Unrestricted quantum moduli algebras, II: noetherianity and simple fraction rings at roots of 1 - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Unrestricted quantum moduli algebras, II: noetherianity and simple fraction rings at roots of 1

Philippe Roche

Résumé

We prove that the unrestricted quantum moduli algebra of a punctured sphere and complex simple Lie algebra $\mathfrak{g}$ is a finitely generated ring and a Noetherian ring, and that its specialization at a root of unity of odd order $l$, coprime to $3$ if $\mathfrak{g}$ has type $G_2$, embeds in a natural way in a maximal order of a central simple algebra of PI degree $l^{(n-1)N-m}$, where $N$ is the number of positive roots of $\mathfrak{g}$, $m$ its rank, and $n+1\geq 3$ the number of punctures.
Fichier principal
Vignette du fichier
2MODULIaout.pdf (560.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03265204 , version 1 (19-06-2021)
hal-03265204 , version 2 (03-09-2021)
hal-03265204 , version 3 (15-10-2023)
hal-03265204 , version 4 (30-01-2024)
hal-03265204 , version 5 (06-06-2024)

Identifiants

  • HAL Id : hal-03265204 , version 2

Citer

Stéphane Baseilhac, Philippe Roche. Unrestricted quantum moduli algebras, II: noetherianity and simple fraction rings at roots of 1. 2021. ⟨hal-03265204v2⟩
104 Consultations
115 Téléchargements

Partager

More