Reinforcement Learning Policies With Local LQR Guarantees For Nonlinear Discrete-Time Systems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Reinforcement Learning Policies With Local LQR Guarantees For Nonlinear Discrete-Time Systems

Résumé

Optimal control of nonlinear systems is a difficult problem which has been addressed by both the Control Theory (CT) and Reinforcement Learning (RL) communities. Frequently, the former relies on the linearization of the system thus obtaining only local guarantees. The latter relies on data to build model-free controllers, focused solely on performances. In this paper we propose a methodology to combine the advantages of both approaches, casting the formulation of an optimal local Linear Quadratic Regulator (LQR) into a Deep RL problem. Our solution builds on the linear framework to derive a learnt nonlinear controller showing local stability properties and global performances.
Fichier principal
Vignette du fichier
CDC_2021_final_version.pdf (453.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03353584 , version 1 (24-09-2021)

Identifiants

Citer

Samuele Zoboli, Vincent Andrieu, Daniele Astolfi, Giacomo Casadei, Jilles S Dibangoye, et al.. Reinforcement Learning Policies With Local LQR Guarantees For Nonlinear Discrete-Time Systems. CDC, Dec 2021, Texas, United States. ⟨10.1109/CDC45484.2021.9683721⟩. ⟨hal-03353584⟩
375 Consultations
736 Téléchargements

Altmetric

Partager

More