Unrestricted quantum moduli algebras, II: noetherianity and simple fraction rings at roots of 1
Résumé
We prove that the unrestricted quantum moduli algebra of a punctured sphere and complex simple Lie algebra g is a finitely generated ring and a Noetherian ring, and that its specialization at a root of unity of odd order l, coprime to 3 if g has type G2, embeds in a natural way in a maximal order of a central simple algebra of PI degree l(n−1)N−m, where N is the number of positive roots of g, m its rank, and n+1≥3 the number of punctures.
Domaines
Algèbres quantiques [math.QA]Origine | Fichiers produits par l'(les) auteur(s) |
---|
![]()
Est une version de hal-03268803v1 Article Stéphane Baseilhac, Philippe Roche. Unrestricted quantum moduli algebras, II: Noetherianity and simple fraction rings at roots of 1. SIGMA, 2024, 20, pp.047. ⟨10.3842/SIGMA.2024.047⟩. ⟨hal-03268803⟩