Pré-Publication, Document De Travail Année : 2021

Unrestricted quantum moduli algebras, II: noetherianity and simple fraction rings at roots of 1

Philippe Roche

Résumé

We prove that the unrestricted quantum moduli algebra of a punctured sphere and complex simple Lie algebra g is a finitely generated ring and a Noetherian ring, and that its specialization at a root of unity of odd order l, coprime to 3 if g has type G2, embeds in a natural way in a maximal order of a central simple algebra of PI degree l(n1)Nm, where N is the number of positive roots of g, m its rank, and n+13 the number of punctures.
Fichier principal
Vignette du fichier
2MODULIaout.pdf (560) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
HAL

Est une version de hal-03268803v1 Article Stéphane Baseilhac, Philippe Roche. Unrestricted quantum moduli algebras, II: Noetherianity and simple fraction rings at roots of 1. SIGMA, 2024, 20, pp.047. ⟨10.3842/SIGMA.2024.047⟩. ⟨hal-03268803⟩

Dates et versions

hal-03265204 , version 1 (19-06-2021)
hal-03265204 , version 2 (03-09-2021)
hal-03265204 , version 3 (15-10-2023)
hal-03265204 , version 4 (30-01-2024)
hal-03265204 , version 5 (06-06-2024)

Identifiants

  • HAL Id : hal-03265204 , version 2

Citer

Stéphane Baseilhac, Philippe Roche. Unrestricted quantum moduli algebras, II: noetherianity and simple fraction rings at roots of 1. 2021. ⟨hal-03265204v2⟩
105 Consultations
122 Téléchargements

Partager

More