = u(0), the classical solution of the closed-loop system composed of the plant (30), the integral action (6a), the observer dynamics (31) with null initial condition ( ŵn (0) = 0), and the state feedback [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF] satisfies

w(t, •) ∈ C 0 (R + ; D(A)) ∩ C 1 (R + ; L 2 (0, 1)) and u(t) 2 + N n=1 ŵn (t) 2 + z(t, •) 2 H 1 ≤ M e -2δt (u(0) 2 + z 0 2 H 1
) for all t ≥ 0. Moreover, constraints (40) are always feasible for N selected large enough.

Proof. The well-posedness for classical solutions directly follows from [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]Chap. 6,Thm. 1.7]. Let P 0 and γ > 0 and consider the Lyapunov function candidate defined by (27). Its time derivative along the system trajectories (7b) and ( 21) is given by (28). Since ζ = n≥N +1 φ n (0)w n , we infer that

ζ 2 ≤ M 1,φ n≥N +1 λ n w 2
n hence, for any β > 0, βM 1,φ n≥N +1 λ n w 2 n -βζ 2 ≥ 0. Using this latter estimate into (28) and using Young's inequality as in (29) along with [START_REF] David | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF](24), we obtain that

V + 2δV ≤ X ζ Θ 1 X ζ + n≥N +1 λ n Γ n w n (t) 2
where Γ n = 2γ -1 -1 α λ n + q c + δ + βM 1,φ ≤ Θ 2 for all n ≥ N + 1 because α > 1. Hence, the assumptions imply V + 2δV ≤ 0, showing that V (t) ≤ e -2δt V (0) for all t ≥ 0. Proceeding as in the previous proof, we have the existence of a constant

M 5 > 0 such that V (0) ≤ M 5 (u(0) 2 + w 0 2 H 1 ). Now (2) gives p * w(t, •) 2 L 2 ≤ n≥1 λ n w n (t) 2 ≤ λ N0 N0 n=1 w n (t) 2 + N n=N0+1 λ n w n (t) 2 + 1 γ V (t). Moreover, w n (t) = e n (t) + ŵn (t) hence N0 n=1 w n (t) 2 ≤ 2 X(t) 2 ≤ 2 λm(P ) V (t) and N n=N0+1 λ n w n (t) 2 ≤ 2 N n=N0+1 λ n e n (t) 2 + 2λ N N n=N0+1 ŵn (t) 2 ≤ 2 max(1,λ N ) λm(P ) V (t). This shows the existence of a constant M 6 > 0 such that V (t) ≥ M 6 w(t, •) 2 L 2 .
Recalling that w(t, 1) = 0, Poincaré inequality yields the existence of a constant

M 7 > 0 such that V (t) ≥ M 7 w(t, •) 2 H 1 . Overall, we have shown the existence of a con- stant M 8 > 0, independent of the initial condi- tion, such that u(t) 2 + N n=1 ŵn (t) 2 + w(t, •) 2 H 1 ≤ M 8 e -2δt (u(0) 2 + w 0 2 H 1 )
. Using (4), we obtain the claimed estimate.

It remains to show that we can select N ≥ N 0 + 1, P 0 α > 1, and β, γ > 0 such that Θ 1 0 and Θ 2 ≤ 0. By the Schur complement, Θ 1 0 is equivalent to F P + P F + 2δP + αγG + 1 β P LL P 0. Applying Lemma 12 reported in Appendix to 1 F + δI, we have for any N ≥ N 0 + 1 the existence of P 0 such that F P + P F + 2δP = -I with P = O(1) as N → +∞. Moreover, we have (24) and L = √ 2 L with g and L that are independent of N . Hence, fixing α > 1 arbitrarily while setting β = √ N and γ = N -1 , we infer from (1) the existence of a sufficiently large integer N ≥ N 0 + 1, independent of the initial conditions, such that (40) holds. 2 Remark 7 Similarly to Remark 3, LMI conditions that are always feasible for N selected large enough (see end of the proof of Theorem 6) are obtained from the constraints (40) by arbitrarily fixing the decision variable α > 1.

Case of a Neumann boundary measurement

We now investigate the case of a Neumann boundary observation (modeling for example a heat flux measurement in the case of a heat equation):

z t (t, x) = (p(x)z x (t, x)) x + (q c -q(x))z(t, x) (41a) z(t, 0) = 0, z(t, 1) = u(t) (41b) z(0, x) = z 0 (x) (41c) y(t) = z x (t, 0) (41d) 
for t > 0 and x ∈ (0, 1) in the case p ∈ C 2 ([0, 1]).

Spectral reduction

Considering the change of variable

w(t, x) = z(t, x) -xu(t) (42) 
we obtain:

w t (t, x) = (p(x)w x (t, x)) x + (q c -q(x))w(t, x) (43a) + a(x)u(t) + b(x) u(t) w(t, 0) = 0, w(t, 1) = 0 (43b) w(0, x) = w 0 (x) (43c) ỹ(t) = w x (t, 0) (43d) 
with a, b ∈ L 2 (0, 1) defined by a(x) = p (x)+(q c -q(x))x and b(x) = -x, respectively, ỹ(t) = y(t) -u(t) and w 0 (x) = z 0 (x) -xu(0). We now proceed as in Subsection 3.1. Introducing the auxiliary command input v(t) = u(t), we obtain that (6) holds but, this time, with the domain of the operator A given by D(A) = {f ∈ H 2 (0, 1) : f (0) = f (1) = 0}. Considering classical solutions associated with any z 0 ∈ H 2 (0, 1) and any u(0) ∈ R such that z 0 (0) = 0 and z 0 (1) = u(0), which implies w(t, •) ∈ D(A) for all t ≥ 0, we obtain that 2 (7a-7b) hold while (7c) is replaced by ỹ(t) = i≥1 φ i (0)w i (t).

Control design

Let N 0 ≥ 1 and δ > 0 be given such that -λ n + q c < -δ < 0 for all n ≥ N 0 + 1. Let N ≥ N 0 + 1 be arbitrary. We adapt the approach of Subsection 4.2 to the case of a Neumann boundary measurement. Specifically, we replace the observer dynamics (31) by the following dynamics, defined for 1 ≤ n ≤ N by

ẇn (t) = (-λ n + q c ) ŵn (t) + a n u(t) + b n v(t) (44) -l n N i=1 φ i (0) ŵi (t) -ỹ(t) 2 
The coefficients of projection an and bn are updated accordingly with the newly defined versions of a, b ∈ L 2 (0, 1).

where l n ∈ R are the observer gains. Again, we select l n = 0 for N 0 + 1 ≤ n ≤ N while the initial condition of the observer is set as ŵn (0) = 0 for all 1 ≤ n ≤ N . With ζ(t) = i≥N +1 φ i (0)w i (t), we infer from (44) that ẇn (t) = (-λ n + q c ) ŵn (t) + a n u(t) + b n v(t)

+ l n N0 i=1 φ i (0)e i (t) + l n N i=N0+1 φ i (0) λ i ẽi (t) + l n ζ(t)
for 1 ≤ n ≤ N with ẽn (t) = λ n e n (t); see Remark 8 for the rationale motivating this scaling. The associated vector ẼN-N0 is defined by (34). Therefore, we replace the definition (33) of the matrices C 0 , C 1 by

C 0 = φ 1 (0) . . . φ N0 (0) , C 1 = φ N0+1 (0) λ N0+1 . . . φ N (0) λ N .
(45) Applying now the same approach as the one reported in Subsection 4.2 and considering the vector X defined by (39), the dynamics [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] hold with the matrices defined by [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF].

Remark 8 Due to φ n (0) = O( √ λ n ) when p ∈ C 2 ([0, 1]
) and ( 1), the newly introduced matrix C 1 , defined by ( 45), is such that C 1 = O(1) as N → +∞ . This property will allow the application of Lemma 12 reported in Appendix to the matrix F defined by [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF].

Remark 9

The pair (A 1 , B 1 ) is controllable and the pair (A 0 , C 0 ) is observable. Indeed, since λ n are two by two distincts, the Kalman condition yields that (A 1 , B 1 ) is controllable if and only if a n + (-λ n + q c )b n = 0 for all 1 ≤ n ≤ N 0 . Using integration by parts, one has a n + (-λ n + q c )b n = -p(1)φ n [START_REF] Auriol | Latelumping backstepping control of partial differential equations[END_REF]. Hence a n + (-λ n + q c )b n = 0 since, otherwise, φ n (1) = φ n (1) = 0, implying the contradiction φ n = 0. Moreover, because φ n (0) = 0, φ n (0) = 0 hence the pair (A 0 , C 0 ) is observable.

Stability analysis

We define, for any ∈ (0, 1/2], the constant M 2,φ ( )

= n≥2 φ n (0) 2 λ 3/2+ n , which is finite when p ∈ C 2 ([0, 1]) because φ n (0) = O( √ λ n ) as n → +∞ and (1) hold. Theorem 10 Let p ∈ C 2 ([0, 1]) with p > 0, q ∈ C 0 ([0, 1]
) with q ≥ 0, and q c ∈ R. Consider the reactiondiffusion PDE described by (41). Let N 0 ≥ 1 and δ > 0 be given such that -λ n + q c < -δ < 0 for all n ≥ N 0 + 1.

Let K ∈ R 1×(N0+1) and L ∈ R N0 be such that A 1 + B 1 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. For a given N ≥ N 0 + 1, assume that there exist P 0, ∈ (0, 1/2], α > 1, and β, γ > 0 such that

Θ 1 0, Θ 2 ≤ 0, Θ 3 ≥ 0 (46)
where Θ 1 is defined by (26) and

Θ 2 = 2γ -1 - 1 α λ N +1 + q c + δ + βM 2,φ ( )λ 1/2+ N +1 , Θ 3 = 2γ 1 - 1 α - βM 2,φ ( ) λ 1/2- N +1
.

Then there exists M > 0 such that, for any z 0 ∈ H 2 (0, 1) and any u(0) ∈ R such that z 0 (0) = 0 and z 0 (1) = u(0), the classical solution of the closed-loop system composed of the plant (41), the integral action (6a), the observer dynamics (44) with null initial condition ( ŵn (0) = 0), and the state feedback [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF] satisfies

w(t, •) ∈ C 0 (R + ; D(A)) ∩ C 1 (R + ; L 2 (0, 1)) and u(t) 2 + N n=1 ŵn (t) 2 + z(t, •) 2 H 1 ≤ M e -2δt (u(0) 2 + z 0 2 H 1
) for all t ≥ 0. Moreover, constraints (46) are always feasible for N selected large enough.

Proof. The well-posedness for classical solutions directly follows from [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]Chap. 6,Thm. 1.7]. Let P 0 and γ > 0 and consider the Lyapunov function candidate defined by (27). Its time derivative along the system trajectories (7b) and ( 21) is given by (28). Since ζ = n≥N +1 φ n (0)w n , we have for any ∈ (0, 1/2] that

ζ 2 ≤ M 2,φ ( ) n≥N +1 λ 3/2+ n w 2 n . Hence, for any β > 0, βM 2,φ ( ) n≥N +1 λ 3/2+ n w 2 n -βζ 2 ≥ 0.
Combining this latter estimate with (28) and using Young's inequality as in (29) along with [START_REF] David | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF](24), we obtain that

V + 2δV ≤ X ζ Θ 1 X ζ + n≥N +1 λ n Γ n w 2 n where Γ n = 2γ -1 -1 α λ n + q c + δ +βM 2,φ ( )λ 1/2+ n for n ≥ N + 1. Since ∈ (0, 1/2], we have λ 1/2+ n = λ n /λ 1/2- n ≤ λ n /λ 1/2- N +1 for all n ≥ N + 1. Hence we infer that Γ n ≤ -Θ 3 λ n + 2γ{q c + δ} ≤ -Θ 3 λ N +1 + 2γ{q c + δ} = Θ 2
for all n ≥ N + 1, where we have used that Θ 3 ≥ 0. Hence the assumptions imply V +2δV ≤ 0, showing that V (t) ≤ e -2δt V (0) for all t ≥ 0. Proceeding as in the previous proof, we have the existence of a constant

M 9 > 0 such that V (0) ≤ M 9 (u(0) 2 + w 0 2 H 1 ). Now (2) gives p * w(t) 2 L 2 ≤ n≥1 λ n w n (t) 2 ≤ λ N0 N0 n=1 w n (t) 2 + N n=N0+1 λ n w n (t) 2 + 1 γ V (t). More- over, w n (t) = e n (t) + ŵn (t) hence N0 n=1 w n (t) 2 ≤ 2 X(t) 2 ≤ 2 λm(P ) V (t) and N n=N0+1 λ n w n (t) 2 ≤ 2 λ N 0 +1 N n=N0+1 λ 2 n e n (t) 2 + 2λ N N n=N0+1 ŵn (t) 2 ≤ 2 max(1/λ N 0 +1 ,λ N ) λm(P )
V (t). This shows the existence of a constant M 10 > 0 such that V (t) ≥ M 10 w(t) 2 L 2 . Recalling that w(t, 1) = 0, Poincaré inequality yields the existence of a constant M 11 > 0 such that V (t) ≥ M 11 w(t) 2 H 1 . Overall, we have shown the existence of a constant M 12 > 0, independent of the initial condition, such that u

(t) 2 + N n=1 ŵn (t) 2 + w(t) 2 H 1 ≤ M 12 e -2δt (u(0) 2 + w(0) 2 H 1 )
. Using (42), we obtain the claimed estimate.

It remains to show that we can select N ≥ N 0 +1, P 0, ∈ (0, 1/2], α > 1, and β, γ > 0 such that Θ 1 0, Θ 2 ≤ 0, and Θ 3 ≥ 0. By the Schur complement, Θ 1 0 is equivalent to F P +P F +2δP +αγG+ 1 β P LL P 0. Applying Lemma 12 reported in Appendix to3 F + δI, we have for any N ≥ N 0 + 1 the existence of P 0 such that F P + P F + 2δP = -I with P = O(1) as N → +∞. Moreover, we have (24) and L = √ 2 L with g and L that are independent of N . We set = 1/8 and we arbitrarily fix α > 1. Then setting β = N 1/8 and γ = N -3/16 , we infer from (1) the existence of a sufficiently large N ≥ N 0 + 1, independent of the initial conditions, such that (46) holds. 2

Remark 11 Similarly to Remarks 3 and 7, LMI conditions that are always feasible for N selected large enough (see end of the proof of Theorem 10) are obtained from the constraints (46) by arbitrarily fixing the decision variable α > 1 and by setting = 1/8.

Numerical illustration

We first consider the Dirichlet boundary measurement setting described by (30). We set p = 1, q = 0, and q c = 3, yielding an unstable open-loop system. For the decay rate δ = 0.5, we obtain N 0 = 1, the feedback gain K = -5.0058 -2.7748 , and the observer gain L = 1.4373. Taking advantage of the LMI formulation of Remark 7, the conditions of Theorem 6 are found feasible for N = 3 using Matlab LMI toolbox. The behavior of the closed-loop system associated with the initial condition z 0 (x) = 1 + x 2 , obtained based on the 50 dominant modes of the plant, is depicted in Fig. 1, confirming the theoretical predictions of Theorem 6.

We now consider the Neumann boundary measurement setting described by (41). We set p = 1, q = 0, and q c = 10, yielding an unstable open-loop system. For the decay rate δ = 0.5, we obtain N 0 = 1, the feedback gain K = -4.5649 -0.9653 , and the observer gain L = 0.3670. Taking advantage of the LMI formulation of Remark 11, the conditions of Theorem 10 are found feasible for N = 2 using Matlab LMI toolbox. The behavior of the closed-loop system associated with the initial condition z 0 (x) = x(x -2/3) is depicted in Fig. 2, confirming the theoretical predictions of Theorem 10. 

A Useful lemma

The following Lemma is a direct generalization of the result presented in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF]. We assume that there exist constants C 0 , κ 0 > 0 such that e M N 33 t ≤ C 0 e -κ0t and e M N 44 t ≤ C 0 e -κ0t for all t ≥ 0 and all N ≥ 1. Moreover, we assume that there exists a constant C 1 > 0 such that M N 14 ≤ C 1 , M N 24 ≤ C 1 , and M N 31 ≤ C 1 for all N ≥ 1. Then there exists a constant C 2 > 0 such that, for any N ≥ 1, there exists a symmetric matrix P N ∈ R n+m+2N with P N 0 such that (F N ) P N + P N F N = -I and P N ≤ C 2 .
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 127 Fig. 1. Time evolution in closed-loop with Dirichlet boundary measurement for the reaction-diffusion PDE (30)

Lemma 12

 12 Let n, m, N ≥ 1, M 11 ∈ R n×n and M 22 ∈ R m×m Hurwitz, M 12 ∈ R n×m , M N 14 ∈ R n×N , M N 24 ∈ R m×N , M N 31 ∈ R N ×n , M N 33 , M N 44 ∈ R N ×N , and
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The adopted definition (33) for the matrix C1 is key here to apply Lemma 12 as it ensures that C1 = O(1) as N → +∞.

The adopted definition (45) for the matrix C1 is key here to apply Lemma 12 as it ensures that C1 = O(1) as N → +∞.