
HAL Id: hal-03353584
https://hal.science/hal-03353584

Submitted on 24 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reinforcement Learning Policies With Local LQR
Guarantees For Nonlinear Discrete-Time Systems

Samuele Zoboli, Vincent Andrieu, Daniele Astolfi, Giacomo Casadei, Jilles S
Dibangoye, Madiha Nadri

To cite this version:
Samuele Zoboli, Vincent Andrieu, Daniele Astolfi, Giacomo Casadei, Jilles S Dibangoye, et al.. Re-
inforcement Learning Policies With Local LQR Guarantees For Nonlinear Discrete-Time Systems.
CDC, Dec 2021, Texas, United States. �10.1109/CDC45484.2021.9683721�. �hal-03353584�

https://hal.science/hal-03353584
https://hal.archives-ouvertes.fr


Reinforcement Learning Policies With Local LQR
Guarantees For Nonlinear Discrete-Time Systems

Samuele Zobolia,b, Vincent Andrieua, Daniele Astolfia, Giacomo Casadeic, Jilles S. Dibangoyeb, Madiha Nadria

Abstract—Optimal control of nonlinear systems is a diffi-
cult problem which has been addressed by both the Control
Theory (CT) and Reinforcement Learning (RL) communities.
Frequently, the former relies on the linearization of the system
thus obtaining only local guarantees. The latter relies on data to
build model-free controllers, focused solely on performances. In
this paper we propose a methodology to combine the advantages
of both approaches, casting the formulation of an optimal local
Linear Quadratic Regulator (LQR) into a Deep RL problem.
Our solution builds on the linear framework to derive a learnt
nonlinear controller showing local stability properties and global
performances.

I. INTRODUCTION

In recent years Deep Reinforcement Learning (RL) re-
ceived considerable attention due to its ability to au-
tonomously learn how to solve complex high-dimensional
control tasks, see, e.g., [21], [15], [20]. However, most of
state-of-the-art algorithms focus on control performances and
very few of them study the stability properties in a Lyapunov
sense [9]. This led to a limited use of these methods in real-
world applications. Safety requirements or strong uncertain-
ties that cannot be learnt during the training phase eventually
reduced their reliability outside of lab environment, due to
the unpredictable nature of the learnt controllers.

On the flip side, Control Theory (CT) has a long history of
solutions guaranteeing both performances and stability in the
linear framework (see, e.g., [10]). Unfortunately, it is hard
to extend the theory to unstructured nonlinear systems. A
common approach is to design a controller for the linearized
model around an equilibrium point. However, this technique
restricts the stability and performance guarantees to a neigh-
bourhood of the equilibrium point, denoted as domain of
attraction.

The last decades saw increasing interest in linking the
fields of CT and RL (see, e.g. [16], [19], [13]), and the
inclusion of Lyapunov theory in learning algorithms received
increasing attention. A notable model-based solution was pro-
posed in [2], following the work in [1]. However the authors
assume a suitable initial safe policy and Lyapunov function
are given. In [6], the authors claim near-constraint satisfaction
via policy gradient methods by projecting either the policy
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parameters or the action onto a feasible set described by a
Lyapunov constraint. Last, [8] uses a Lyapunov function as
critic for guaranteeing stability in the mean cost of the learnt
policy.

In this paper we propose a methodology to integrate basic
model knowledge in standard model-free RL algorithms. By
enforcing a predefined structure to the control policy we
provide theoretical guarantees concerning the local stability
of the system via Lyapunov indirect theorem. We focus on the
optimal control of nonlinear systems under Linear Quadratic
cost functions. The approach enhances the capabilities of the
linear controller by learning to operate outside its domain of
attraction while maintaining its local properties.

The paper is organized as follows: Section II introduces
some preliminary notions and states the problem we aim at
solving. A solution is proposed in Section III and the learning
behavior is discussed in Section IV. An illustration of an
inverted pendulum is given in Section V. Conclusions are
drawn in Section VI.

II. PRELIMINARIES

A. Dynamic programming concepts

Deterministic dynamic programming deals with discrete-
time dynamical systems generating a sequence of states
(xt)t∈N, x ∈ Rn under the influence of control inputs
(ut)t∈N, u ∈ Rm. The objective is to find a sequence of
control inputs, often denoted as control policy u = (ut)t∈N,
which leads to the minimum of a γ-discounted function (also
known as state-value function under u), Ju : Rn → R,
defined as Ju(x) =

∑∞
t=0 γ

tr(xt, ut), where γ ∈ (0, 1). See,
e.g., [4]. Hence, the state-value function under an optimal
policy is the optimal state-value function J?, i.e. the one
that provides the minimum cost for each state. In the RL
framework, the action-value function, Qu : Rn × Rm →
R, Qu(xt, ut) = r(xt, ut)+γJu(xt+1), turns out to be more
practical when dealing with unknown dynamics.

B. Infinite horizon LQR

Consider a deterministic discrete-time linear system

x(t+ 1) = Ax(t) +Bu(t), t ∈ N,

with state x ∈ Rn and control input u ∈ Rm. For the sake
of convenience, we denote xt := x(t) the state x at discrete-
time t. The same notation will adopted for all variables and
inputs, obtaining the compact notation

xt+1 = Axt +But. (1)



We suppose that the pair (A,B) is stabilizable. The infinite-
horizon LQR problem asks for a stabilizing controller optimal
with respect to a quadratic cost function. By letting γ ∈ (0, 1]
be a discount factor, the discounted problem considers the
following cost function

Jγ(x, u) =

∞∑
t=0

γt(x>t Qγxt + u>t Rγut), (2)

where Qγ = Qγ
> ≥ 0 and Rγ = Rγ

> > 0. In [3, Chapter
4.3] it is shown that, for a given discount factor γ, the optimal
controller u∗ for (1) with cost (2) is given as

u?t = K?
γxt, K?

γ = −γ(Rγ + γB>PγB)−1B>PγA, (3)

where K?
γ is the optimal discounted gain and Pγ is the unique

solution of the discounted Discrete-time Algebraic Riccati
Equation (DARE)

Pγ = Qγ + γA>(Pγ − γPγB(Rγ + γB>PγB)−1B>Pγ)A.
(4)

Equation (4) can be rewritten and solved as a standard
DARE for the new matrices Ã =

√
γA, B̃ =

√
γB. From

[5, Section 3], the value functions for the discounted LQR
problem under the optimal controller are

J?γ(xt) = x>t Pγxt, Q?
γ(xt, ut) = z>t Hγzt, (5)

with zt := col(xt, ut) ∈ Rn+m and Hγ given by

Hγ =

(
Qγ + γA>PγA γA>PγB
γB>PγA Rγ + γB>PγB

)
.

In the discounted framework, closed-loop stability is depen-
dent on the choice of the discount factor γ. In [17, Section
IV, Corollary 3], the authors defined a conservative lower
bound γ∗ ∈ (0, 1], depending on Qγ and Rγ , such that
for any γ ∈ (γ∗, 1] the origin of the closed-loop (1), (3)
is exponentially stable. Note that for γ = 1, we recover the
so-called “undiscounted LQR” problem in which the cost
function reads

J(x, u) := J1(x, u) =

∞∑
t=0

x>t Qxt + u>t Rut, (6)

with optimal solution u? given by

u?t = K?xt, K? = −(R+B>PB)−1B>PA, (7)

with P the symmetric positive definite matrix solution of the
DARE

P = A>PA−A>PB(R+B>PB)−1B>PA+Q. (8)

For the undiscounted problem, stability of the closed-loop
system is always guaranteed.

C. Actor-Critic algorithms

Many state-of-the-art RL algorithms use Actor-Critic ar-
chitectures [11] (see Figure 1). A key feature of the RL
framework is that the environment (plant) returns a reward
r : Rn × Rm → R, which embeds information about the
quality of the chosen action. In Actor-Critic algorithms, this
signal is used to update the parameter vector φ ∈ Rq of the

Fig. 1: Actor-Critic structure

critic value function estimator Q̂φ, according to a criterion
Jφ : Rn × Rm × Rq → R. The parameter vector θ ∈ Rp
of the actor policy πθ are subsequently updated according
to a different cost function Jθ : Rn × Rm × Rp → R
depending on the new critic estimation. We can then define
the class of Actor-Critic algorithms A as the set of operators
A := {a : Rp × Rq → Rp × Rq} with input (θ0, φ0)
and output (θκ̄, φκ̄) such that, for any κ ∈ [0, κ̄] ⊆ N,
the parameters φ and θ are updated via Stochastic Gradient
Descent [23, Chapter 9.3]. The classic formulation imposes
θκ+1 = θκ − λθ∇θJθ and φκ+1 = φκ − λφ∇φJφ, where
λφ, λθ are the positive learning rates, subscript κ identifies
a parameter vector at iteration κ, ∇θ is the gradient with
respect to the policy parameters, ∇φ is the gradient with
respect to the critic value function parameters and κ̄ ∈ N
is the iteration index such that ∇θJθ ≤ ε and ∇φJφ ≤ ε
for some small ε > 0 and for all κ ≥ κ̄. One of the most
common objective for updating the critic parameters asks for
the minimization of

Jφ(xt, ut)=

∞∑
t=0

(
r(xt, ut)+Q̂φ(xt+1, ut+1)−Q̂φ(xt, ut)

)2
.

(9)
Most update procedures for algorithms learning a deter-
ministic policy exploit deterministic policy gradient theorem
[22]. Given a parametrized deterministic policy πθ and a set
S ⊂ Rn, deterministic policy gradient updates take the form

∇θJθ(xt, ut) =

∫
S

dπ(s)∇θπθ(s)∇aQ̂φ(s, a)ds, (10)

where ∇a the gradient with respect to the actions a = πθ(s)
and dπ(s) :=

∫
S
∑∞
t=1 γ

t−1 Pr(x0) Pr(x0 → s, t,πθ)ds is
the discounted state distribution, being Pr(x0 → s, t,πθ) the
probability of reaching the state s ∈ S after transitioning for
t time steps with initial condition x0, following the policy
πθ.

Remark. In the paper we will focus on algorithms learning
the parameter vector θ of a deterministic parametrized policy
πθ : Rp → Rm via (10). However the proposed results can
be directly extended to include methods exploiting stochastic
policy gradient updates since the proposed solution is inde-
pendent from the choice of the RL algorithm.



D. Problem statement

Consider a deterministic discrete-time nonlinear system

xt+1 = f(xt, ut), (11)

with state solution (xt)t∈N taking values in Rn, control input
(ut)t∈N taking values in R (m = 1), and f : Rn × R→ Rn
being a continuously differentiable function in a neighbour-
hood of the origin. Without loss of generality we suppose that
f(0, 0) = 0 and we denote A := ∂f

∂x (0, 0) and B := ∂f
∂u (0, 0).

Problem 1. Let J be an undiscounted cost function of the
form (6) and assume a linearized model of the form (1) for
(11) is known, with (A,B) stabilizable. The goal is to learn
an optimal parametrized control policy πθ : Rn×Rp → U ⊆
R with parameters θ ∈ Rp such that the origin of the closed-
loop system (11) with ut = πθ(xt) is locally asymptotically
stable for all θ ∈ Rp, namely

∂πθ

∂x
(0) = K?, ∀ θ ∈ Rp, (12)

where K? ∈ Rn is the LQR optimal gain given in (7).

Remark. Solving the optimal problem implies requirement
(12) since K? is the unique optimal solution to the local
problem. Moreover (12) ensures local stability around the
origin by Lyapunov indirect theorem, being K? stabilizing
for the linearized system. /

III. ALGORITHM DESIGN

To solve the problem we rely on deep reinforcement learn-
ing algorithms. Hence, we design a suitable cost setting the
learning objective. Afterwards, we enforce a specific structure
on the learnt policy to guarantee that the approximation
constraint (12) is satisfied.

A. Reward shaping

Rewards play a fundamental role in RL. Most RL algo-
rithms require the value function Jπ to have a finite value in
order to converge. However, when defined as an infinite sum
over time, boundedness of Jπ may not be always ensured.
Hence, starting from J in (6) we look for a reward function
r : Rn × R→ R and a discount factor γ ∈ (0, 1) defining a
suitable γ-discounted function

Jγ,RL(x, u) =

∞∑
t=0

γtr(xt, ut) (13)

which sets the learning objective for the agent.
In the following Lemma, we show that given any undis-

counted problem of the form (6)-(7), we can always redefine
an associated discounted problem of the form (2)-(3) so that
the optimal gains (7) and (3) coincide.

Lemma 1. Consider system (1) and an associated undis-
counted optimal control problem of the form (6). Then, for
any γ ∈ (0, 1], the optimal gain K? defined in (7) is the
optimal solution of the discounted problem (2) with Qγ , Rγ
defined as

Qγ = γQ+ (1− γ)P, Rγ = γR. (14)

Moreover, the state-value function (5) of the discounted
problem is finite.

Proof. See Appendix A.

Based on Lemma 1, the undiscounted cost J in (6) can be
replaced by its discounted version (2) by using the weights
(14). Thus, we obtain now a suitable form of the cost Jγ,RL

for RL algorithms without affecting the local optimal solution
to the problem. Consequently, the reward r from (13) can be
set as

r(xt, ut) = x>t Qγxt + u>t Rγut, (15)

with Qγ and Rγ defined as in (14). The value of γ is a
free parameter to be chosen as the most suitable one for the
algorithm convergence.

B. Control policy design

Our goal is to ensure local stability of the closed-loop
system (11) with ut = πθ(xt), i.e. to satisfy the local ap-
proximation constraint (12) independently from the parameter
vector θ. To this end, we enforce a specific structure in
our control policy. Given any k ∈ N, we define Hk as the
set of continuously differentiable functions h satisfying the
following

Hk :=
{
h ∈ Ck+1 : Rn → R : lim

s→0

h(sx)
sj |x|j = 0, j ∈ [0, k],

lim
s→0

h(sx)
sk+1|x|k+1 6= 0, lim

|s|→∞
h(sx) = 1, ∀x ∈ Rn

}
.

The proposed control law is then designed as

πθ(xt) = πloc(xt) + πθlearn(xt)

πloc(xt) = K?xt

πθlearn(xt) = h1(xt)
(
µθ(xt)− πloc(xt)

)
, (16)

where h1 ∈ H1 and µθ : Rn → R is a scalar function to be
learnt by the RL agent which is parametrized by the set of
parameters θ ∈ Rp and satisfies the following assumption:

Assumption 1. The function µθ is locally Lipschitz.

Remark. Since we consider deterministic policy gradient
methods (e.g. DDPG [14] and TD3 [7]), the function µθ de-
notes the parametrized approximator to be trained. Note that
most NNs are locally Lipschitz since they are compositions
of locally Lipschitz functions. /

Remark. The size of the guaranteed domain of attraction for
policy (16) can be controlled by shaping the function h1.
The effect of the learnt component in a neighbourhood of
the origin is scaled by such a function. Hence, it is possible
to strongly reduce the contribution of πθlearn(xt) in regions
where we trust the LQR controller πloc to stabilize the
system. /

In order to justify our choice for the control policy,
in the following Proposition we prove that, by enforcing
structure (16) in the control policy and assuming µθ satisfies
Assumption 1, we can learn an arbitrary C2 policy satisfying
the problem constraint (12).



Proposition 1. The following statements hold.
1) Given any K? ∈ Rn and any function πθ : Rn →

R,πθ ∈ C2 satisfying the local approximation con-
straint (12), for any function h1 ∈ H1 there always
exists a locally Lipschitz function µθ : Rn → R
satisfying the equality (16) for all x ∈ Rn.

2) Let µθ satisfy Assumption 1, h1 ∈ H1 and πθ : Rn →
R as in (16). Then (12) is satisfied.

Proof. See Appendix B.

Remark. Due to (16) being always enforced, the local guar-
anteed properties of classical LQR are ensured even for the
untrained policy. /

C. Main Result

In this section, we established how to design the objective
for the RL agent and how to structure the policy to be learnt.
Now we present our solution to Problem 1. It can be solved
via Lemma 1 and Proposition 1 by letting Assumption 1 hold.

Theorem 1. Let be given any algorithm a ∈ A. Consider the
cost (13) with the reward function r(xt, ut) given by (15).
Then by selecting the the control policy πθ as in (16) and
determining its parameter vector θ via a, Problem 1 is solved.

Proof. The reward function defined in (15) allows us to use
the discounted cost (13) without affecting the local solution
K? thanks to Lemma 1, and without restricting our choice
of γ ∈ (0, 1]. Then (16) ensures constraint (12) is always
satisfied via Proposition 1 and Assumption 1. Finally a ∈ A
allows the learning of the locally optimal policy parameters.

The proposed solution is independent from the choice of
the deep reinforcement learning algorithm and it can be
applied to a wide variety of existing model-free solutions.
However we focused on Actor-Critic algorithms, since many
of state-of-the art methods exploit the Actor-Critic architec-
ture. Appendix C presents the procedure for learning the
controller via an Actor-Critic algorithm.

IV. LEARNING THE POLICY

In the following section we study the behavior of the pro-
posed solution during the training process. We also propose
to structure the value function estimator in order to ensure
the correctness of the estimation in the origin.

A. Training behavior

For exploring the training behavior it is sufficient to
combine the update law (10) and the policy (16). Plugging
the equality (16) in the deterministic policy gradient equation
(10) from Section II highlights that

∇θπθ(xt) = h1(xt)∇θµθ(xt), (17)

being µθ(xt) the only term depending on the parameters.
Equation (17) shows that the closer the system gets to the
equilibrium point the smaller the updates become, since
h1 ∈ H1. Note that one can substitute the policy (16) in
the nonlinear model (11) and obtain a new system under

the learnt input µθ(xt). Hence, the exploration noise which
is typically added to deterministic policies can be applied
directly on µθ(xt). By doing so, during training πθ(xt) is a
random variable with

E
[
πθ(xt)

]
= (1− h1(xt))K

?xt + h1(xt)E
[
µθ(xt)

]
,

Var
[
πθ(xt)

]
= h1(xt)

2Var
[
µθ(xt)

]
,

being µθ(xt) the only random component. Since h1 ∈ H1,
the variance decreases the closer the system is to the equilib-
rium. Finally, the study suggests that each training episode
should be concluded once the equilibrium of the state-space
(i.e. an arbitrarily small neighbourhood of it) is reached.
This is in accordance with the fact that the agent is actually
learning only how to steer the system to the equilibrium point
and not how to keep it there, being the solution to the latter
problem already provided by the local controller πloc.

B. Improving learning by reshaping the value function esti-
mation

For designing critics, model-free RL algorithms usually
rely on value functions in order to drive the policy towards
the optimal solution. We propose a value function estimator
built on the knowledge of the policy (16) and of the linear
framework. Suppose we are interested in the action-value
function under the control policy (16). Let us denote the its
estimator by Q̂φ

π(xt, ut). Due to the structure of πθ, equation
(5) provides a suitable local approximation. Consequently, we
impose the following local constraint ∀zt ∈ Z, Z = {zt ∈
Rn+1 : zt = (0, ut), ∀ut ∈ U}

DiQ̂φ
π(zt) = DiQ?

γ(zt), |i| ≤ 2 , (18)

with Di denoting the derivative of order i with the multi-
index notation for multi-variable functions (see, Appendix
D). Similarly to the policy equation (16), the estimated
action-value function Q̂φ

π(xt, ut) for the nonlinear system
(11) under (16) is modeled as

Q̂φ
π(xt, ut) = Qloc(xt, ut) + Q̂φ

learn(xt, ut)

Qloc(xt, ut) = Q?
γ(xt, ut) (19)

Q̂φ
learn(xt, ut) = h2(xt)(Ω

φ(xt, ut)−Qloc(xt, ut)),

where h2 ∈ H2 , Ωφ : Rn × R → R is a parametrized
function whose parameter vector φ ∈ Rq is learnt by the RL
agent and satisfying the following assumption:

Assumption 2. The function Ωφ is locally Lipschitz.

As for the control policy, we justify the design choice
(19) via the following Proposition, showing that (19) and
Assumption 2 allow learning a generic C3 function satisfying
the local constraint (18).

Proposition 2. The following statements hold.
1) Given any Qloc ∈: Rn+1 → R,Qloc ∈ C3 and any

function Q̂φ
π : Rn+1 → R, Q̂φ

π ∈ C3 satisfying the
local approximation constraint (18) for any h2 ∈ H2,
there always exists a locally Lipschitz function Ωφ :
Rn+1 → R satisfying the equality (19) for all x ∈
Rn,∀u ∈ U ⊆ R.



2) Let Ωφ satisfy Assumption 2, h2 ∈ H2 and Q̂φ
π :

Rn+1 → R as in (19). Then (18) is satisfied.

Proof. The proof follows the same steps performed in the
proof of Proposition 1. Note that (18) holds for all points
in Z instead of the single point scenario of Proposition 1.
Moreover, we match the second order approximation via h2 ∈
H2.

V. SIMULATION RESULTS

We run simulations in a frictionless inverted pendulum
environment. The system nonlinear model is

αt+1 = αt + ωt ∆t

ωt+1 = ωt −
3g

2`
sin(αt + π)∆t+

3

2m`2
[sat(ut) + dt]∆t,

where α ∈ [−π, π) is the angle between the position of the
pendulum and the top vertical one, ω ∈ R is its rate of
change, sat(·) is a saturation function limiting the control
input torque ut in [−2, 2], dt is wind disturbance affecting
the system, ∆t = 0.05 is the discretization step, g = 10 is the
gravitational acceleration, ` = 1 is the length of the pendulum
and m = 1 is its mass. We denote xt := (αt, ωt)

>. The
goal is to stabilize the pendulum at the unstable equilibrium
(x?, u?) = (0, 0), corresponding to the top vertical position,
starting from any random initial condition. The parameters
of the discounted LQR problem for the linearized system are

Qγ =

(
1 0
0 0.1

)
, Rγ = 0.001, γ = 0.99,

K? =
(
−19.3006 −5.9918

)
, P =

(
8.088 0.4782
0.4782 0.1624

)
.

We train the proposed policy using a state-of-the-art deep
reinforcement learning algorithm, namely TD3 [7]. The nom-
inal version of the learning algorithm comes from Stable
Baselines 3 library [18] and it is adapted to include our
policy (16) and value function (19), following the steps in
Appendix C. Since most of RL algorithms are designed to
maximize the expected reward, we simply invert the sign of
r(xt, ut) and Qloc(xt, ut). Each training episode is stopped
as soon as the state enters a small circular area of radius
10−5 centered in the origin, or their time limit is reached.
We use the functions h1(x) = tanh(tanh−1(0.99)x

>Px
c ) and

h2(x) = tanh(tanh−1(0.99)(x
>Px
c )

3
2 ), which saturate out-

side the Lyapunov level set {V (x) = c}, with c ∈ R>0. The
value of c is estimated by sampling random initial conditions
and testing the convergence to the equilibrium point, see
Figure 2a, and we select c = 0.47.

We evaluate the performances and stability of our solution
by comparing the results with the simple LQR and the
nominal version of the algorithm. Standard TD3 is trained
with the same reward function (15). In order to allow good
training, episodes are not stopped as soon as a neighbourhood
of the origin is reached, but at end of their time length limit.
We use the same hyperparameters for both the standard and
the locally asymptotically stable version of the algorithm: 3-
layers fully-connected NNs with ReLU activation functions,

(a) Estimated level set for saturated LQR

(b) Episode return during training

64 units for the first hidden layer and 32 units as the second
one, both for the critic and for the actor, and a learning rate
of λ = 0.00371.

We first analyze the learning performances. For each
training episode dt = 0, ∀t ∈ R and the initial condition is
randomly sampled. From Figure 2b we can infer that classical
LQR succeeds only if the initial state lies inside it’s domain
of attraction. Its performances strongly fluctuates since the
magnitude of the return of an episode (i.e. the final cost of
the episode) is very big (bad) if the initial condition lies
outside of its domain of attraction or quite small (good) if the
system starts close to the equilibrium. On the other hand, our
solution behaves comparably to the nominal TD3 algorithm.

We also study the stability of the closed loop system. Dur-
ing training, we periodically evaluate the policy by running
an experiment in a different environment corrupted by uncer-
tainties. We simulate measurement noise ut = πθ(xt + wt),
wt ∼ N (0, 0.03) and mass mismatch mreal = 1.2mtrain.
Moreover, the input is perturbed by external sinusoidal wind
dt = 0.36 sin( π50 t). A “stability score” is extracted as the
maximum of the norm of the error vector at steady state. We
run the stability evaluation episodes twice, at first with initial
condition x0 = (0.945π, 0)>, close to the position “down”
of the pendulum, then with x0 = (0, 0)>, corresponding to
the desired equilibrium point. Figure 3 clearly shows that
the RL approach focuses solely on performances. Moreover,
we note that as h1(x) → 1, the learnt component becomes
predominant, possibly affecting stability.



Fig. 3: Stability of policies during training (smoothed)

VI. CONCLUSIONS

We presented a solution addressing the design of LQR
controller for nonlinear system. By uniting basic knowl-
edge on the system behavior around an equilibrium point
and deep reinforcement learning techniques we provided
a controller ensuring classical local LQR guarantees and
experimental global attractiveness. The proposed method is
directly implementable starting from standard RL algorithms.
Even if the procedure is proposed for single input systems,
it can be straightforwardly expanded to higher dimensions.
Simulations proved our solution improves both the classical
control via linearization and standard RL algorithms.
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APPENDIX

A. Proof of Lemma 1

If γ = 1 the proof is trivial, hence we will focus on
γ ∈ (0, 1). First, note that since Q, P and R are sym-
metric positive definite matrices, so are Qγ and Rγ for any
γ ∈ (0, 1). By multiplying both sides of the DARE (8) by γ
and by using (14), we get

P = Qγ + γA>PA− γ2A>PB(Rγ + γB>PB)−1B>PA.

Under standard LQR problem assumptions on stabilizability
and observability of (1), the solution to the Riccati equation
is unique. Hence, from the definition of the discounted DARE
(4) we can conclude that P = Pγ . By inserting the latter and
(14) in the optimal gain (7) we obtain

K? = −γ(Rγ + γB>PγB)−1B>PγA = K?
γ ,

which shows that (7) is also solution to the discounted
problem defined by (2) when considering weights in the form
of (14).
The state-value function for a given policy is defined as the
cost-to-go starting from an initial state and following the
policy. Given a quadratic cost function as in (6), it holds
that

Ju(xt+1)− Ju(xt) = −x>t Qxt − u>t Rut. (20)

By plugging the matrices (14) in (20) and considering the
value function (5) with (8) for the undiscounted problem
under the optimal input (7), yields

J?(xt+1) = γ−1J?(xt)− γ−1(x>t Qγxt + u?t
>Rγu

?
t ). (21)

Then, by solving (21) we have

γtJ?(xt) = J?(x0)−
t−1∑
j=0

γj(x>j Qγxj + u?j
>Rγu

?
j ), (22)

where J?(x0) ∈ R denotes the initial condition. Since γ ∈
(0, 1) by letting t→∞ equation (22) simplifies in

∞∑
j=0

γj(x>j Qγxj + u?j
>Rγu

?
j ) = J?(x0). (23)

Being J?(x0) finite for the linear system (1) under the opti-
mal controller (7), the state-value function for the discounted
problem under the undiscounted solution (7) is also finite and
this concludes the proof.

B. Proof of Proposition 1

Let us address point 1. By keeping in mind the multi-index
properties provided in Appendix D, we consider a multi-
index i ∈ Nn. Constraint (12) implies

Diπθ(0) = Diπloc(0), |i| ≤ 1. (24)

Select x0 = 0. Since πloc ∈ C2, if πθ ∈ C2 by Lemma 2 in
Appendix D, in a neighbourhood of the equilibrium we obtain
πθ(xt) = πloc(xt) + o(x3

t ). It is possible to find a suitable
definition of πθlearn satisfying equation (16) by recalling that
h1 ∈ H1. This shows the first item of the proposition. We

prove now the second item. If (16) is satisfied ∀xt ∈ Rn,
constraint (12) is verified if and only if

lim
s→0

h1(sxt)π
θ
learn(sxt)

s|xt|
= 0, ∀xt ∈ Rn, (25)

where s ∈ R. If πθlearn is a locally Lipschitz function, then
lims→0

∣∣πθlearn(sxt)
∣∣ ≤ ωπ for all xt ∈ Rn, being ωπ ∈ R≥0.

This implies that (25) holds if h1 ∈ H1 and this concludes
the proof.

C. Locally Asymptotically Stable Actor-Critic

Algorithm 1 presents the procedure to implement the
proposed solution with an Actor-Critic algorithm. It takes as
input the undiscounted problem formulation, the linearized
matrices, an Actor-Critic algorithm and a discount factor.
Successively, it computes the linear optimal solution and
the associated discounted problem and sets the saturation
functions enforcing the local stability. Finally, it sets up the
structured policy and value function(s) and runs the Actor-
Critic algorithm for learning the parameters. The output is
a learnt optimal locally asymptotically stable deterministic
policy.

Algorithm 1: LAS-Actor-Critic

Input: (A,B), Q, R, γ, a ∈ A;
Compute P , K?, Hγ , Qγ , Rγ ;
Pick h1 ∈ H1, h2 ∈ H2;
Set r as in (15);
Set πθ as in (16) with parameters θ0;
Set Q̂φ

π as in (19) with parameters φ0;
Run a(θ0, φ0);
Result: LAS control policy πθ

D. Matching approximations

In this section we will identify by xi the ith component of
vector x ∈ Rn, instead of identifying a time index. Firstly, let
us recall some multi-index definitions. For a general multi-
index α ∈ Nn we denote

|α| = α1 + · · ·+ αn, α! = α1! . . . αn!, xα = xα1
1 . . . xαn

n ,

for any x ∈ Rn. Then, given a function Φ : Rn → R whose
l-th order partial derivatives are continuous, it is possible to
define its derivative of order l as

DαΦ =
∂|α|Φ

∂xα1
1 . . . ∂xαn

n
|α| = l .

Finally, we define with o(xν+1) the standard little-o notation
for functions of order smaller than |x|ν . We state now the
following lemma.

Lemma 2. For a given point y ∈ Rn and two real-valued
functions Ψ1,Ψ2 ∈ Cν+1 : Rn → R such that DiΨ1(y) =
DiΨ2(y), |i|≤ ν where i ∈ Nn is a multi index, it holds that
Ψ1(x) = Ψ2(x) + o(xν+2).

Proof. Introduce the multi-indices i, j ∈ Nn, i =
(i1, i2, . . . , in), j = (j1, j2, . . . , jn) . Consider an arbitrary



real-valued function Φ : Rn → R,Φ ∈ Cl+1, l ∈ N. Given a
point y ∈ Rn, by Taylor’s theorem for multivariate functions
[12] it holds that

Φ(x) =
∑
|i|≤l

DiΦ(y)

i!
(x− y)i +

∑
|j|=l+1

ΥΦ(x)(x− y)j ,

where ΥΦ(x) = |j|
j!

∫ 1

0
(1−t)|j|−1DjΦ(y+t(x−y))dt. Then,

if Ψ1,Ψ2 ∈ Cν+1 they can be equivalently expressed as

Ψ1(x) =
∑
|i|≤ν

DiΨ1(y)

i!
(x− y)i + o(xν+2),

Ψ2(x) =
∑
|i|≤ν

DiΨ2(y)

i!
(x− y)i + o(xν+2).

If DiΨ1(y) = DiΨ2(y), |i| ≤ ν we can rearrange the last
identity to obtain∑

|i|≤ν

DiΨ1(y)

i!
(x− y)i = Ψ2(x)− o(xν+2).

Finally, by combining all previous equation we obtain
Ψ1(x) = Ψ2(x) + o(xν+2), thus completing the proof.


