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ABSTRACT. We prove that the unrestricted quantum moduli algebra of a punctured sphere
and complex simple Lie algebra g is a finitely generated ring and a Noetherian ring, and that
its specialization at a root of unity of odd order [, coprime to 3 if g has type G2, embeds in
a natural way in a maximal order of a central simple algebra of PI degree l("fl)me, where
N is the number of positive roots of g, m its rank, and n + 1 > 3 the number of punctures.
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This paper is the second part of our work on the unrestricted quantum moduli algebras,
that we initiated in [28]. These algebras, denoted by M‘;m (g) hereafter, are defined over the
ground ring A = Clq, qil] and associated to unrestricted quantum groups of complex simple
Lie algebras g, and surfaces of genus g with n + 1 punctures (thus, n = —1 corresponds to
closed surfaces). We are in particular interested in the specializations Mﬁ;ﬁ(g) of M;n(g) at

roots of unity g = e.

As in [28] we focus in this paper on the algebras Mén (g) associated to punctured spheres.
From now on we fix a complex simple Lie algebra g, and when no confusion may arise we

omit g from the notation of the various algebras.
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The rational form Mg, of Mén = M;n(g), which is an algebra over C(g), has been
introduced in the mid '90s by Alekseev-Grosse-Schomerus [2, 3] and Buffenoir-Roche [30, 31].
They defined M,,, by a g-deformation of the algebra of functions on the Fock-Rosly lattice
models of the moduli spaces /\/l;ln of flat g-connections on surfaces of genus g with n + 1
punctures. Because of this geometric input, it is quite natural to expect that the represen-
tation theory of the specializations M‘;ﬁ (g) of Mﬁn(g) at roots of unity ¢ = € provides a
(2+1)-dimensional TQFT for 3-manifolds endowed with general flat g-connections, extending
the known TQFTs based on quantum groups (where purely topological ones correspond to
the trivial connection).

For instance, representations of the semisimplification of M;‘y;f have been constructed and
classified in [4]; they involve only the irreducible representations of the finite dimensional
“small”, also called “restricted”, quantum group u.(g), which is a quotient of U.(g) below,
and a version of the Frobenius-Lusztig kernel of g at € (see [23], I11.6.4). Moreover, [4] deduced
from their representations of ./\/1‘947;50 a family of representations of the mapping class groups
of surfaces, that is equivalent to the one associated to the Witten-Reshetikin-Turaev TQFT
[81, 73].

Recently, representations of another quotient of M‘;;f have been constructed in [47]. The
corresponding representations of the mapping class groups of surfaces are equivalent to those
previously obtained by Lyubashenko-Majid [62], and are associated to the so called non-
semisimple TQFT defined by Geer, Patureau-Mirand and their collaborators (see eg. [44,
45]). In the sl(2) case they involve the irreducible and also the principal indecomposable
representations of u(sl(2)). The related link and 3-manifold invariants coincide with those
of [64] and [19].

In general, the representation theory of Mé;f is by now far from being completely un-
derstood. As mentioned above, it is expected to provide a good framework to construct
and study quantum invariants of 3-manifolds equipped with general flat g-connections. A
family of such invariants, called quantum hyperbolic invariants, has already been defined for
g = sl(2) by means of certain 6j-symbols, Deus ex machina; they are closely connected to
classical Chern-Simons theory, provide generalized Volume Conjectures, and contain quan-
tum Teichmiiller theory (see [12]-[18]). It is part of our present program, initiated in [9)],
to shed light on these invariants and to generalize them to arbitrary g by developing the
representation theory of ./\/l;,;i .

Besides, the quantum moduli algebras are now recognized as central objects from the
viewpoints of factorization homology [20] and(stated) skein theory [22, 49, 34]. As already
suggested above, their underlying formalism of combinatorial quantisation is very-well suited
to the construction of mapping class group representations [48]. In another direction, one
may expect that the equivalence proved in [63] between combinatorial quantisation for the
Drinfeld double D(H) of a finite-dimensional semisimple Hopf algebra H, and Kitaev’s lattice
model in topological quantum computation, can be extended to the setup of quantum moduli
algebras.

We introduced Mén and began its study in [28]. Its definition is based on the original
combinatorial quantization method of [2, 3] and [30, 31], and uses also twists of module-
algebras. This allows us to exploit fully the representation theory of quantum groups, by
following ideas of classical invariant theory. Namely, as we shall describe more precisely
below, Mén can be regarded as the invariant subalgebra of a certain module-algebra /Jén,
endowed with an action of the unrestricted (De Concini-Kac) integral form Ug = Ua(g) of the
quantum group U, = Uy(g). We therefore study Eén and its specializations £, at ¢ = € a
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root of unity. Under such a specialization Mén embeds in (£6,n)U‘, the invariant subalgebra
of Lf,, under the action of the specialization U, of Ua at ¢ = e.

In [28], for g a root of unity we focused on the case g = s/(2) and described a Poisson action
of the center on Mé;j(sl (2)), derived from the quantum coadjoint action of De Concini-Kac-
Procesi [38, 39, 40]. The results we prove in the present paper hold for every complex simple
Lie algebra g. The main ones are a proof that £OA,n and Mén are Noetherian, finitely generated

rings (Theorem 1.1), and £f,, and ( E,n)Ue are maximal orders of their central localizations
(Theorem 1.3). We conclude with an application to their representation theories (Corollary
1.4).

Let us now state precisely and comment our results. First we need to fix notations. Let
U, be the simply-connected quantum group of g, defined over the field C(g). From U, one
can define a Us;-module algebra Lo, called graph algebra, where U, acts by means of a

right coadjoint action. The quantum moduli algebra My, is the subalgebra Eé{ ¢ of invariant

elements of Lo, for this action. The unrestricted quantum moduli algebra Mén is an integral
form of My, (thus, defined over A = C[q,q']). As a C(g)-module Ly, is just O?", where
Oy = O4(G) is the standard quantum function algebra of the connected and simply-connected
Lie group G with Lie algebra g. The product of Lo ;, is obtained by twisting both the product
of each factor O, and the product between them. It is equivariant with respect to a (right)
coadjoint action of Uy, which defines the structure of U,-module of Ly ,,. The module algebra

Lon has an integral form L'én, defined over A, endowed with a coadjoint action of the

unrestricted integral form Uy of U, introduced by De Concini-Kac [38]. The algebra Lén
is obtained by replacing O, in the construction of L, with the restricted dual O4 of the
integral form U** of U, defined by Lusztig [60], or equivalently with the restricted dual of
the integral form I' of U, defined by De Concini-Lyubashenko [42]. The unrestricted integral
form Mén of My, is defined as the subalgebra of invariant elements,

M = (L0,

A cornerstone of the theory of Mén is a map originally due to Alekseev [1], building on
works of Drinfeld [36] and Reshetikhin and Semenov-Tian-Shansky [70]. In [28] we showed
that it eventually provides isomorphisms of module algebras and algebras respectively,

D1 L3, = (UTH 0y MG, — (U2

where U™ is endowed with a right adjoint action of Ugs, and (U$™)! is the subalgebra of
locally finite elements with respect to this action. When n = 1 the algebra Ui‘f has been
studied in great detail by Joseph-Letzter [52, 53, 51]; their results we use have been greatly
simplified in [80].

All the material we need about the results discussed above is described in [28], and recalled
in Section 2.1-2.2.

Our first result, proved in Section 3, is:

Theorem 1.1. Ly ,, Mo, and their unrestricted integral forms and specializations at q €
C\ {0,1} are Noetherian rings, and finitely generated rings.

In [28] we proved that these algebras have no non-trivial zero divisors. Also, we deduced
Theorem 1.1 in the si(2) case by using an isomorphism between My ,(sl(2)) and the skein
algebra of a sphere with n 4 1 punctures, which by a result of [66] is Noetherian and finitely
generated. Our approach here is completely different. For Ly, we adapt the proof given
by Voigt-Yuncken [80] of a result of Joseph [51], which asserts that Uéf is a Noetherian ring
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(Theorem 3.1). For M, we deduce the result from the one for L, by following a line of
proof of the Hilbert-Nagata theorem in classical invariant theory (Theorem 3.2).

From Section 4 we consider the specializations L ,, of EOAm at ¢ = €, a root of unity of odd
order [ coprime to 3 if g has Gy components. In [42], De Concini-Lyubashenko introduced
a central subalgebra Zy(O,) of O, isomorphic to the coordinate ring O(G), and proved that
the Zo(O,)-module O, is projective of rank 192 As observed by Brown-Gordon-Stafford
[25], Bass’ Cancellation theorem in K-theory and the fact that Ko(O(G)) = Z, proved by
Marlin [68], imply that this module is free. Alternatively, this follows also from the fact
that O, is a cleft extension of O(G) by the dual of the Hopf algebra u.(g), as proved by
Andruskiewitsch-Garcia (see [6], Remark 2.18(b), and also Section 3.2 of [21]; this argument
was explained to us by K. A. Brown).

The section 4 proves the analogous property for L ,,. Namely:

Theorem 1.2. Lj,, has a central subalgebra Zo(Lj ,,) isomorphic to O(G)®™, and it is a free
Z20(L5 ,)-module of rank ™48 isomorphic to the O(G)®™-module O™,

A similar statement for ( fm)UE is in Theorem 1.3 (3) below.

We prove the first and third claims of Theorem 1.2 in Proposition 4.2. Since £ ,, and ogn
are the same modules over O(G)®", at this point we can just deduce the second claim from
the results of [42] and [68], or [6], recalled above. Nevertheless we give a self-contained proof
that £f ; is finite projective of rank 198 over 2, (£6,1) by adapting the original arguments
of Theorem 7.2 of De Concini-Lyubashenko [42]. In particular we study the coregular action
of the braid group of g on L ;; by the way, in the Appendix we provide different proofs of
some technical facts shown in [42]. Of course, it remains an exciting problem to describe
the centralizing extension O(G)®" C L, (and similarly O(G)®" C (£f,,)Y* below), aiming
at generalizing the results of [6] and finding a direct, more structural proof of freeness in
Theorem 1.2.

It is worth noticing that the most natural definition of Zo(Lg ;) is o1 UV N2y(UL)), where
Zo(Ue) is the De Concini-Kac-Procesi central subalgebra of U, and Uéf the specialization
at ¢ = € of the algebra Ui‘f . Thus it is not directly connected to Zy(O,), and the algebra
structures of £§; and O, are completely different indeed. For arbitrary n we set Zo(Lj,,) =
Zo( 6’1)®”. The fact that Zo(Lf,) is central in £ ,,, and Zo(Lf ;) and Zo(O,) coincide and
give £ 1 and Oc the same module structures over these subalgebras, relies on results of De
Concini-Kac [38], De Concini-Procesi [39, 40], and De Concini-Lyubashenko [42], that we
recall in Section 2.3-2.4.

Also, we note that basis of L, over Zo(Lj,,) are complicated. The only case we know is
g = sl(2), described in [43], and it is far from being obvious (see (43)).

In Section 5 we turn to fraction rings. As mentioned above Lf,, has no non-trivial zero
divisors. Therefore its center Z(Lg,,) is an integral domain. Denote by Q(Z2(Lj,,)) its
fraction field. Denote by ( g’n)UE the subring of Lf,, formed by the invariant elements of
L5, with respect to the right coadjoint action of U.. Note that we trivially have an inclusion
./\/lé;f C (Ean)Ue, and these two algebras are distinct in general; for instance, when n =1 we
have by definition ( 6,1)U€ = Z(Lg1), which is a finite extension of O(G) by Theorem 1.2
and Corollary 5.7 discussed below, whereas Mé;ﬁ is the specialization at ¢ = € of Z (Eél), a
polynomial algebra which may be identified via ®; with Z(Uj,), generated by the quantum
Casimir elements. Also the center Z(L§ ,) of L, is contained in (EBm)U‘ (this follows from
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[28], Proposition 6.17). Consider the rings
Q(Lh,n) = Q(2(L50)) @2z ) Lon
and
QULET) = QZ(L5,)) ®z(cs,) (L6.)7"

In general, given a ring A with center Z an integral domain we reserve the notation QQ(A)
to the central localization of A, ie. Q(A) := Q(Z) ®z A. Though the center Z(( gm)Uﬁ) of
(Lan)Uf is larger than Z(Lg ,), the notation Q(( fm)UE) is not ambiguous, for Z(( fm)Ue) is
an integral domain finite over Z(Lj ,,), and hence the central localization of (Ean)Ue coincides
with Q(( 67n)U5) as defined above. Throughout the paper, unless we mention it explicitly we
follow the conventions of Mc Connell-Robson [69] as regards the terminology of ring theory;

in particular, for the notions of central simple algebras, (maximal) orders and PI degrees, see
in [69] the sections 5.3 and 13.3.6-13.6.7.

Denote by m the rank of g, and by N the number of its positive roots. We prove:

Theorem 1.3. (1) Q(L§ ,) is a central simple algebra of PI degree "N, and L5 ,, is a mazimal

order of Q(L§,,)-

(2) Q(( Bm)UE), n > 2, is a central simple algebra of PI degree IN™™D)=™  and ( Bm)UE is a
mazximal order of Q(( gm)Ué).

(3) ( an)Ue is a Noetherian ring, its center is Z(L§,,) DA (Zo(L5.,)) A(n)(Z([,al)), and as

a Zo(L5 ,)-module ( Bm)Ue, n>2, is free of rank ["~H-dms

The first claim of the statement (1) means that Q(Lj,,) is a complex subalgebra of a full
matrix algebra Maty(F), where d = I and F is a finite extension of Q(Z (£5,,)) such that

F®qz(cs,,)) Q(Lon) = Matq(F).

We deduce it from Theorem 1.2 and the computation of the degree of Q(Z(Lg ,)) as a field
extension of Q(Zo(L;,,)). This computation uses @, and the computation of the degree of
Q(Z(U,)) over Q(Zp(U,)) by De Concini-Kac [38] (see Proposition 5.3).

The second claim of (1) is proved in Theorem 5.6. More precisely we prove that Lj ,, is
integrally closed in Q(Lj ,,), in the sense of [38, 40]. So, before the theorem we show in Lemma
5.5 that a ring A with no non-trivial zero divisors, Noetherian center, and finite dimensional
classical fraction algebra Q(A), which is the case of £f,, and ( gm)Ué, is integrally closed
in Q(A) if and only if it is maximal as a (classical) order. For the sake of clarity we have
included a general discussion of these notions before Theorem 5.6. The proof of that theorem
uses the facts that O, is a maximal order of its classical fraction algebra, which is Theorem
7.4 of [42], and that the twist which defines the algebra structure of L ,, from O2" keeps the
Zp-module structure unchanged. It seems harder to prove directly that £f,, is a maximal
order, without this twist argument, essentially because we know only one localization of L ,
which is a maximal order (and thus cannot apply the Serre argument as in Theorem 7.4 of
[42]), and, in another direction, we lack of a complete set of defining relations, allowing for
degeneration arguments as in [40, 41]. However, as an example we do it in the si(2) case
when n = 1.

As a consequence of the maximality of £f,, and the fact that Z(Lf,,) is Noetherian, it is
an integrally closed domain, equal to the trace ring of £Lf,,. In fact Z(Lf,,) = 2 ([,671)®",
and it is a free Zo(Lj,,)-module of rank ™" (see Corollary 5.7).
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We deduce the first claim of (2) and the second of (3) from the assertion (1), the double
centralizer theorem for central simple algebras, a few results of [28] and [42], and Theorem
1.2 again.

The first claim of (3) follows directly from the fact that O(G) and Lf,, are Noetherian
rings (the latter by Theorem 1.1; see the proof of Theorem 4.7 for details). Finally, the left
regular action of A 0,1) © A (z( £5 ) (Ean)U€ on Lj,, yields the following decomposition

into simple components,

U
b = (AO(L5 1) @ae 2y ) (£5)7) -

From this and our previous results for £j ,, we deduce the last claims of (2) and (3). We note

that Z(L£5,) = (Eal)UE, and a certain localization of L§; is a direct summand of Ue (see
Theorem 2.2 (2) and Corollary 2.5 (2)). So one can view the freeness of the Zo(Lj ,,)-module

(ﬁgyl)Uﬁ as a generalization of the fact that Z(Ue) is free of rank I over Zy(Ue) (proved in
[40], Proposition 20.2).

We conclude with an application of Theorem 1.3, providing a characterization of the ir-
reducible representations of maximal dimension. Recall that given a classical order A of PI
degree d and with center Z a Noetherian and integrally closed domain, the discriminant D(A)
is the ideal of Z generated by the elements det((tyeq(ixj))1<ij<d), Where z1,...24 € A and
tred : A — Z is the reduced trace map of Q(A) restricted to A (see [71], Section 10). Given a
central character x € Maxspec(Z) denote by IX the ideal of A generated by the kernel of x,
and let AX := A/I*. Our results show all this applies in particular to A := L, or ( B’n)Ue.
Classical arguments then imply that if A has no non-trivial zero divisors, then AX # 0, and

moreover we have (see eg. Lemma 3.7 of [38]):

Corollary 1.4. (a) (L ,)* is isomorphic to My(C), d := "N if and only if x ¢ D( 0.n)s
and if x € D(LG,,) every irreducible representation of (Lg,,)X has dimension less than d.
(b) Same statement for (( B’H)UG)X, putting d = N"D=™ 4nd replacing D( 0.n) with
D((£5,)").

Much more can be said on irreducible representations of dimension < d, eg. by using
lower discriminant ideals (see the Main Theorem of [26]). Also, it follows from Theorem 7.18
of [28] that L, (sl(2)) is a Poisson order relative to its center, which is a Poisson central
finite extension of O(SL(2,C)") endowed with the Fock-Rosly Poisson structure. This should
extend without difficulty to all g beyond the sl(2) case. By the results of [24], the zero locus of
D(L§ ,,(sl(2))) is then a union of symplectic leaves in Maxspec(Z(Lg ,,(s1(2)))) (a determined,
finite covering space of SL(2,C)"). There is a similar result for Mg, (s/(2)) (Corollary 7.21
of [28]), in terms of the Atiyah-Bott-Goldman Poisson structure on the invariant coordinate
ring O(SL(2,C)") 20,

In [29] we use all this to describe the subalgebra Mé;f C (L’Eyn)Ue and its representations,
and we give applications to skein algebras (which is the sl(2) case). In [27] we consider the
algebras M;;f for genus g # 0.

Acknowledgements. We are grateful to K. A. Brown for pointing out the reference [26]
above, and [6] and [21] (see the comments before Theorem 1.2).

1.1. Basic notations. Given a ring R, we denote by Z(R) its center, by Spec(R) its spec-
trum, and by Maxspec(R) its mazimal spectrum. When R is commutative and has no
non-trivial zero divisors, Q(R) denotes its fraction field.
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Given a Hopf algebra H with product m and and coproduct A, we denote by HP (resp.
H,,) the Hopf algebra with the same algebra (resp. coalgebra) structure as H but the opposite
coproduct o o A (resp. opposite product m o o), where o(z ® y) = y ® z, and the antipode
S~1. We use Sweedler’s coproduct notation, A(z) = ) (1) ®x(2), ¢ € H.

We let g be a finite dimensional complex simple Lie algebra of rank m, with Cartan matrix
(aij). We fix a Cartan subalgebra h C g and a basis of simple roots a; € bp; we denote
by di,...,dy, the unique coprime positive integers such that the matrix (d;a;;) is symmetric,
and (, ) the unique inner product on by such that d;a;; = (o, o). For any root o the coroot
is o = 2a/(a, a); in particular o = d; 'a;. The root lattice @ is the Z-lattice in b defined
by @ = >, Za;. The weight lattice P is the Z-lattice formed by all A € hi such that
(A, ;) € Z for every i = 1,...,m. So P = ", Zw,;, where w; is the fundamental weight
dual to the simple coroot o, ie. satisfying (w;, aj) = d; j. We denote by Py := > """ Z>ow;
the cone of dominant integral weights, by N the number of positive roots of g, by p half the
sum of the positive roots, and by D the smallest positive integer such that D(\, u) € Z for
every A\, u € P. Note that (A, a) € Z for every A € P, a € @, and D is the smallest positive
integer such that DP C ). We denote by B(g) the braid group of g; we recall its standard
defining relations in the Appendix (Section 6.1).

We let G be the connected and simply-connected Lie group with Lie algebra g. We put
Te = exp(h), the maximal torus of G generated by h; N(T¢) is the normalizer of T,
W = N(Tg)/T¢ is the Weyl group, By the unique Borel subgroups such that By N B_ = Tg,
and Uy C B4 their unipotent subgroups.

We let ¢ be an indeterminate, set A = C[q,qil], ¢ = q%, and given integers p, k with
0 <k <pwe put

blo= T 0L =1 Bl =02 Bl | § | =

qa9—q

We denote by € a primitive I-th root of unity such that €% = 1 is also a primitive I-th
root of unity for all ¢ € {1,...,m}. This means that [ is odd, and coprime to 3 if g has
(G2-components.

In this paper we use the definition of the unrestricted integral form Uy4(g) given in [40],
[42]; in [28] we used the one of [38], [39]. The two are (trivially) isomorphic, and have the
same specialization at ¢ = e. Also, we denote here by L; the generators of U,(g) we denoted
by ¢; in [28].

To facilitate the comparison with [42] we note that their generators, that we will denote
by fQ, E~'i and Fi, can be written respectively as K, K;lEi and F;K; in our notations. They
satisfy the same algebra relations.

2. BACKGROUND RESULTS

2.1. On Uy, Oy, Lon, Moy, and ®,. Except when stated differently, we refer to [28],
Sections 2-4 and 6, and the references therein for details about the material of this section.
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The simply-connected quantum group U, = U,(g) is the Hopf algebra over C(¢) with
generators E;, Fy, L;, L; 11 <4 < m, and defining relations

_ _ _ 8; s _ —8;
LiL;=L;L;, LiL;' = L;'L; =1, L;B;L;* = ¢,""E; , LiF;L;* = ¢, " Fj

K;— Kt
EF; — FjE; = §; j—————
qi — g,
l—llij 1
Z<—1Y[ _ra”} BB =0 ifi#]
r=0 qi
1—a;; 1
ZH)T[ _ra”} FTTRF =0 i A
r=0 qi

where for A = Y, mw; € P we set Ky = [[[2; L™, and K; = K,, = H;" 1La“. The
coproduct A, antipode S, and counit € of U, are given by
&&ﬁrﬂmf,ﬂF) Kﬂ,aL)
e(E;) =¢e(F;) =0, e(L;) =1.
We fix a reduced expression s;, ... s;, of the longest element wg of the Weyl group of g. It
induces a total ordering of the positive roots,

- F+F®1

B1 = iy, Ba = iy (Qiy)s oo BN = Siy - Sin_y (i )-
The root vectors of U, with respect to such an ordering are defined by
Eg, =1 ... T, (Elk) , g, =T, .. Ek—l(Ek)
where T; is Lusztig’s algebra automorphism of U, associated to the simple root «; ([61, 60],
see also [35], Ch. 8). In the Appendix we recall the relation between T; and the generator
w; of the quantum Weyl group, which we will mostly use. Let us just recall here that the
monomials F5! ... FINK\E'™N . EY (r; t; € N, A € P) form a basis of U,.
] "~ B BN BN B q
U, is a pivotal Hopf algebra, with pivotal element

=Ky, = [[j%, L3

So ¢ is group-like, and S%(x) = Lz for every x € U,,.

The adjoint quantum group U“d U ad( ) is the Hopf subalgebra of U, generated by the
elements F;, F; (1 =1,...,m) and K, with a € Q; so £ € U(‘;d. When g = sl(2), we simply
write the above generators £ = Fq, F = F;, L = L1, K = K.

We denote by Uy(ny), Us(n_) and U, (h) the subalgebras of U, generated respectively by
the Ej;, the Fj, and the K) (A € P), and by U,(b;) and U,(b_) the subalgebras generated
by the E; and the K, and by the F; and the K, respectively (they are the two-sided ideals
generated by Uy (ny)). We do similarly with Ugd.

U;d is not a braided Hopf algebra in a strict sense, but it has braided categorical comple-
tions. Namely, denote by C the category of type 1 finite dimensional U;d—modules, by Vect
the category of finite dimensional C(q)-vector spaces, and by F¢ : C — Vect the forgetful
functor. The categorical completion Ugd of U(‘;d is the set of natural transformations Fo — Fp.

Let us recall briefly what this means and implies. For details we refer to the sections 2 and
3 of [28] (see also [80], Section 2.10, where U, below is formulated in terms of multiplier Hopf
algebras). An element of Ugd is a collection (av)yeop(c), where ay € Endc(g) (V) satisfies
Fe(f) oay = aw o Fe(f) for any objects V, W of C and any arrow f € Hongd(V, W). Tt is
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not hard to see that Ugd inherits from C a natural structure of Hopf algebra such that the
map
L: U;d — Ugd
z > (mv(z))veone)

is a morphism of Hopf algebras, where 7y : U;d — End(V) is the representation associated
to a module V in C. It is a theorem that this map is injective; Ugd can be understood as a
weak-* completion of Ugd by means of the pairing (.,.) introduced below. From now on, let
us extend the coefficient ring of the modules and morphisms in C to C(ql/ Dy, Put

Uy = Ug? ®c(q) Cle"P)

One can show that the map ¢ above extends to an embedding of U, ®c(q) (C(ql/D) in U,. The

category C, with coefficients in (C(ql/ b ), is braided and ribbon. We postpone a discussion of
that fact to Section 2.3, where it will be developed. As a consequence, Uy is a quasitriangular
and ribbon Hopf algebra. The R-matrix of U, is the family of morphisms

R = ((Rn)vw)v,weon(c)

where ¢ = €, Ry, is the universal R-matrix of the quantized universal enveloping algebra
Un(g), and (Rp)vw € End(V @ W), for every modules V, W in C, is the endomorphism
defined by the action of Ry on V ® W (which is well-defined). The ribbon element vy, of
Un(g) defines similarly the ribbon element v = ((vs)y)v of Uy. One defines the categorical
tensor product U§2 similarly as Uyg; it contains all the infinite series of elements of U?z having
only a finite number of non-zero terms when evaluated on a given module V® W of C. The
expansion of Ry, as an infinite series in Up( g)®2 induces an expansion of R as an infinite series
in U?z, Adapting Sweedler’s coproduct notation A(z) = 3, (1) ® z(2) we find convenient
to write this series as
(1) R= ZR(l) ®R(2).

(R)
We put R™ := R, R~ := (60 R)"! where o is the flip map z ® y — y ® .

The quantum function Hopf algebra Oy = O4(G) is the restricted dual of Ugd, ie. the set
of C(g)-linear maps f: U;d — C(q) such that Ker(f) contains a cofinite two sided ideal I (ie.
such that I & M = U, for some finite dimensional vector space M), and [[,__.(K; —¢f) € I
for some r € N and every 7. The structure maps of O, are defined dually to those of U;d.
We denote by * its product. The algebras Oq(Tg), Oq(U+), Oy(B+) are defined similarly,
by replacing U;d with U;d(b), Ugd(ni), U;d(bi) respectively. O, is generated as an algebra
by the functionals x — w(my (x)v), x € Ugd, for every object V' € Ob(C) and vectors v € V,
w € V*. Such functionals are called matriz coefficients. We can uniquely extend the (non-
degenerate) evaluation pairing (.,.): Oy ® U;d — C(g) to a bilinear pairing (.,.): O, ® U, —
C(¢"/P) such that the following diagram is commutative:

()
Oy ® Ugd — C(q)

Zd@L\L )
0O, ® U,
This pairing is defined by
(v, (ax)x) = w(ayv)
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for every (ax)x € Uy, vo, € Oy It is a perfect pairing, and reflects the properties of the
R-matrix R € U?Q in a subtle way. In particular, these properties imply that the maps

ot 0, — Ug?

(2) a = (a®id)(RY) =Y (o Rj)RY
(R#)

are well-defined morphisms of Hopf algebras. Here we stress that it is the simply-connected
quantum group U that is the range of ®*. This will be explained in more details in Section
2.3.

The quantum loop algebra Lo 1 = Lo1(g) is defined by twisting the product * of O, keeping
the same underlying linear space. The new product is equivariant with respect to the right
coadjoint action coad” of U, ;d; noting that coad” extends to an action of the simply-connected
quantum group Uy, the new product thus gives Lo 1 a structure of U;-module algebra. Recall
that

coad" (z)(a) = Z S(z2) > a <z
(z)

for all z € U; and a € Oy, where >, < are the left and right coregular actions of U, on Oy,
defined by

> o= Za(l)(a@),x), a<Qzr:= Z(a(l), )0y (2)-
(a) (a)

Using the fact that U, ® (C(ql/ b ) can be regarded as a subspace of Uy, these actions extend
naturally to actions of U;. The product of Ly is expressed in terms of x by the formula
([28], Proposition 4.1):

(3) aB= > (Re)S(Rg) > a)*(Ruy> B < Ry),

(R),(R)
where Z(R) R(1)® R(3) and Z(R) R(1/y ® R(2y are expansions of two copies of R € U?Q. Note
that the sum in (3) has only a finite number of non zero terms. This product gives Lo (like

O,) a structure of module algebra for the actions >, <1, and also for coad"(x). Spelling this
out for coad”, this means

coad" (z)(af) = Z coad" (z(1y)(a)coad” (z(2))(8B).
(z)

The relations between Oy, Lo and Uy (the simply-connected quantum group) are encoded
by the map

e 0, — Uy
(4) Y (a ®id)(RR')

where R' = 0o R, and as usual 0: x ® y — y ® x. Note that
P =mo(dT @ (S Tod 7)) oA,

We call ®; the RSD map, for Drinfeld, Reshetikhin and Semenov-Tian-Shansky introduced
it first (see [36, 70],[67]). Recall that U, embeds in U,. It is a fundamental result of the
theory ([33, 51, 11]) that ®; affords an isomorphism of U,-modules

®1: Og — U
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For full details on that result we refer to Section 2.12 of [80] (where different conventions are
used). Here, Uéf is the set of locally finite elements of U,, endowed with the right adjoint
action ad” of U,. It is defined by

Uéf = {r € Uy | rhe(g)(ad” (Uy)(z)) < oo}

and

ad (y)(z) = Z S(yay)ry )
()

for every x,y € U,. The action ad" gives in fact Uéf a structure of right U,-module algebra.
Moreover, ®; affords an isomorphism of Uj;-module algebras

(5) (1)12 EO,l — Uéf.

The centers Z(Ly 1) of Lo, and Z(Uy,) of Uy, coincide respectively with Lﬁgﬁ and Uéjq, the
subsets of U,-invariants elements of Lo 1 and U,. As a consequence, ®1 affords an isomorphism
between Z(Lo 1) and Z(U,).

The quantum graph algebra Lo, = Lo, (g) is the braided tensor product of n copies of L 1

(considered as a Ug-module algebra). Thus it coincides with £§] as a linear space, and it is

a right Us-module algebra, the action of U, (extending coad” on Ly 1) being given by

coad;,(y) (o @... 0 alV) =} coad" (y)) (W) ® ... @ coud” (y(u) (™)
()

for all y € U, and oM. @a™ e Lon. The algebra structure can be explicited as
follows. For every 1 < a < n define i,: Lo1 — Lo by ig(z) = 120D @ r ® 1®("_a); ig is an
embedding of Uz-module algebras. We will use the notations

£{) = 1Im(ia) , (@)@ :=is(a).

Take (a)(a), (o/)(a) € E(()??)l and (5)(b), (5/)(17) € E(()Ij?z with a < b. Then the product of Lo, is
given by the following formula (see in [28] the proposition 6.2-6.3 and the formulas (13)-(41)-
(42)):

(@@ @) (@)@ e @E)®)

©) - (a (S(R?URE‘D) >a' < R}l)Rﬁl)))(a)

b
(RY),...,(R%)
(b)
1 3 2 4
® ((S(R(Q)R(Q)) >34 R(Q)R(Q)) 5’)

where R = Z(Ri) R’tl) ® RZ@, i €{1,2,3,4}, are expansions of four copies of R € U?f, and
on the right-hand side the product is componentwise that of Lo ;. Later we will use the fact
that the product of Lo, is obtained from the standard (componentwise) product of E%?Tf by
a process that may be inverted. Indeed, (6) can be rewritten as

M (@@ E)®)((@) e E)®) =3 (@@((@) - Fy) e (B - Fu B
(F)

where F' =3 ) F1) ® Fg) := (A® A)(R'), and the symbol “” stands for the right action of
[Ui]82 on Lo 1 that may be read from (6). The tensor F'is known as a twist. Then, by replacing
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F with its inverse F = (A ® A)(R'™1), one can express the product of 5397? in terms of the
product of Ly, by

8) (@) & @PE) = (@@ (3P Fu) ) (@)@ - Fa) & (8)0).
(F)
We call quantum moduli algebra and denote by

MO,n = MO,n (g)

the subalgebra E([)J’ 2 of Lo, formed by the Ug-invariant elements.

Consider the following action of U, on the tensor product algebra U(;@", which extends ad”
on Uy:

(9) ady, (y Z Al )z A™ (y())

forally € Uy, x € Uq®”. This action gives Uq®" a structure of right U,-module algebra. In [1]
Alekseev introduced a morphism of Uz-module algebras ®,,: Lo, — Ufm which extends ®;.
In Proposition 6.5 and Lemma 6.8 of [28] we showed that ®,, affords isomorphisms

(10) Dyt Lon — (UTI, @yt Moy — (US™)Ye

where (Uq@m)lf is the set of ad; -locally finite elements of Ufm. We call @,, the Alekseev map;
we will not use the definition of ®,, in this paper.

It is a key argument of the proof of (10), to be used later, that the set of locally finite
clements of UZ™ for (ad™)®" o A"V coincides with (U, éf )®™; this follows from the main result
of [57]. Using that the map

(11) 1/}11 = (I)n © (q)fl)@n

extends to a linear automorphism of Uf’" which intertwines the actions (ad”)®™ o A~ and
ad,, of U, we deduced that wn((Uéf)@m) = (U®")lf whence Im(®,,) = (U®”)lf

Remark 2.1. We have (Uéf )" £ (Ufm)lf , and in fact there is not even an inclusion. Indeed
let @ = (q—q *FE +¢K + ¢ 'K ! be the standard Casimir element of U,(sl(2)). We
trivially have A(Q) € (UC?Q)U but

AQ)=(q-¢ Y (K 'E®QFK+FE)+QK+K'9Q—-(¢g+¢ H)K '@ K
and therefore A(Q2) ¢ (Uéf)®2, since K ¢ Uéf (see eg. Theorem 2.2 (2)).

Let us point out here two important consequences of (10). First, ®, yields isomorphisms
between centers, Z(Lo,) & Z(U,)®" and Z(Egjl) = Z((Uq®")Uq), where one can show that
([28], Lemma 6.25)

Z((Ug™ ) = AT(Z(Uy) Oc(g) Z(Ug)*"

Second, we see that Ly, (and therefore M ;) has no non-trivial zero divisors, by using the
isomorphisms ®,,: Lo, — (Uf”)lf C U™ and UP™ = U,y(g®"), and the fact that U,(g®")
has no non-trivial zero divisors (proved eg. in [38]).
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2.2. Integral forms and specializations. An integral form of a (Hopf) C(q)-algebra is
a (Hopf) A-subalgebra, where A = Clg, qil], that becomes isomorphic to the algebra after
tensoring it with C(¢q). We consider three integral forms related by the pairing ( , ), one of
Uy, one of U;d, and one of O,.

The unrestricted integral form of U, is the A-subalgebra Uy = Ux(g) introduced by De
Concini-Kac-Procesi in [40], Section 12 (and in a differently normalized form in [38] and
[39]). It is generated by the elements (i =1,...,m)

Ei=(q—q"E , Fi=(¢i—q )Fi ,Li, L'

Clearly, the subalgebra of locally finite elements of Uy is Uilf =UxN Uéf . Similarly, we
define the unrestricted integral form of U(‘;d as the A-subalgebra Ujd C U4 generated by the
elements F;, F; and Kiil, fori=1,...,m.

The restricted integral form of U gd is the A-subalgebra I' = I'(g) introduced by De Concini-
Lyubashenko in [42], Sections 2-3. It is generated by the elements (i = 1,...,m)
Efc k t —s+1 _q

(k) k) _ Kiq;
BN — , B =  (Kit)y, = .
DT an Kt = 1170

where k € N, t € N (setting (K;;0), = 1 by convention).

Note that I' contains the elements K;, and the unrestricted integral form Ujd. It plays a
fundamental réle in relation with the integral pairings 71';‘1: considered in Section 2.3; it is by
this role that I" is more suited to our purposes than the more standard restricted integral
form U defined by Lusztig, and discussed below.

The integral forms U (h), Ua(by) and I'(h), T'(b4 ) associated to the subalgebras b, by C g
are the subalgebras of Uy and I' defined in the obvious way. For instance the “Cartan”
subalgebra T'(h) is generated by the elements (K;;t), and K; .

Denote by C4 the category of I'-modules which are free A-modules of finite rank, and
semisimple as I'(h)-modules; so they have a basis where K; and (Kj;t),, act diagonally with
respective eigenvalues of the form

qr <lj> keZ,teN*.
q;

Kt

1

s=1

The integral quantum function Hopf algebra O4 = O4(G) is the restricted dual of T, ie.
the set of A-linear maps f: I' — A such that Ker(f) contains a cofinite two sided ideal I,
and [[.__ (K; —¢}) € I for some r € N and every i. O4 is an integral form of O,. The
algebras O4(Tq), Oa(Us), Oa(By) are defined similarly, by replacing I' with I'(h), I'(ny),
I'(bt) respectively. O is generated as an algebra by the matrix coefficients  — v*(my (z)v;),
z €T, for every module V in C4 where (v;) is an A-basis of V and (v') the dual A-basis of
the dual module V*.

It is immediate that the U;-module structure of O, restricts to an Uj-module structure
on Oy.

We note that Q4 is also the restricted dual of U**, the Lusztig integral form of U, ;d [60, 61],
defined as I' except that the (K;;t), (i =1,...,m), are replaced by the elements

t —s+1 -1 s—1

Kiqg ' - K ¢}
[Kistlg = [[ ———————
q; — 4;

s=1

Indeed, I'(h) contains U’ (h) strictly, but the restriction functor C4 — C’\® is an equivalence

of categories, where C’\*® is the category of U)**-modules defined as C4 above, but replacing
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the condition on (Kj;t),, by its analog for [Kj;t],,, ie. that it acts diagonally with eigenvalues

[ ]Lf } keZ,t e N*.
4

The integral form L’él of Lo is defined as the Ug-module O endowed with the product of

Lo 1, and the integral form Eén of Lo, is the braided tensor product of n copies of Eél. That

these two products are well-defined over A is elementary (see Definition 4.10 and 6.7 of [28]
for the details). The integral quantum moduli algebra is

M = (L£5)7.

Finally, given ¢ = € € C* we define Uy, I'v, Oy, ﬁgﬁn and Méf as the C-algebras obtained
by tensoring Ua, I', O 4, Eén and Mén respectively with C., the A-module C where ¢ acts
by multiplication by €. They are the specializations of the latter algebras at ¢ = €’; they can

also be defined as the quotients by the ideal generated by ¢ — ¢’. We find convenient to use
the notations

(12) (USM* = (UFMV4 @4 Co, (U = (UTHY @4 Cor.
Let us stress here that when € is a root of unity, taking the locally finite part and taking the
specialization at € are non commuting operations. Indeed, when €' has odd order, it follows
from Theorem 2.14 below that Uy is finite over Zy(Uy) and therefore has all its elements
locally finite for ad”; on another hand U1l4f ®4 Ce, ie. Uel,f in the notations above, does not
contain the elements L;.

In a similar manner, taking invariants and taking the specialization at ¢ are non commuting

operations when € is a root of unity: indeed, it is easily checked that in this case (UE")U/A

€
and (US™)Y, or Mé’; = /\/lé n ®4 Co and ( B:H)Ue’, are distinct spaces. As explained in
the introduction, when € is a root of unity, we will not consider the algebras MOA;/ in this
paper.

The morphism ®,, has also an integral form. In order to define it, we first consider the
relations between Uy and U%. Denote by T C U4 the multiplicative Abelian group formed
by the elements K, A € P, and by 75 C T the subgroup formed by the K, A € 2P. Consider
the subset 15 C 15 formed by the elements K_y, A € 2P;. It is easily seen to be an Ore
subset of Uy. Clearly Ty = TQ__ITQ_ and Card(T'/T,) = 2™.

Theorem 2.2. (1) Ui‘f = ®aear,ad (Ua)(K_»).
(2) Uy = TQilUAf[T/TQ], so Uy is free of rank 2™ over T{}Ui{.
(8) The ring Ui{ is (left and right) Noetherian.

Proof. These results are immediate adaptations to U1l4f of those for Uéf , proved in Theorem
4.10 of [53], Theorem 6.4 of [52], and Theorem 7.4.8 of [51], respectively (see also the sections
7.1.6, 7.1.13 and 7.1.25 in [51]). For (1) and (3) we refer to Theorem 2.113 and 2.137 in [80],
which provides simpler proofs. O

Remark 2.3. The summands in (1) are finite-dimensional U4-modules (by eg. (14) below),
so the action ad” is completely reducible on Ui{ . In fact, Ui‘f is the socle of ad” on Uy, and

by the theorem of separation of variables ([53, 51, 11], see also [80]), Uilf has an Uyx-invariant
subspace H such that the multiplication in U4 affords an isomorphism of Uj-modules from

H ®@¢(q) Z(Ua) onto U/l4f . In particular, Ui{ is free over Z(U4). Moreover, any simple finite
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dimensional Uj-module has in H a multiplicity equal to the dimension of its zero-weight
subspace.

Recall the RSD map ®1: O, — Uéf. By construction (.,.) induces a perfect pairing
(,.): 04 ®Ur — A. Let V_y be the lowest weight I'-module of lowest weight —\ € —P,
(ie. the highest weight I'-module V_,, \) of highest weight —wg()\), where wy is the longest
element of the Weyl group; note that —wy permutes the simple roots). Let v € V_y be a
lowest weight vector, and v* € V*, be such that v*(v) = 1 and v* vanishes on a I'(h)-invariant
complement of v. Define ¢_) € O4 by (¢Y_y,x) = v*(av), € I'. From the definition (4) it
is quite easy to see that

(13) Py (¥-n) = K ax.
Corollary 2.4. &y restricts on O4 to an isomorphism of Ua-modules ®1: Oy — Uilf and
an isomorphism of Ua-module algebras @1 : Eél — Ui{.

Proof. An elementary computational proof of this result in the s/(2) case is given in Section

5 of [28]. A proof of the general case can be found in Lemma 4.11 of [28]. It uses Theorem
2.2 (1). We point out an alternative proof in Remark 2.13 (1). O

Corollary 2.5. Let us denote d =¢_, € Eél. We have:
(1) The set {d" }nen is a left and right multiplicative Ore set in Lél. We can therefore define
the localization Eél[d_l].

(2) ®1 extends to an isomorphism of Ua-module algebras ®1: Eél[d_l] — T2__1U1l4f.

Proof. (1) Because LOAJ has no non-trivial zero divisors, d is a regular element. It is enough
to show that for all x € Eél there exists elements y,1y € Eél such that zd = dy and
dr = y'd. But ®1(2)®1(d) = ®1(2)K_2, = K_s,ad" (K2,)(®1(x)), and ad’ (Kz,)(®1(z)) =
1 (coad" (K2,)(x)). Therefore the left Ore condition is satisfied with y = coad" (K»,)(x).
Similarly one finds 3.

(2) Because @1(d) = K_o, = [[2, Lj_Q, localizing in d we obtain L? =[xz L,;2<I>1(d_1) =
D1([ 11y Vo, d71)) € Ql(ﬁél[dfl]). Therefore T,' C <I>1(£‘0471[d_1]), which implies the
assertion (2). O

Remark 2.6. When g = sl(2) the element d is the generator of Lo 1(sl(2)) appearing in (44)

below. In this case we had already shown in [28] that ®;: Eél[d_l] — U = TQ__lUAf is an
isomorphism of algebras.

Denote by C(p), u € PT, the linear subspace of Lo generated by the matrix coefficients
of V},, the U;-module of type 1 and highest weight p. The formula (13) can be used to prove
(see Section 7.1.22 in [51], or page 112 of [80]) that ®; yields the following linear isomorphism,
which illuminates the claim (1) of Theorem 2.2:

(14) (1)1: C(/L) — adr(Uq)<K_2wO(u)).

Working over the ground ring A one has to consider for V), the highest weight I'-module of
highest weight p. In that situation ®; affords an isomorphism from C(u)a = Enda(V,)" to
ad" (Ua) (K -2uwy())-

By (13) we have ®1(1)_,) = £~!, where as usual £ is the pivotal element of Us. Because
the latter has the elementary factorization £ = HTZI L?, this naturally raises the question of
the factorization of ¥_,. This question is considered in [54], where Lo 1(g) for g = gl(r + 1)
is analysed and quantum minors are extensively studied. Let us review here some of their
results in relation with ¢ _,.
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First note that for for g = sli(r + 1) the irreducible representation V_, of lowest weight —p

is isomorphic to the representation of highest weight V, because —wg(p) = p. By the Weyl

(2p,0)
a>0 (p,a)

Uq(gl(r+1)) is given, which differs from our presentation of Uy (sl(r+1)) only by its subalgebra
Uq(b), generated by 7 + 1 elements Ky, ..., K, ;. The inclusion Uy(sl(r + 1)) C Uq(gl(r + 1))
is such that K; = K?Ki_fl,i =1,...,r. The quantum minors, properly defined in [54], of the
matrix of matrix elements of the natural representation of U,(gl(r+1)) are denoted det,(A>)
for k = 1,...,7 + 1. We have det,(A>1) = 1 in the case of si(r + 1). Then [54] proves that
dety(Asy) = (Kg..K,41)?, and there exists an element K € U,(gl(r 4 1)) such that

K2 — detq(A>1) "dety(As>2)...dety(Asri1).

This has to be interpreted in the si(r + 1) case as K_o, = ®1(dety(A>2)...detq(A>r11)). As
a result this gives the equality

Y_, = dety(As2)...dety(Asri1).

Corollary 2.4 can be extended as follows:

formula the dimension of this representation is [] = 2N, In [58] a presentation of

Theorem 2.7. ®,, restricts to an isomorphism of Ua-module algebras ®,,: Eén — (Uff”)lf,

and it restricts to an isomorphism of algebras @, : Mén — (UI?")UA.

The proof relies on (10) and the expression of ®,, in terms of ®; and R-matrices (see [28],
Proposition 6.5 and Lemma 6.8).

In the case of g = sI(2) we proved in [30] the existence of elements £ e Eén (t=1,...,n),
and we defined an algebra locﬁén generalizing 564,1 [d_l] above, containing Eén as a subalgebra
and the inverses of the elements §(i). We showed that ®,, extends to locﬁén, and that
@n(locﬁén) = U%4(s1(2))®™. The key property of £® is

(15) B (€M) = (KHD ... (K1),

For general g we now describe a partial generalization of this result. Define elements fj(»i) €

Eén, fori=1,...,nand j=1,...,m, by

(16) &) =0 (M M) ()

where M]@ € End(V_wj)@JEén is the matrix of matrix coefficients 1®(i*1)®v_wj o ®18M—),
where {e;} is the canonical basis of weight vectors of V_ ., v is a lowest non-zero weight
vector of V_ ., and v* the associated linear form, vanishing on a I'(h)-invariant complement
of v. Similarly to (15) the elements §]@ satisfy

(17) (&) = (L) (L),

The elements 5]@ commute, and the argument in Corollary 2.5 (1) shows that {Ej(l)k tren is

an Ore subset of Eén. For ¢ > 2 this argument implies only that {gj(i)’f}keN is an Ore subset
of the subalgebra of Eén generated by the subalgebras E(()?T)L, a > i. Nevertheless, one can
show it satisfies the left and right Ore conditions in all of E(’in by using the exchange relations
(30) in the graded algebra Grg, (L’OAm) (see Section 3). For simplicity we omit the details, and
sketch hereafter the idea behind the resulting construction of the localization of EOAm with

respect to the elements §](i) .
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Let us explain the case n = 2. Since the elements fj(.l), j € {1,...,m}, are commuting
regular Ore elements of EOA’2 we can define the localisation of [{)4’2 with respect to the multi-
plicative sets {fﬁl)k}keN, o {€DRY . Denote it ﬁéQ [{5](-11)*1}]. Let us add new elements
1/](-11) such that (Vj(-ll))2 = §J(-11) and @2(1/](»3)) = (L;ll)(l)(Lj_ll)@). They are Ore elements, and we
can define similarly the localisation 56472[{1/](11)71}] (see Remark 2.10 for an explanation of this
additional construction). We want to define the inverses of the elements & J(»Z), je{l,...,m},

- 2)_ 1)— 1)— 2)_
and a new algebra £0[{¢]} " }][{&7) )] such that £85[{¢]) )] € £, l{g;) IR ]
and ®5 extends naturally to an algebra homomorphism ®s : CéQ[{§§i)_1}] [{5](22)_1}] — Uj?Q
such that @n(fj(z)) = (L]722)(2) for all jo € {1,...,m}. As in the sl(2) case described in [28],

this can be done by writing explicitly, for every jo € {1,...,m}, the exchange relations be-
tween the matrices M 3(11) and M ](22) involving fj(-z), for every j; € {1,...,m} (these matrices are

defined in (16)). Similarly, by replacing the elements & ](»3), fj(.z) with square roots V;l), VJ(»S) we

o - 2)_ 1) - 2)_
get a localization ﬁéQ[{I/j(ll) 1}][{1/](-2) 1] such that ﬁéQ [{I/J(»l) N c ﬁéz[{uj(-ll) 1}][{1/](»2) n
and P2 extends to an algebra homomorphism @, : £é2 [{Vjﬁll)*l}][{yj(-f)*l}] — U$? such that

<I>n(1/](-22)) = (Lj_zl)@) for all jo € {1,...,m}. This morphism of algebras will be shown to be
an isomorphism.

For any n > 2 we can proceed in the same way:

Definition 2.8. By iterating the above construction we define:
n)— n—1)— 1)—
toeLitn = L€ T HHEL T g ™,

oot Lt = L s T D=1 [t 1Y)

In—1
Lo . , : (@) A _
In the sequel it will be convenient to define invertible elements \/0; ~ € 100 Ly, fori=1,...,n

and 7 =1,...,m, satisfying Vj(i) = \/Sy) e \/gé-n), i.e \/géz) = V](-i)/uj(-iﬂ).

The elements \[5(1)

; are invertible, commute and satisfy

Theorem 2.9. &, restricts to an isomorphism of Ua-module algebras ®,, : locrﬁén — UE’”.

Proof. We know from Corollary 2.4 that ®; : Eén — Uilf is an isomorphism of algebra.

Using Ug = TQ_J'U%[T/TQ] and the fact that the image by ®; of the elements (\/ggl))il

generates the group T we get the result for n = 1. The result for ®,, is obtained by induction.
We have

v /
(id @ (I)n)(M(n)) = Ron Ry,
v
(id ® ®,)(M'Y) = (Ron . - . Roat1) RoaRb, (Ron - - - Roat1) "+, 1 < a <n.
|4
Because the matrix elements of (id ® ®,,)(M ™) generate 1"~ @ Uilf when V varies, the

image of (Eén)(")[{y](.:)_l}] by ®, is 1"V @ U,4. Since the matrix elements of Ry, and
Ry} are in 1%~Y @ Uy, they belong to @n(ﬁén[{yj(-:)_l}}) by the preceding remark. It

n
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v
follows that q)n(loclﬁén) contains the matrix elements of Ry !(id @ ®,,)(M ™ V) Ry, whence
the matrix elements of Ro,_1Rj,_;, and therefore the space 122 g Uilf ® 1. It contains

also the elements q)n(\/gg-n_l)) = (L;l)(”—l), S0 @n(lOClLén) contains 122 @ U, @ 1. By a

trivial induction we finally obtain that @n(loclﬁén) = Uffm. O

Remark 2.10. It is a natural problem to determine the image by ®,, of locﬁoA,m and it is

natural to expect that it would be (T, Uilf )™, because this is true for n = 1, as well as for
any n in the sl(2) case, as shown in [28]. Unfortunately this is not so. This comes from the
fact, eg. for n = 2, that the matrix elements of RoaRo1 Ry; Ros do not belong to (TQ__IUIZL{)®2
as can be shown by an explicit computation in the sl(3) case. This explains the reason why
we had to introduce the square roots VJ(-i) in the previous theorem.

Arguments similar to those mentioned at the end of Section 2.1 imply that the algebras
Eé ns M(‘i ,, and Ef)/m, ./\/164”:, ¢ € C*, have no non-trivial zero divisors (see [28], Proposition
7.1). By Theorem 2.7 the Alekseev map yields isomorphisms of Ugs-module algebras, and of
algebras for the latter,

(18)  @n: L5, = (UM @ oLl — US™, @ My — (UG5 € (US™)Ve

where we use the notations (12).

2.3. Perfect pairings. We will need restrictions on the integral forms O4(B;), Oa(B-)
of the morphisms ®*, ®~ in (2). We collect their properties in Theorem 2.11 and the
discussion thereafter. In order to state it, we recall first a few facts about R-matrices and
related pairings.

In [60, 61] Lusztig proved that the category of U%¢*-modules C7¢* ®4 Clg™/P] (ie. with
coefficients extended to C[g™"/P]) is braided and ribbon, with braiding given by the collection
of endomorphisms

Ra = ((Bn)v,w)v,weon(cres)-
Actually, (Rp)y.w is represented by a matrix with coefficients in gt/P Z[qil] on the basis
of V@ W formed by the tensor products of the canonical (Kashiwara-Lusztig) basis vectors
of V and W. The restriction functor C4 — C’\® is an equivalence of categories, so C4 ®4
(C[qil/ P] has the same braided and ribbon structure. This can be rephrased as follows in
Hopf algebra terms. Denote by Ur the categorical completion of I, ie. the Hopf algebra of
natural transformations Fp, — F¢,. Then Ur ®4 (C[qﬂ/ Pl is quasi-triangular and ribbon
with R-matrix A
Ra € UR? @, ClgTV/P).
As in (1), we can write
+ + +
Ri=) Ry ® Ry
(R)

There are pairings of Hopf algebras naturally related to the R-matrix R € [U?Q. What follows
is standard (see eg. [55, 56, 59]), for details we refer to the results 2.73, 2.75, 2.92, 2.106 and
2.107 in [80):

e There is a unique pairing of Hopf algebras p: Uy(b_)“"? @ Uy(by) — C(¢"/?) such

that, for every o, A € P and [,k € Uy(h),

p(Kkaoz) = q()\,a) ; p(E:EJ) = 6l,](ql - qz'il)_l ap(laE]) = P(E,k) =0.
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e The Drinfeld pairing : Uy(b, )P @ U,(b_) — C(¢*/P) is the bilinear map defined by
7(X,Y) = p(S(Y), X); it satisfies
T(Kn Ko) = ¢ (B, F) = =6i(qi— ;)" 7(LF) = 7(Ej k) = 0.

e pand T are perfect pairings; this means that they yield isomorphisms of Hopf algebras
iv: Uy(by) — Oy(Bz)op (with coefficients a priori extended to C(¢/P), but see
below) defined by, for every X € Uy(by), Y € Uy(b_),

(i(X),Y) =7(5(X),Y), (i—(Y),X) =7(X,Y).
Since Oy(B=)op is equipped with the inverse of the antipode Sp, of Oy(B=), it follows
that i 0 S = Sé; o 14.
e Denote by pi: Oy(G) = O4(B4) the canonical projection map, ie. the Hopf algebra

homomorphism dual to the inclusion map U, (b+) < Uy(g). For every a, 5 € O4(G)
we have

(19) (a® B,R) = 7(i" (p-(8)),i= (p4(a)).

Note that it is the use of weights o, A € P that forces the pairings p, 7 to be defined over
(C(ql/ b ), instead of C(g). Then, let us consider the restrictions ﬂ;r of p, and 7 of 7, obtained
by taking o € Q and [ € Uy(h), k € Ugd(h). They take values in C(q), and define pairings

Ty s Ug(b-)™P @ Ug?(bsy) = C(q) , m, = Ugl(b+)™F @ Ug(b-) — C(q).

By the same arguments as for p and 7 (eg. in [80], Proposition 2.92), it follows that W;t
are perfect pairings. Note also that m, = ko w; o (k ® k), where K is the conjugate-
linear automorphism of Uy, viewed as a Hopf algebra over C(¢) with conjugation given by

k(q) = ¢~1, defined by
(20) K(Ei) = F; , k(Fy) = Ei , i(K)) =K x, w(g) =q "
In [42], De Concini-Lyubashenko described integral forms of qu as follows. Denote by
m*: Og = Oa(Bt) @ Oa(B-) the map dual to the multiplication map I'(b;) ® I'(b_) — T,
som* = (py @ p_) o Ap,. Let Us(H) be the sub-Hopf algebra of Uy (b_)“? @ Ua(by)“?
generated by the elements (i € {1,...,m})
1K, 'E;, FK;®1, L' o L.

Note that U4 (H) is free over A, and that a basis is given by the elements

Fgf e FgNNKnlﬁl-l—.---&-nNﬁNK)\ ® K—)\K—Plﬁl-n—PNﬁNEgl s ng

1
where A € P and nq,...,nyN,p1,...,pN € N.

Recall the lowest weight I'-module V_y, A € P, the lowest weight vector v € V_j, the
dual vector v* € V*,, and 1_) € O4 (see before Corollary 2.4). For every positive root «
define elements ¢,,9"% € O4 by the formulas (where € T', and we note that the root
vectors E,, F, € T):

(Y25, ) =v"(xEav) , (VI3 7) = v* (Faav).
Consider the maps jgcz Oy(Bx) — Uy(b5)P defined by
<Oé+,X> = W;_(J;(Q‘F)aX) ) <Oé,,Y> = ﬂ;(](l_(a,),Y)

where ax € Og(Bs), X € Ui (by), Y € U (b_).

The following theorem summarizes results proved in the sections 3 and 4 of [42
the sake of clarity, let us spell out the correspondence between statements. First, 7

]. For
Jr —_
q> Mg



20 STEPHANE BASEILHAC, PHILIPPE ROCHE

Uy(65)P, Ua(bx)°P?, Oa(By), Ua(H) and J are denoted in [42] respectively by 7", 7",
Uy(05)op, Ry[B+]”, Ry[B+], A” and p”. Also, the definition of j% is implicit in the section
4.2 of [42], and the formulas in Theorem 2.11 (3) are related to those in Lemma 4.5 of [42] by
observing that their generators E,- and ﬁ’i are respectively K 'E; and F,K; in our notations;
this also explains the appearance of g;, q; Lin the formulas in (3). Finally, x in (20) maps E;,
F; to —F;, —F;, whence the sign for the expression of J (@Z)giﬂj).

Theorem 2.11. (1) 7T;t restricts to a perfect Hopf pairing between the unrestricted and
restricted integral forms, w5 : Ua(bx)*? @ T(by) — A.

(2) j;t yields an isomorphism of Hopf algebras jf: Oa(Bx) = Ua(b5)P, satisfying (o, x4) =
ma(jx(ax), ax) for every ax € Op(Bx), 1 € T'(by).

(3) The map J = (j5 @ jy)om*: Og = Ua(H) C Ua(b_)? @ Ua(b4)° is an embedding
of Hopf algebras, and it extends to an isomorphism J: Oz [wj;‘)] — Us(H). In particular it
satisfies (where A € Py ):

JW-a) = K@Ky, JW) = =660 @ LK By, JW23) = 6i5q; FEGLT' © Li.

For our purposes it is necessary to reformulate this result. Consider the morphisms of Hopf
algebras ®%: O (Bx) — Ua(b£)°?, a = (a @ id)(RY).

Lemma 2.12. We have &+ = jj.

Thus, the theorem above tells us that T is an isomorphism of Hopf algebras, such that
(ag,7s) = 15 (D5 (ax),24) for every ar € O4(Bs), z+ € I'(bs). Moreover, changing the
notation J for ®,

(21) ®:= (Pt @& )om*: Oy — Us(H) C Ua(b_)P @ Us(by)e?

is an embedding of Hopf algebras, and it extends to an isomorphism ®: O 4 [1/1:})] — Ua(H)
which in particular satisfies:

(22) O1(on) = K on, @1(¢0%L ) = 6L 2By, @102 = bijq; ' FEGL .

Proof of Lemma 2.12. By definitions, for every X € Uy(by)“?, Y € Ugd(b_) we have
(i (S7HX)),Y) = 7, (X,Y), and similarly for every X € Ugd(b+), Y € Uy(b-)“? we have
(i_(S7I(Y)),X) = ﬂ';— (Y, X). By keeping these respective notations for X and Y, we deduce
iy (i (571 (X)) = X and j (S (¥)) = Y, e

4+ 1

(23) jE=Soizl
Because Sai o0i4+ = i4 0.5, it follows that
(24) Jg 0 So, =50y
Also, for every a_ € O4(B_) we have

(a—, @F(i(V))) = (i—(Y) ® a—, R) = 7(i7" (a-),Y) = 7, (jg (So,(a-)),Y) = {a—, S(V))
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where the first equality is by definition of ®* (see (2)), the second is (19), the third follows
from (24), and the last from the definition of j, . Similarly, for every o € O4(B+) we have

{ag, @7 (14 (X)) = (i (X) © oy, RT)
= (a4 ® Sp, 0 i4(X),

= Oé+®1+( (X)), R)

T(S(X), 1= (ay))

m (SG (0)), S(X)) = 77 Gif (004), (X)) = oy, S(X)).

These computations imply ®* = § oi:_F1 = jqi, and the result follows by taking integral forms.
O

R)

Remark 2.13. (1) Since ®; = mo (id ® S™') o ® and Im(®) C Ua(b_)P @ Ux(by)*?,
®1(04) C Uy. Because ®1(0,) = U, f, we have also ®1(04) C Ujl4f. The converse inclusion
®,(04) D Uif holds true as well, since ®1(0,) = Uéf and Oy is an A-lattice of O,.

(2) The components of R may be described explicitly: if {&}; is a basis of T'(by) (say, as
obtained in section 3 of [42]), one can determine the dual basis {{;}; of Ua(b_) by using
the perfect pairing WX; then Rj" = > ,& ®¢& . Note that, like Uf‘d is contained in I', Uy, is
contained in the restricted integral form of U,, whose categorical completion is Ur ®(C[qi1/ b ]
Therefore the components & of R} can be viewed as elements of Ur ® C[g*/P]. This is
compatible with the fact that R} is an element of U?Q ® Clg*Y/P).

(3) The dualities of Theorem 2.11 (2) afford a refinement defined over A of the quantum
Killing form r: Uy ®c(q) Uy — C(q"/P) (studied eg. in [80], Section 2.8). This form is the
duality realizing the isomorphism ad"(Ua)(K _gu, () = Enda(aV,)" stated after (14).

2.4. Structure theorems for U. and O.. As usual we denote by € a primitive [-th root of
unity, where [ is odd, and coprime to 3 if g has Go-components.

Let G° = B, B_ (the big cell of G), and define the group
H = {(ust,u_t™),t € Tg,us € Us}.

Consider the map

c: BpxB. — G°
(by,b) +— bybl.

The restriction of o to H is an unramified covering of degree 2™. It can be seen as the
classical analog of the map m o (id @ S71): O (B4) ® O(B_) = O(G).

Denote by Z;(U) the image of Z(U,) in Z(U,) under the specialization map U, — Uk,
and by Zy(U.) C U, the subalgebra generated by Eék, Fék, L;H, for k € {1,...,N} and
i € {1,...m}. In [38], Section 1.8-3.3-3.8, and [40], Theorem 14.1 and Section 20-21, the
following results are proved:

Theorem 2.14. (1) U, has no non-trivial zero divisors, Zo(U) is a central Hopf subalgebra
of Ue, and U, is a free Zo(U)-module of rank 198 - Moreover U, is a mazimal order of its
classical fraction algebra Q(U.) = Q(Z(Ue)) ®zw.) Ue, and Q(U.) is a central simple algebra
of PI degree IV.

(2) Mazspec(Zo(U,)) is a group isomorphic to H above, and the multiplication map yields an
isomorphism Zy(U) @ zynz, Z21(Ue) = Z(U).
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It follows from (1) and dimg = m~+2N that the field Q(Z(U,)) is an extension of Q(Zy(Ue))
of degree I". Conversely, this degree and the rank of U, over Zy(U,) imply that Q(U,) has
PI degree V.

As for (2), note that Zo(Ue) being an affine and commutative algebra, Maxspec(Zy(Ue)),
viewed as the set of characters of Z,(U,), acquires by duality a structure of affine algebraic
group. Thus, the first claim means precisely the identification of this group with H.

In addition to (2), Maxspec(Zy(U¢)) and H have natural Poisson structures, that the
isomorphism identifies. Moreover we have the following identifications (see [40], Section 21.2).
Consider the I"™-fold covering Tz — T¢. Recall that T is the group formed by the elements
Ky € Ua, A € P. We can identify T" with the additive group P, Ua(h) = C[T] = C[P] with
O(Tg), and therefore Zo(U.) N U.(h) = C[IP] with O(Tg). The quantum Harish-Chandra
isomorphism then identifies 2, (U,) with C[2P]"Y = O(T5/(2))", where we denote by (2) the
subgroup of 2-torsion elements in Tz. Composing o: H — G° with the quotient map under
conjugation, G — G — G//G, we get dually an embedding of O(G//G) = O(G)% in O(H).
The isomorphism of Theorem 2.14 (2) then affords identifications

ZO(Ue) N Zl(Ue) = O(G)G
as a subalgebra of Zy(U.) = O(H), and
Z0(Ue) N 21(Ue) = CRAPIY = O(Te/(21)" = O(Te/(2)Y

as a subalgebra of Z,(U,) = O(Ta/(2)".
A result similar to Theorem 2.14 holds true for O.. Namely, take the specializations at

g = € in Theorem 2.11. Denote by Z¢(Uc(H)) the subalgebra of U.(H) generated by the
elements (k € {1,...,N},i € {1,...m})

1® K—lﬁkElBk 5 F/ékKl,Bk ®1, L;H ® L;Fl‘

It is a central Hopf subalgebra. Recall that O(G) can be realized as a Hopf subalgebra
of U(g)°, the restricted dual of the envelopping algebra U(g) over C. In [42] De Concini-
Lyubashenko introduced an epimorphism of Hopf algebras n : T'c — U(g) (essentially a
version of Lusztig’s “Frobenius” epimorphism in [60]). Let us put

(25) Z0(0e) == n"(0(G))
where n*: U(g)° — I'¢ is the monomorphism dual to 7.

Theorem 2.15. (1) Zy(O,) is a central Hopf subalgebra of O, C I'¢, and Q(Z(O,)) is an
extension of Q(Z0(O)) of degree I if I is coprime to the coefficients of the Cartan matrix
of g.

(2) _ip, € 20(0c), and Zo(Oc) is generated by the matriz coefficients of the irreducible
['-modules of highest weight I\, X € Py. Moreover, the map ® in (21) affords an alge-
bra embedding Zo(O.) — Z0(Uc(H)) and algebra isomorphisms ZO(OE)[w:llp] — Z0(U(H)),
Oe[@b:llp] — Uc(H). )

(8) O, has no non-trivial zero divisors, and it is a free Zo(O,)-module of rank 198, Moreover
O is a mazimal order of its classical fraction algebra Q(O) = Q(Z(O.)) @z(0,) O, and
Q(O,) is a central simple algebra of PI degree 1™

For the proof, see in [42]: the proposition 6.4 for the first claim of (1) (where Z5(O,) and
Z0(Ue(H)) are denoted Fy and A respectively), the appendix of Enriquez and [46] for the
second claim of (1), the propositions 6.4-6.5 for (2), the theorem 7.2 (where O is shown to
be projective over Zy(O,)) and [25] (which provides the additional K-theoretic arguments to
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deduce that O, is free), or Remark 2.18(b) of [6], for the first claim of (3), and the theorem
7.4 for the second claim.

As above for Uk, it follows directly from (3) that Q(Z(O,)) has degree I"* over Q(Z0(O)).
A complete description of Z(O,) is obtained in [46] and Enriquez’ Appendix in [42]. We do
not know a basis of O, over Zy(O,) for general G, but see [43] for the case of SLy. We will
recall the known results in this case of S Ly before Lemma 4.3.

There is a natural action of the braid group B(g) on O, that we will use. Namely, let
n; € N(T¢) be a representative of the reflection s; € W = N(T)/T¢ associated to the simple
root ;. In [77, 76] Soibelman-Vaksman introduced functionals ¢; : O4 — A which quantize
the elements n;. They correspond dually to generators of the quantum Weyl group of g; in the
Appendix we recall their main properties (see also [35], Section 8.2, and [55, 77, 59, 56, 42]).
Denote by <1 the natural right action of functionals on O 4, namely (using Sweedler’s notation)

a<lh= Z h(a(l))a(g)
(@)

for every @« € O4 and h € O4 — A. Let us identify Zy(O.) with O(G) by means of (25). We
have ([42], Proposition 7.1):

Proposition 2.16. The maps <t; on O, preserve Zo(O¢), and satisfy (f < t;)(a) = f(n;a)
and (fxa) <t; = (f <t;)(a<t;) for every f € Z5(O,), a € G, a € O,.

We provide an alternative, non computational, proof of this result in the Appendix (Section
6.2).

3. NOETHERIANITY AND FINITENESS

In this section we prove Theorem 1.1. Recall that by Noetherian we mean right and left
Noetherian.

Theorem 3.1. The algebras Loy, Eén and Eglyn, e € C*, are Noetherian.

Let us note that the algebras in this theorem are generated by a finite number of elements
over their respective ground rings C(q), A and C. Indeed, by the formula (6) it is enough
to verify this for Eél, but 564,1 = 04 as a vector space, and O4 with its product * is
well-known to be finitely generated by the matrix coefficients of the fundamental I'-modules
AV, k€ {1,...,m}. Then the claim follows from the formula inverse to (3), expressing the
product * in terms of the product of Ly (see (18) in [28]).

Proof of Theorem 3.1. The result for £y 1 and Eél follows immediately from Theorem 2.2

(3) by identifying Eél with Ui‘f via ®1. Assume now that n > 1. We are going to develop the

A

proof for Lo, ; the arguments can be repeated verbatim for £y ,,, and the result for z:g’,n will

0,n>

then follow immediately by lifting ideals by the quotient map Eén — Ef):n = Eén / (q—e')ﬁén.
Recall the isomorphism of Uj;-modules (see (11)):

q>n n 111771 n n
(26) Lon =2 (Ug(9)®™) 2 UL (9)®" = U (g°)

where [f means respectively locally finite for the action ad], of U,(g) on U,(g)®", locally
finite for the action ad” of Uy(g) on Uy(g), and locally finite for the action ad” of Uéf(g@")
on itself. It is a fact that Theorem 2.2 (3) holds true by replacing Uéf (g) with Uéf (g®™), but
one cannot use this to deduce the result because 1, is not a morphism of algebras. However,
one can adapt the arguments of the proof of Theorem 2.2 (3) given in Theorem 2.137 of [80].
Let us begin by recalling these arguments.
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As usual let C'(1) be the vector space generated by the matrix coefficients of V},, the simple
Us-module of type 1 and highest weight u € Py. Denote by C(u)x C C(p) the subspace of
weight A for the left coregular action of Uy(h); so o € C(p)y if

K,ba=q¢"Ya,veP
Consider the ordered semigroup
A= {(n,\) € Py x P,\is a weight of V,,}

with the partial order (u, A) < (¢, \') if and only if 4/ —pu € Py, N — X € Py. Since Ly and
O, are isomorphic vector spaces we have Lo1 = @,ep, C(1) = D, 2)en C(1)r. Consider
the filtration F» of the vector space Lo1 given by the family of subspaces

Fr= P Cl)n . (mN) eA
(W N)<(p,A)
Denote by Grz,(Lo,1) the associated graded vector space. The standard vector space isomor-
phism L1 — Grr,(Lo,1), assigning to z € C(p)y its coset T € ff’)‘/ (@(u’,/\’)<(u7k)c(ﬂl)>\/)a
implies
Grry(Log) = B unen Ca-
Now, one has the following facts:
(i) First, taking the product in Lo ; we have

(27) af € FTrNTR g e Cpr)ay, B € Clu2)ry

Therefore F» is an algebra filtration of Lo 1, and Grz,(Lo,1) a graded algebra. Denote by
a o f the product in Grg,(Lo1) of a, 8 € Lo1; by definition, if & € C(u1)y,, B € C(p2)r,
then avo (3 is the projection of af onto C(p1 + £2)a;+x,-

(ii) Second, denote by * the product x of O, followed by the projection onto the component
C(pu+v). Then we have

(28) C(n) o Cv) = Clu) % Cv) = Clp+v).

(iii) Finally, for every p € Py fix a basis of weight vectors e/, ..., ek of V,. Denote by

rm

e}u cosey € V: the dual basis, and by w(el') the weight of e!'. One can assume that the
ordering of ey, ..., ef, is such that w(e;’) > w(e}) implies i < j; indeed, e} generates the

subspace of weight g, then come (in any order) the e such that w(e!') = u — a; for some

s, then those such that w(e!') = u — as — a4 for some s and ¢, etc. Consider the matrix
coefficients , ¢! (z) := ez(wv(x)(e?)), x € Uy. By (3), using the explicit form of the R-matrix
it can be shown that

m k (-1 m
(29) VB © u bl = Qiht u®] 00O =D D D N SN, LYo L6k

r=t s=1u=1v=j5+1

m  k—1
— Z Zqijm?skl u¢f~ o u¢é
r=i+1 s=1
where g = q(w(Q?Hw(e?)’w(e%)_w(e?)), and 478§k < C(q'/P) are such that v = 0

unless w(et) < w(el') and w(e?) > w(e}), and 6% = 0 unless w(e’) > w(e}), w(el) < w(el),
w(ey) < w(ef) and w(ey) = w(ey).

By (28) (or more simply by using (3), as observed before the proof), Grz,(Lo,1) is gen-
erated by the matrix coeflicients wkgbg of the fundamental representations Vg, . One can list



UNRESTRICTED QUANTUM MODULI ALGEBRAS, II 25

these matrix coefficients, say M in number, in an ordered sequence uq,...,ups such that the
following condition holds: if w(ey™) < w(ef™), or w(er™) = w(ef™) and w(e™) < w(ef™),
then u, = wqf) and up = wgbk satisfy b < a. Then denoting u¢z7 l,gbk in (29) by u;, u
respectively, and assuming u; < u;, one finds that all terms u, := ,¢,, Mqﬁi in the sums are
< uj. Therefore, for all 1 < j < ¢ < M it takes the form:

-1 M
(30) U; O Uj — ijUj O Uj = Z Z af;us xm

s=1t=1
for some ¢;; € (C(ql/D)X,ath- IS (C(ql/D). By Proposition 1.8.17 of [23] (see also Proposition
2.133 of [80]) an algebra A over a field K generated by elements w1, ..., ups such that

st st
(31) Ui © Uj — QijUj O U = E E ajjus o ug + B ug o us
s=1 t=1

for all 1 < j < ¢ < M and some ¢;; € K* and af;, f]t € K, is Noetherian. In fact A has
an algebra filtration, say Fs3, such that Grz,(A) is a quotient of a skew-polynomial algebra,
and thus is Noetherian. Moreover, it is classical that a filtered algebra which graded algebra
is Noetherian is Noetherian too (see eg. [69], 1.6.9-1.6.11). Applying this to A = Grz,(Lo,1)
and going up the filtration F5 it follows that Lo ; is Noetherian too.

We are going to extend all these facts to Lo ,. The main point is to generalize the filtration
Fa, which we do first. Consider the semigroup

[A] = {1, [\]) € P x P™ | (pi; i) € A where [p] = (pi)izy, [N = (Ai)iz } -
Put the lexicographic partial order on [A], starting from the tail: so ([¢], [N]) < ([u], [\]) if
pn — iy, € Py \ {0}, or py, = g, and N\, — X, € Py \ {0}, or there is k € {n,...,2} such
that p; = p, \i = X; for i € {n,... .k} and pp_1 — pj_q € Py \ {0}, or 1 = pj_; and
Ak—1—Ap_1 € Py \ {0}, replacing this last condition by A\; —\] € Py when k = 2. Now recall
that Lo, = Lgﬁl = (’)g@" as vector spaces. For every ([u],[\]) € [A] consider the subspaces
C([u))py € C([u]) € Lo defined by

C(lu) =C(m) @ ... @ C(u)
C([u)py = Clp)r @ ... @ Cun)a,

Then Lo, = @y Clu) and Cl(u)) = By peqy Ol . For every (ul, ) € [A]
define

(32) e R <> B e I e(T)
(WD (], A) 5=1
Clearly ]-"2[“/}’[)‘/} ]:[“]’m for ([1'],[N']) < ([u], [\]), and the vector space Lo, is the union of

the subspaces F, L, [A ] over all ([, [A]) € [A], so these form a filtration of L ,,. Let us denote
it Fo, as when n = 1. As usual, write ([¢'],[N]) < ([u],[\]) for ([1'], [)\/]) < ([u],[A]) and

([t'], IN]) # ([u], [A]), and put
]_—2<[#L[/\] _ Z ]:Q[M/HX]‘
([T, IND <([1].[A)
Then define

7)\ 7)\
Grr,(Lon) ) = }-Q[NH ]/]_—2<[u][ ]
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This space is canonically identified with C([u])y), so the graded vector space associated to
Fo is

(33) Grr(Lon)= P Gralo)uymw= P Cluy:

(Iu],[A)elA] (lu],[ADEA]

We claim that F» is an algebra filtration with respect to the product of Lo ,, and therefore
Grr,(Lon) is a graded algebra.

For notational simplicity let us prove it for n = 2, the general case being strictly similar.
Recall that the product of Ly, is given by the formula (6). Take ([u], [A]), ([&'],[N]) € [A],
and elements a ® 8 € C(u1)x, ® C(u2)r, and o/ ® §' € C’(,u,ll)X1 ® C(ug)/\/z. The R-matrix
expands as R = OR, where © = qzzljzl(Bfl)iJH@Hj € U2?, with B € M,,(Q) the matrix with
entries B;j := dj_la,-j, and R = >R R(l) ® R(g) € Uy(ny) @ Ug(n-) (see eg. [35], Theorem
8.3.9, or [80], Theorem 2.108). If x, y are weight vectors of weights u, v respectively, then
Orz®y) = ¢") 2 ® y. Moreover, R has weight 0 for the adjoint action of U, 4(h); that is,
complementary components R( 1) and R( 2) have opposite weights. Note also that the coregular
actions >, < fix globally each component C'(u), u € Py. Then, for every v € P and any of
the components R%Q), e R?Q) we have

K,,D(S(R%) )>5<R2)R ) Zﬁ )<KS(R(2)R )Dﬁ )
=0t 3 g )(ﬂR@Raﬂ@>ﬂ@)
(8),(B)
= ¢A2=7) Z B )(S(R%Q)R?Q)) D/3(2))
(8),(B)

= ) (S(Rly RYy) > 5 < B R, )

for some positive root v € Q4. Therefore S(R%Q)R?Q)) DBQR%Q)R?Q) € C(p2)r,—~; by a similar
computation we find that S (R?1)RE11)) >a’ < R%DR%) € C(u))x; 4 for the complementary
components R%l), . ,R‘(ll). Then we always have S(R( ) (2)) > ﬁ < R2 R(Q) E ]:52&, and if
product of Ly, is componentwise that of Lo 1, by (27) we have

! ’)\ A/
(34) (S(R:(LQ)R?Q)) > B < R%Q)R‘é)) B/ c fSLerMg 2+Ay
and if (S(Rly R%)) & B < Ry Riy)B € Clpiz + 1)1+, then
(35) (S(R? )R(l)) > o’ < R( )R(1)> € C(MI)AIC(/’LE))\’I C ]:'51"1‘#1,)\14—)\1.

In conclusion
(a®B) (o ®8) e FyI.

Similar arguments work for any n > 2. This proves that Grr,(Loy) is a graded algebra
with the product inherited from Lg,, which we denote by o,. Recall that it is defined on
homogeneous elements o @ 3 € Gz, (Lon) [,y @ @ 8" € Grr,(Lon) v by

a@Bona ®F = (awp)a @ B) + Fy IR,
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Next we show that (28) mphes the same property for the product o of Grz,(Ly,). First
it gives (C(u1) o C(p})) ® (C(p2) o C(py)) = C([1+ 1']). Now, by the previous remark and
(34), (35) we have

C([1) on C([1]) € (Clp1) 0 C 1)) ® (Clp2) © C(u3)) -
The converse inclusion holds true as well, as one can see by reasoning as above, starting with

the standard (componentwise) product of E%%Tf expressed in terms of the product of Lo, by
the formula (8). In conclusion

(36) C([u]) on C(I) = C([u + ).

We are left to show that (29) generalizes to Lo ,. Again we note that this cannot be deduced
from the case n = 1, because for the vector space isomorphism Grz,(Lon) — Grz,(Lo1)®"
induced from the equality Lo, = Eg%? is not a morphism of algebras with respect to the
products o, and o®". Therefore one cannot take the filtration on Grx,(Lo ) which is com-
ponentwise F3, and that we will denote again by F3, to deduce that Grz,(Grz,(Lon)) is
a quotient of a quasi-polynomial algebra, whence Noetherian. However, we can proceed in
essentially the same way. We give the details when n = 2, the general case being similar. Let
us write the twist F' in (7) as

F=) Fu®Fg =Y Fuju®Fu)2®Fay @ Fap
(F) (F)

that is, setting Fi1y, := Riy Ry, F1)2 := R{g)Ry), Flay := Ry R{y), Flay2 == RYyR{y). Keep
the notations of (29), and put d(u) := dim(V}), p € Py, and

d(ug) p (1) / p
2 loy _ P l 2 _ D !
AP ) = D jadh, © by © w0 s AP (4a0) = D 4o © by © o).
p,S::l p/75,:1

Assume that u’qu%’z < mgzﬁ% and u’1¢§;1/1 < Mqﬁgl. From (6) and then (29)-(30) in the second

equality, one obtains

I l2 1 ly
<#1 ¢k1 ® #2¢k2) 02 (/‘/1 ¢k’1 @ #'g(bk;é
d(ug)  duh)

=30 X (w0 09y (gl Flan)g 85(S(Fia))) )

(F) pys=1p’,s'=1

® (1285 0 05, (b (Fy)a 82 (S(Fye)) )

d(pg)  d(p)

s’ / !
= Z Qp's'k1ly khi,ps (u’l ¢p’ © py ¢§€11 (;ﬂl qbi/l (F(Q)l)ull CZ)SI/ (S(F(Q)Q)))>

(F) p,s=1p/ s'=1

1 s
® (81, © 123 (1 h, Flp)a 82 (S (Fpa))) ) + -
Here the dots are sums of tensors of the form (z; o z2) ® (y1 o y2) where z; < Hzlqbzl,l and
< u’2¢§ff2' In fact, by the expression of R = ©R we have ung,@( 1)1)u2¢s (S(Fy2)) =0
unless ko > p and s > [y, and '¢k/( (Q)I)M/lgblsll/(S(F(Q)Q) =0 unless K} <p and s’ <1}. It is
1
immediate that ,, ¢, € C’(,ug) (¢2)- By definition s > I implies w(ef?) < w(ep?), and by (27)

1 1

if w(ef?) < w(e’) then /gbk, PN ES .7-'2<“2’)\ where gy 1= g + iy, Ay == w(e)’) +w(e§f22).
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In that case the term (, ng;/, Omﬁb;gll) ® (u QZ)ZZ 0 4, $p) in the sum above vanishes in Grz, (Lo 2)-

Moreover, the computations before (35) show that such a summand achieves the maximal

weight w(eﬁ1)+w(651)+w(el2 )+w(ey, ) only if w(el}) = w(e)') and w(ek?) = w(e),’), which
1 1

occurs when F{y)s, Fz)2 have no component of R but only of ©. Also, if p = k2, s = Ia,

p' =k}, s =1 then

K, v

§jm¢ 1202 (S (Fi1)2)) 1, b5t (Fiay)s & (S(Fapo)
_ ko l2 k4 1 0:0710,,071
- u2¢k2 ® u2¢12 ® u’1¢kg b2y ui¢zg’ 13%Y914 Y24Y93

4 7
_ q(w<e:§>—w<e;‘;> weg)-wiehh)
Denoting by q,’wl2 K this scalar, it follows
I I [l [
(s 8 @ 120, ) 02 (1401, © 10, )
I 1 1 1
= Wy kaly Dplykals Dhptokl 1t ((,/léf)klfl o méf)kll) ® <M/2¢,f/2 o u2¢;f2>>

ko—1 d(ry)
AR 4 ! 1 !
* Z Z Ok p ((u’lqbpl’ °u1¢k11) ® (ué¢1c2’2 © #2%2)) +
p=1 p'=k{+1
I l1l l2 1/D . l’llll'2l2
for some scalars « ,k k, € C(¢'/”), with the dots as above. Moreover s kp = 0 unless
2
w(eh?) > w(ep?) and w(e Z1) < w(e’,:}). Now, recall (8). In a similar way we find for all
1
pefl, ...k}, p' € {K\, ..., d(p})} that
1 1
(u’ﬁﬁpl’ Ou1¢k11) ® ( ¢k' © p2 p)
d(py) dluh)

=33 3 (w9 @l (ks (Fon)udd (5(Fap)))

(F) mit=1r"t'=1

02 (10 (11 0h, (P81 (S(Fye)) @ pudh)
= Q;clllk’zlé_l ((u'ﬁ?f ® ¢Z2/) 02 (m ¢l @ mﬁbb)

kl 1 d(#) , ,
z z zllQ y A l l
#3030 (o) ©0l) o2 (el @
= / kl +1

/

for some scalars /BIZJ f?f;f € C(¢"/P) such that ,B;lf?lrf 0 unless w(ek') > w(el; ey, ) and w(eff?) <

wi(el €k ) Summing up we obtain
1 lo 4 1
B ¢k1 @ pug ¢k2 o2 \ w4 ¢k' D ¢k’

-1 1 ly L l2
= QKL Ryl DKL Kalo qk}zlgk‘ ! qklllk’ 1 <(u’1¢k’1 ® u§¢k’2 02 M1¢k1 ® N2¢k2
k‘z d( Ml) k‘l 1 d H/

l lll/ 12 llll/2l112 lll ll2 ll 12
+ZZ Z Z /klk prrp u’1¢p/®u’2d’r' 02 \m @ @y | | + -

p=1p/'=k] r=1 r'=kl+1
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14 lll/ 12 /
ek = ARk R Ukals Dyl 11> and the dots are sums

. Y
where at p = ko, p' = k] we set Okt ki ko

of tensors of the form (z1 ®y1) 02 (z2 ® y2) where y1 < gb%, . Recall that in (30) we denoted
2

by wu1,...,up the ordered list of matrix coefficients o, d)f Let us order in a lexicographic

(2) (2)

way the elements u; ® uj, ie. as a sequence uy™’, ..., u, />

holds: if o, bl < o, &, OF w,0b = o, ¢’ and o dt < o d?, then u® = o ¢ @ o, &)
olds: wy Py w Piry O w, Py = w, Py A @ Ps i, Pi s €N Uy " = w, P; w Py

and ul(f) = 0L ® oy <Z>';l, satisfy ul(,2) < ug). Then, by the conditions ensuring when ozi},;lllzi;

AN
and B,,7,,
u? = P @ Lo u? = /gblll ® /gblé At the beginning of this computation we
i T Py PPy Uy T Py Py g g p

such that the following condition

are non zero, the last identity takes the form of (30) by replacing u;, u; with

assumed qﬁijé < mqﬁ% and d);l,l < quggll, but the same result occurs (in a simpler fashion)
if (;522,2 = mgf)ﬁé and (;521,1 < mgbi}l, so eventually we find that (30) holds true for all cases

2) 2) 2
1< u§ < ug < M*“.

As in the case of Ly 1, by using Proposition 1.8.17 of [23] one can therefore conclude that
there is a filtration F3 of Grz,(Lo ) such that Grz, (Grr,(Lox)) is a quotient of a quasi-
polynomial algebra, and finally that Lo, is Noetherian. O
Theorem 3.2. The algebra My, = Eg’zl (respectively Mén, and M, € € C* ) is Noe-

o,n

therian, and generated over C(q) (resp. A, C) by a finite number of elements.

Our method of proof follows closely that of the Hilbert-Nagata theorem (see [37]). Let us
recall one version of this theorem, which is enough for our purposes. Let A = K]Jaq, ..., a,] be
a finitely generated commutative algebra over an arbitrary field K, and G a group of algebra
automorphisms of A.

Theorem 3.3. If the action of G on A is completely reducible on finite dimensional repre-
sentations, then the ring A® of invariants of A with respect to G is Noetherian and a finitely
generated algebra over K.

We recall here the main steps of the proof that we will adapt in order to prove Theorem
3.2:

(a) From the complete reducibility of the action of G on A one can define a linear map
R:A— A%

namely the projection onto the space of invariants along the space of non-trivial isotypical
components of A. This linear map is called the Reynolds operator; it satisfies

(37) R(hf) = hR([)

for every f € A, h e AY.

(b) Let I be an ideal of AY. Then I = R(AI) = AI N A®. Because AI is an ideal of A,
and A is Noetherian, there exist elements by, ..., bs, that can be chosen in I ¢ A%, such that
Al = Aby + ...+ Ab,. Since I = R(AI) = R(Aby + ...+ Ab,) = A% + ... + A%, I is
finitely generated over A®. Therefore A® is Noetherian.

(c) Let B be an algebra graded over N (for simplicity of notations): B = @;-% B, with
By,.B,, C Bpin. The augmentation ideal of B is BT = @:r:olo B,,. If BT is a Noetherian
ideal of B, then B is a finitely generated algebra over By. This is Lemma 2.4.5 of [75] (in
that statement B is commutative, but this hypothesis is not necessary for the proof).
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(d) Assume that A is graded over N (for simplicity of notations): A = @ AS with
A§ = K. Then AS+ = @ AG is an ideal of A®, which is Noetherian by (b) above.
Applying (c¢) we deduce that A% is a finitely generated algebra over K.

Proof of Theorem 3.2. As for Theorem 3.1 the result for /\/l < follows from that for MOA,n
and My ,,, which are proved in the same way. Let us con81der Mo,n- Consider the filtration
F of Lo, by the subspaces

Fil— @ o)), ue P
(11<[1]
where P is given the lexicographic partial order induced from [A]. It is easily seen that F
is an algebra filtration: the coregular actions >, < fix globally each component C(u) of Lo 1,
so the claim follows from (3), (6) and the fact that C(u)*C(v) C C(u+v) for all u,v € P;.
Denote by Grr(Ly,) the corresponding graded algebra. Again

(38) Grr(Lon) =Lon= P C(u)

[u]ePt
Because each space C([]) is stabilized by the coadjoint action of Uy, the decomposition (38)
has a key advantage on (33). Indeed, since Ly, is a U;-module algebra, the action of U, is
well-defined on Grz (L) and it gives it a structure of Us,-module algebra. As vector spaces
we have

(39) Grr(Lon)’ = @ C((u

(W]eP?

Now we can adapt the differents steps (a)—(d) recalled above:

(a’) The action of U, on Ly, is completely reducible. This follows from Theorem 2.2 (1)
(noting that the summands, being isomorphic by (14) to spaces C'(u), are finite-dimensional
and thus completely reducible Uj,-modules), and the isomorphism of Uj,-modules (see (11)):

(40) Lon 22 (U,(9)°") 5 UY (g)°"

where [ f means respectively locally finite for the action ad], of U,(g) on U,(g)®", and locally
finite for the action ad” of U,(g) on U,(g). By (38) it follows that Grr (Lo ) is also completely
reducible. We can therefore define the Reynolds operator R: Grz(Lo,) — Grr(Lon)Y as
in (a).

(b’) In the proof of Theorem 3.1 we showed that Grz,(Lo,) is Noetherian, and then
deduced that Lo, is Noetherian by a classical argument (see eg. [69], 1.6.9). This same
argument implies that Grr (Lo ) is Noetherian, because (38) shows it is filtered by F2, and
Grr,(Grr(Lon)) = Grr,(Loy) is Noetherian. As in (b) we deduce that Grr(Lon)Y7 is
Noetherian. But Grr(Lo,)"" = Gr]:(EU ), which implies that [, ! is Noetherian.

(¢’-d’) Then we can apply the steps (¢)-(d). As a result Gr]:(ﬁo,n) 7 is finitely generated,
say by k homogeneous elements Z; € .7-"“]/( W< C (1))

(¢’) From (39) we deduce that ['0,31 is generated by the z; € C([u;]) with leading terms
Z1,...,%g. This follows from the following elementary fact: if A is a filtered K-algebra
(K a field) which graded algebra Gr(A) is finitely generated, then A is finitely generated
by elements which leading terms generate Gr(A). Indeed, let A have the algebra filtration
(Ai)ien (we take a filtration over N to simplify notations). Put Gr(A) = @ienA(), A1) =
Aiv1/A;. We have a +b = a+band ab = ab+ Apym1 € A(mn)s SO ab = 0 if ab €
Apnim—1, and ab = ab otherwise. Now assume that Gr(A) is finitely generated over K.
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Denote by fi,..., f. a finite set of generators. Let a € A, with a € Ay \ Ag—1. Then
a € Ay, can be written as a = Z(il,...,in)el Aityin) f1' -+ fin for some finite set I C N™ and

scalars A¢;, ;) € K. Either f{l . ;i" is zero, or ?1 . ;"L” = fl ... fin. We therefore have
a — Z(il,...,in)el )‘(il,...,in)ffl - f:’ln =0¢€ A(k), that is, a — Z(il 77777 in)el )‘(i1,...,in) [ :L" €
Ax_1. The conclusion follows by an easy induction. |

Remark 3.4. (1) Because E(l){ % is the center of Lo 1, (€’) proves it is finitely generated. Of
course this follows also from the isomorphism Lg; = Uéf and the fact that the center of Uéf
is the center of U, (by Theorem 2.2), plus the well-known description of the latter. But the
argument here is elementary and it applies to E(I){ ¢ for any n > 1.

(2) In spite of the isomorphism ®,: Mg, — (Uq@m)U‘?, in order to prove Theorem 3.2 one
cannot bypass the hard study of (Ufm)lf , whence of Ly = Uéf , by working directly with
Uy. Indeed the adjoint action is not completely reducible thereon. In fact, Uéf is exactly the
socle of this action (see [51], Lemma 7.1.24).

(3) In the sl(2) case the filtration F on Eg ¢ should correspond via the Wilson loop iso-
morphism (defined in [28], Section 8.2) to the filtration of skein algebras of spheres with n+1
punctures used in [66].

4. PROOF OF THEOREM 1.2

As usual we let € be a primitive [-th root of unity with [ odd and [ > d; foralli € {1,...,m}.

Recall that Zy(U,) C U, is the central polynomial subalgebra generated by Eék, Fék, L?El,
for ke {l,...,N} and i € {1,...m}. Define

Zy(UY) = U 1 2(U).

Examples show that generating sets of Zo(Uelf ) have complicated expressions in general.
Nevertheless, specializing g at € in Theorem 2.2 (2) we get

(41) Zo(U) = T 20U [ ® /1)

where T(l), TQ(Q and TQ(l) are the subsets of T, T5_ and T, formed by the elements K; with
A€ P, Ae —2P; and ) € 2P respectively. Define

Z0(Lh,) = @7 (Z20(UY)).
Recall the isomorphism n*: O(G) — Zy(O¢) (see Theorem 2.15 (1)).
Proposition 4.1. Z(Lf ;) = Z0(Oc), and therefore Zo(LG ;) is isomorphic to O(G).

Proof. The claim follows from the fact that ®1: £§; — U is an isomorphism (see (18)),
the identity ®; = m o (id ® S™') o ®, and Theorem 2.15 (2).

Here is an alternative proof of the isomorphism Zo(Lj ;) = O(G), not using n*. Recall the
notations introduced before Theorem 2.14. As varieties H = U, ToU_ = G°, so the map o
yields identifications O(H) = O(U;)O(Tg)O(U-) and O(G) = O(UL)O(T/(2))O(U-); we
can identify O(G®) with the subalgebra al*H(O(GO)) of O(H). Consider the space V = ANg,
endowed with the action of G given on each factor by the adjoint representation. Put on g a
basis consisting of one element e, per root space g,, along with a basis of h. Let v € V be
the exterior power of the e,’s for a negative, and v™ a dual vector such that v*(v) = 1 and v*
vanishes on a Tg-invariant complement of v. It is classical that G'\ G" has defining equation
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d(g) = 0, where J is the matrix coefficient d(g) = v*(my(g)v) (see eg. [50], page 174). Hence
O(G") = O(G)[671]. On G° we have §(uitu_) = x_,(t), where x_, is the character of T
associated to the root —p. Now we can make the connection with U.. The isomorphism
Zo(U.) = O(H) of Theorem 2.14 (2) identifies Zo(U.) N Uc(h) = C[TW] with O(Tg) by
mapping K; to the character of T associated to A\. Therefore it maps (C[TQ(Z)] to O(T/(2)),
(' = K, to xp, and TSV Zo(UH) = Zo(UM)[E] to O(G®) by (41). Since O(GY) = O(G)[67!]
and 67! = x, on GY, it follows that Zo(UY) = O(G). Then Z0(LH,1) = O(G) by injectivity
of ¥1. OdJ
Consider the linear subspace of Lj ,, defined by
Z0(Ln) = Z0(L5)"-
By Proposition 4.1 we have an isomorphism of algebras (n*~1)®": Zy(L§ n) — O(G)®"

Proposition 4.2. (1) Zy(L§,,) is a central subalgebra of L5 ,,, and Lf,, = O™ as modules
over O(G)®™. Moreover Zy(L§,,) is a Noetherian ring.

(2) The Zo(L; ,,)-module L ,, is generated by the elements of the spaces C([u]) where [u] =
(p1,- -+, pn) € P satisfies 0 < (pi,05) < 1 for every i € {1,...,n}, j € {1,...,m}, where
as usual o = 20;/(aj,5). In particular it is a finite Noetherian Zo(Lj ,)-module, and
therefore a Noetherian ring.

Proof. (1) Recall the formula (6). It is enough to consider the case where a = ' = 1, and
show that (12 (8)®)((a) ¥ @ 1) = ()@ @ (8)® whenever o € Z0(L5 1), for this is trivially
equal to (@) @ 1)(1 ® (8)®) (similar arguments apply if instead § € Z0(L51) and « is
arbitrary). We have (denoting »_,) (a).(a),(a) PY 2oyt Alen)) = X0y 1)(1) @ 1) (2) ete.):

(a)
(12 @)@ e1) =3 (S Rl & a < R RY))
(RY)
(b)
® (S(RlyRYy) > 89 Ry Ry )
= ) (e@)eBe)”
(B, ()%,(8)?

x By (0‘(1)(2)(R%l))R%Q)O‘(S)(l)(S<R?1)))R?2))

3 1 1
% By (e (B By ) (BLy)S(Rly))

By Theorem 2.15 (2) it follows that a(l)(2)(R(1))R(2) = & (a1y(2)) € Z0(Ue), and similarly
a(g)(l)(S(R?l)))Ré),a(g)(g)(R?l))R?Q),a(l)(l)(R%l))S(R%Q)) S Z()(Ue). Denote by Z any such
element. Note that Zy(Ue) acts by the trivial character on I'-modules, and that the expression
of z in terms of the corresponding a;)(;) implies €(2) = €(a;)(j)). Then

Bay <Oé(1 )(2) (R?l))R?Q)OC(S)(l)(S(R?l)))R?2)> = e(am)y@)@@)))Bay1)

= elaqy@))elos)))eBu))
Ba) <a(3 )(2) (R?l))R?Q)a(l)(l)(R%l))S(R(IQ))> = (o) 2))ela@)))e(Bs))

and finally (1® (8)®) (@)@ © 1) = (a)@ @ (8)®). Therefore Zy( 671)(“) is central in L,
for all @ = 1,...,n. These algebras generate Zo(L,,) in (£5;)®", and hence in L, (this
follows from the comment before (7)). Therefore Zo(Lf ,,) is central in £f,,. A computation
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similar to the above one, based on the formula (3) instead of (6), shows that af = a x 8
whenever a € Zo(L5 ). Hence £ ; and O, coincide as modules over Zy(Lf ;) = Z0(O). The
second claim follows immediately; for instance when n = 2, given o, 8’ € Z¢(L§ ;) we have
(@B a®p)=(®1) (128 ) (a®1)(1l®B) immediately by (6), and (1® B )(a® 1) =
a®p =(a®1)(1®f) as above. Then (¢/ ® f')(a® ) = d'a® §'F. Finally Zo(Lf,,) is
a Noetherian ring as it is isomorphic to O(G") (Proposition 4.1), the coordinate ring of an
affine algebraic variety.

(2) Let [\] = (M1,...,An) € PY. For all i € {1,...,n} there are unique Aj, \i1 € Py
such that A; = X\jo + (A1 and 0 < (Mo, @) < [ for every j € {1,...,m}. Then set [A\o] =
(A0s -+, An0), [M1] = (M1,---, An1). We have C([A\]) = C([Mo]) o C([IA1]) by (36), and
C(lain) C 20(0c) = 20(L5,) for all i € {1,...,n} by Theorem 2.15 (2) and Proposition
4.1, so C([IM]) € 20(L5,,)- It follows that Grrg,(L£f,,) = EBWGP? C([)]) is generated over
Z0(L5,,) by the elements of the spaces C([\o]), [A\] € P{. By step (e’) of the proof of
Theorem 3.2, formulated for modules instead of algebras, it follows that Lf , is generated
over Zo(Lj,) by the same elements. The last claims follow in a standard way: since L,
is a finitely generated Zo(Lj,,)-module and Zy(Lj,,) is Noetherian, £f ,, it is a Noetherian
Z0(Lj,)-module (eg. by [7] Proposition 6.5). Moreover Lj,, is a Noetherian ring (by eg.
69], 1.3). O

Note that we had already obtained independently the Noetherianity of the ring £g,n as a
consequence of the Noetherianity of Eén (Proposition 3.1).

We need below explicit descriptions of the Z- and Zjy-centers for g = si(2). Let us recall a
few facts in this case. Denote by a, b, ¢, d the standard generators of O4(SL3), ie. the matrix
coefficients in the basis of weight vectors vy, v1 = F.yy of the 2-dimensional irreducible
representation V5 of Uy(sl(2)). Denote by 2% k € N, the k-th power of an element z €
OA(SLy). The algebra O 4(SLs) is generated by a, b, ¢, d; the monomials a* % b*/ x d*" and
a* % d*" i, j k€ N k > 0, form an A-basis of O4(SLs). The algebra Zo(O(SLy)) is
generated by a*', b*, ¢*!, d*'; the monomials a* x b x " and a** * ¥ x &*"" form a basis
of Z5(Oc(SLy)), and Z(O(SLy)) is generated by Zo(O.(SLy)) and the elements b*(—F) x ¢*F
k=0,...,1 (see [42], Proposition 1.4 and the Appendlx We have the relation

)-
(42) L WLy S e |
[

and the Frobenius isomorphism of Parshall-Wang (5ee 65], Chapter 7) coincides with the
map

Frpwy: O(SLQ) — Z[)(Og(SLQ))
induced by n*; it sends the standard generators a, b, c,d of O(SLa) = O1(SLy) respectively
to a*!, b*, ¢*, d*'. Finally, let us quote from [43] that a basis of the rank I free Zo(O(SLs))-
module O,(SLy) (see Theorem 2.15 (3)) is formed by the monomials a™b"c® and b"c¢*"d’,
with the integers m,n,r,s’,s” in the range
(43) 1<m<l-1,0<n,r<l-1,m<s<1-1,0<s"<l-r—-1

Now consider L’él( [(2)). Recall that EO 1 = O as Ug-modules. The algebra Eél(sl(2)) is
also generated by a, b, ¢, d; a set of deﬁnlng relations is (see [28], Section 5):
ad=da , ab—ba=—(1—-q 2)bd
db=¢*bd , cb—bc= (1 —q %)(da — d?)
cd = ¢*de , ac—ca = (1—q %)dc
ad — ¢*be = 1.

(44)
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The element w := qa + ¢ 'd is central. Let T}, k € N, be such that Tj(x)/2 is the k-th
Chebyshev polynomial of the first type in the variable x/2. We have (see [28], Proposition
7.3, for the generalization to L ,,(sl(2))):

Lemma 4.3. Z(L{,(sl(2))) = Clw,t',d,d"]/T and Zy(L§,(sl(2))) = C[(Ty(w), V', d"]/T,
where T is the ideal of Clw, b, ¢!, d'] generated by (Tj(w) — d")d" — ble! — 1.

Here V', ¢!, d" are the I-th powers of b, ¢,d computed using the product of Eél(sl@)), not
the product x of Z5(Oc(SL2)). The above generator of Z can be interpreted as a determinant,
and w as a quantum trace on V5.

Lemma 4.4. Viewed as element of O(SLs), Ti(w) — d' = a* and 2 = 2™, z € {b,¢,d}.

Proof. Let a and w be the simple root and fundamental weight of si(2). In the notations
of (22) we have b = ¢_2, ¢ = ¢ _, d = ¢_; the formulas give o (b)) = (¢ — ¢ HIF,
() = (¢ — ¢ D E'K™, ®(d*) = K~'. These coincide respectively with ®;(b"), ®;(c}),
@y (d") (see (32) in [28]). By passing to the localization O 4(SLs)[d '], and using Parshall-
Wang’s relation (42), one deduces easily ®1(a*) = K'4 (¢—q¢ ) F'E' = T)(Q) — K, where
Qis (¢ — ¢~ ')* times the Casimir element of U,(sl(2)), and Tj(z)/2 is the I-th Chebyshev
polynomial of the first type in the variable z/2. We have ®1(w) = Q, so ®;(a*) = Tj(w) — d'.
The conclusion follows from the injectivity of ®@;. |

This lemma proves that we have a commutative diagram

O(SLs) —IY o Z0(Ou(SLa)) > O.(SLy)

T | |

20(L£5,1(51(2))) = L5,1(s1(2))

where Frpy is Parshall-Wang’s Frobenius isomorphism recalled above, F'r is the Frobenius
isomorphism introduced in [28], Definition 7.2, and the vertical arrows are the identifications
as vector spaces (the middle one proved by Proposition 4.2).

Remark 4.5. By Lemma 4.3 the monomials Tj(w)'t/!d"" and Tj(w)'c*d™, for i, j, k,7 € N
and k > 0, form an A-basis of Zy(L£j(sl(2))). It is straightforward (though cumbersome) to
express these basis elements in terms of the basis elements a** x 0! x ™ and a*" x ¥ % &*
of Zyp(Oc(SL2)), and conversely; this can be done by using Lemma 4.4, the formula (3) or
the inverse one (expressing * in terms of the product of Lo, see (18) in [28]), and the
formula of the coproduct A: £§(sl(2))) — £{2(sl(2))) restricted to Zo(Lj(sl(2))) (given
in Proposition 6.15 and Lemma 7.7 of [28]).

Since 564,1 = 04 as an A-module, the functionals ¢; in Proposition 2.16 can be seen as

maps t; : Eél — A. Though the algebra structures of O and L ; are very different, we have
the analogous result:

Proposition 4.6. The maps <t; preserve Zo(Lj 1), and they satisfy (f <t;)(a) = f(nia) and
(fa) <t; = (f <ti)(a <t;) for every f € Zo(L5;), a € G, a € L.

Proof. The first two claims follow from Proposition 2.16 and the equality Zo(L£j ;) = Z0(Oc)
in Proposition 4.1.

The last claim follows from the case g = sl(2), as in the proof of Proposition 7.1 of
[42]. In fact it is enough to show that t(fg) = t(f)t(g) for every f € Zo(Lj,(sl(2)), g €
L51(sl(2)); for completeness we explain this in the Appendix, see (66). A word of caution
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is needed: the proof of (66) uses that A: O, — O, ® O, is a morphism of algebras. The
analogous property for £{; is that A yields a morphism of algebras A: £j; — L£j,. Since
the algebra structure of E6’2 is not the product one on 56’1 ® Cg?l, it is not true in general
that Z(f%(g)(f(l) ®f2)90)®92)) = Z(f),(g) fy90) @ f2)9(2) for every f,g € L ;. However
it holds whenever f € Zy(Lj,), since A(Zo(Lj;)) C Z20(Lh1) ® Z0(L5 ;) and therefore
f2) € 20(L£51) = 20(Oc) commutes in L{ 5 with any g(1) € L, = O..

It is enough to prove the identity ¢(fg) = t(f)t(¢g) when f ranges in a set of generators of
the algebra Zo(Lf (sl(2))). So one can take f among, say, Tj(w) — d' = a* and 2! = 2*,
x € {b,c,d} (using Lemma 4.3). By (3) and Proposition 6.1 in the Appendix we have

t(fg) = Z t (R(Q/)S(R(Q)) > f) t (R(l’) >gd R(l)) .
(R),(R)

Expanding coproducts and using that R~! = (S ® id)(R) we deduce

t(fo)= > t(fwy) (fe) RenS(Rw) t (Ray>g < Ry))
(DARAR)

= > t{fw) t<<f(2)=R<2/>>R<1/> >g < <f(3>75(R(2>>>R<1>>
(DARAR)

t(S‘l(qf(f(g))) >g < 5‘2(<I>‘(f(3>))>

<g s 2(‘1>‘(f<3)))w5‘1(<1>‘(f(z)))>

> Hfw)
(f)
Zt(f(l)) o

(f)

D tfay) e[ SR (fg) Je[ STH@ (f2) ) t(9)
St )( )

where w € Ur is the quantum Weyl group element dual to ¢ (see Section 6.1), and in the
last equality we used that ®~ maps Z,(O,) into Zy(U,) (see Theorem 2.15 (2)), which acts
on I'-modules by the trivial character (the counit) e: Uc — C. By (58)-(59) in the Appendix
we have t(a*) = t(d*') = 0 and t(b*) = 1, t(c*)) = —1. Now the computation of t(fg)
follows easily. For instance, taking f = b' = b*, by using A(b*) = a*! @ 0™ + v* @ d* and
A(d) = ¢t @ b + d” @ d* we get

ttlg) = &5~ ) )= (57 @ () et + (5720 (@) )2 (57 @ @) )t

Since b* € O (Uy), ®(b*) = 0. Also, it is immediate from the definition of ®~ that
&~ (d*) = @ (d)! = L'; alternatively, one can bypass this computation by observing that &~
sets an isomorphism from O¢(Tg) = O (B4 )NO(B_) to C[L*!] = U.(b,)NU(b_), mapping
a generator d to L or L™'. We have ¢(L') = 1, and therefore

t(b'g) = t(g) = t(b)t(g).
The other cases f = Tj(w) — d', . d are similar. O

Theorem 4.7. L, is a free Zo(L§ ,)-module of rank 4ime - and ( fm)Uf is a Noetherian
ring and a finite, whence Noetherian, Zo(L ,,)-module.
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We will see in Section 5 (proof of Theorem 1.3 (2) and (3)) that in fact ( B’n)Ue is finite
free of rank [(M~D-dmetm oyer Z0(Lop)-

Proof of Theorem 4.7. By Proposition 4.2 (1), Lj,, and O®™ coincide as modules over
Z0(Lop) = Zo(0™), so the first claim follows immediately from Theorem 7.2 of [42], which
shows that O, is a finitely generated projective module of rank (%™ over Zy(O,), and the
arguments of [68] and [25], which imply that this module is free. Alternatively, it follows from
the fact that O, is a cleft extension of O(G) (see [6] and [21]). For the second claim, since

0.n 18 a Noetherian Zy(L§ ,,)-module, the Zy(Lj ,,)-submodule (Ean)Ue is necessarily finitely
generated. But Zo(Lf,,) being Noetherian, ( B’H)UE is then a Noetherian Zo(Lj,,)-module
and a Noetherian ring.

For the sake of clarity let us provide a self-contained proof of the first claim, not invoking di-
rectly [42, 25] or [6, 21]. Since Lj,, and Eff’f coincide as modules over Zo(L,,) = Zo(L§ )",
the result follows from the case n = 1. Then we argue in four steps. First, using Theorem 2.2
we show that a certain localization of £j ; is a free module of rank 198 Then, assuming that
L5, is finitely generated and projective, we explain why it has constant rank 19m8 (this is
very classical). Thirdly, we prove that L5 1 is finitely generated and projective as in Theorem
7.2 of [42]. Finally we obtain that it is a free module as in [25].

We have Tz(QflUElf = T,'UY = UV g) = UY[¢Y], where ¢ is the pivotal element. Then
Theorem 2.14 (1) and (41) imply that U, is a free Zo(UY)[¢']-module of rank 2149 and
Theorem 2.2 (2) says that it is also the direct sum of 2™ copies of the (free) Zo(UM)[¢Y]-
module UM [¢!]. The decomposition being unique, it follows that U [¢'] is free of rank 1479
over Zo(UY)[¢Y]. Pulling this back via ®;, this proves Eal[d_l] is free of rank 198 over
Zo( 6’1)[d_l], where d = ¢_, = ®, ! (¢) (see Corollary 2.4, Theorem 2.7).

Here we note that, by the first formula of Theorem 2.11 (3), taking powers with respect
to the product of Ly we have

1/Jl7p = 1/14,)-
Assume that £, is finitely generated and projective. Let us show that its rank is [4ims
The localization (L£§;)p of L, at any prime ideal P of Zo(Lj;) is a free module over
Z0(L5,1)p ([72], Proposition 2.12.15); the ranks of such modules are finite in number ([72],
Proposition 2.12.20). If these ranks are all equal, then, by definition, it is the rank of L,
over Zo(L5,). This happens if Zo(L£j;) has no non-trivial (ie. # 1) idempotent ([72],
Corollary 2.12.23), which is the case since it has non non-trivial zero divisors. To compute
the rank, suppose P does not contain d'. Such ideals P are in 1-1 correspondence with the
prime ideals of Zj( 6’1)[d_l] by the natural ring monomorphism Zo(L£j,) — ZU(Eal)[d_l].
The set S = Z0(L5,) \ P is multiplicatively closed, and we have also a ring morphism
Z0(L51) [d7Y] — Sleo(/Lg’l), which is also an injection (there are no zero divisors in Zo(Lj ;),
whence in §). Then

(45) (Lo)p =S7"L5, = L5[d7] Bz ,)ld] ST Z0(L54)

shows that (LG ,)p has over Zo(Lfq)p = S_IZO(,CaI) the same rank [%™® ag Eal[d_l] over
Zo( 871)[d*l]. This proves our claim.
In order to show that £f ; is finitely generated and projective over Zy(Lj ;) it is enough to
show it is finite locally free, ie. there are elements d; € Zo(Lj ;) such that the localizations
6’1[d;1] are finite free Zy( 5’1)[d;1]—modules, and Maxspec(Zo(Lj 1)) is covered by the open

sets U(d;) made of the ideals not containing d; (see Lemma 77.2 of [78]).
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We have seen above that 5671[d_l] is free of rank (%8 over Zo(ﬁal)[d_l]. In the proof of
Proposition 4.1 we saw that there are isomorphisms Zj( 871)[d_l] =~ Zo (U = 0(GY),
and O(G%) = O(G)[67Y]. Now, given w € W with a reduced expression s, ...s;,, put
tw = ti, ... ti,. Let w be represented by n, = n;, ...n;, in N(Tg). By Proposition 4.6 we
have (f <ty)(w) = f(nwz) for every f € Zo(L5,), z € G. Then

Zo(L51)ld 7] <t = O(n,'G%) = O(G)](6 < tw) ).

If by, ..., by (r:=1%"9) is a basis of £§,[d"!] over Zo(L§,)[d™"], then £§,[d"] < t,, is free
over Zo(L§1)[(d < tw) '] = O(ny,'G®) with basis by <1 ty,...,b, <t,. Consider the Bruhat
decomposition of G: any g € G can be written in the form g = bynby, where by,bs € B_,
n € W. Hence we have g = nn~'binby € nBLB_ = nG", and therefore

G = Uwew(B_an_) = UweW(anO).

For every w € W put

d, = d <ty
Under the isomorphism of Z(Lg 1) with G, we thus get that Maxspec(Zo(Lg;)) is covered
by the open sets U(d',) = n,G°, and Eal[d;l] is finite free over Z( 671)[d;l]. Therefore £
is finitely generated and projective over Zy(Lg ;).

Finally, let us explain why L, is free over Zo(Lj ; ), following the arguments of [25]. Let R
be a commutative Noetherian ring, put X = Maxspec(R), and let P be an R-module. Denote
by Ry, Pr the localizations of R, P at a maximal ideal I € X. Define the f-rank of P as f-
rank(P) = inf;ex { f-rankg, (Pr)}, where f-rankg, (Pr) = sup{r € N,R¥" C P} € NU {400}
(ie. the maximal dimension of a free summand of Pr). Bass’ Cancellation theorem asserts that
if P is projective and f-rank(P) > dim(X), and P&Q = M &(Q for some R-modules  and M
such that @ is finitely generated and projective, then P = M (see [10], IV.3.5 and pages 167
and 170, taking A = R, or [69], section 11.7.13). Let us apply this to R = O(G) and P = L ;.
We proved above that f-rankg, (Py) = [%™2 | a constant, and we have 19 > dimg = dim(G).
By a result of Marlin [68], the Grothendieck ring Ko(O(G)) is isomorphic to Z. Therefore
L51@Q = O(G)" for some free O(G)-module @ and r € N. Then Bass’ Cancellation implies
L5 1 is free over Zo(Lo,1) = O(G). O

5. PROOF OF THEOREM 1.3
We begin with two lemmas, interesting in themselves.

Lemma 5.1. Z(Lj,,) is a finite Zo(Lj ,,)-module and a Noetherian ring. Therefore the ring
Z(L5,,) is integral over Zo(Lj ,,)-

Proof. We know that L, is finite over Zo(Lg,,) (Theorem 4.7), and Zo(Lj,,) is a Noe-
therian ring (Proposition 4.2). Therefore Lf ,, is a Noetherian Zo(Lj ,,)-module. This implies
that the submodule Z(Lj,,) is finitely generated. But being finite over the Noetherian ring
Z0(L5,), it is a Noetherian ring (by eg. Proposition 7.2 of [7]).

Let x € Z(L§,,). The Zy(Lj,,)-submodule Zo(Lj ,,)[z] of Lf,, is finitely generated by the
same argument. Using the fact that an element z is integral over Zy(Lj,,) if and only if
Z0(L§ ,,)[z] is a finitely generated Zy(L ,,)-module (by eg. Proposition 5.1 of [7]), this proves
the last claim. 7 a

As usual, denote by Q(Z) the quotient field of a commutative integral domain Z. Then,
consider the fields Q(Z2(L5,,)) and Q(Z20(Lj,,)). Since Z(Lj,,) is finite over Zo(L,,) and
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has no non-trivial zero divisors, the ring Z(L{,,) ®z,ce ) @(Z0(L(,,)) is a field. Therefore
it is equal to Q(Z(Lf,,))-

Lemma 5.2. [Q(Z(L},,) : Q(Z0(L,))] = ™.

Proof. First consider the case n = 1. Note that Q(Z(U,)) = Q(Z(U)(T l)/T l)) by (41),
and similarly by replacing Z with Zy. Then, applying ®; and using that Q(Z(U,)) has degree
I over Q(Z0(Ue)) (see the comment after Theorem 2.14) we deduce

(46) [Q(Z(£5,1) - Q(20(£51)] = [RQIZ(UT)) : Q(Zo(UY))] = 1™

Next let n > 1 be arbitrary. Recall from (16) the matrices Mj(i), for 7 = 1,...,n and
j=1,...,m. More generally, for every A € Py and i = 1,...,n consider the matrix of matrix

coefﬁc1ents M = (v qbel )k,l € End(Vy) ®E6l’n, where v, gi)gfi) = 190-1) R v, Pel ® 12(n=1)
and {eg} is the canomcal basis of weight vectors of V). In [28], Proposition 6.22, we showed
that the elements yw(® := Tr(my, (E)M/(\Z)) are central in E(‘in, where T'r is the standard trace
on End(Vy); moreover, the family {,\w(i), A € P.} is a basis of the center of the i-th factor
/Jél of E(’in. Now, recall the graded algebra Grr(Lo,) in (38). Take A\ = w;. By (36),
for every ¢« € {1,...,n}, 7 € {1,...,m} and r € N the leading coefficient of (ij(i))r in
Grr(Lon) belongs to the space C([0,...,0,7w;,0,...,0]) (with w; in the i-th entry). Take
the specialization at ¢ = € and denote by Z( 8’1)@) the i-th factor of Zo(Lf,,). Recall that
Z0(L5 )(i) = ®uep, C([0,...,0,11,0,...,0]). Then we get that the minimal polynomial of
ij( over Q(Zo( Sm)(i)) has degree [. On another hand, denoting by Z([,g,l)(i) the center
of the i-th factor of Lf ,,, we have [Q(Z( 871)(”) s Q(Z( 671)@)] =[" as in the n = 1 case
above. It follows that Q(Z( 671)(")) is generated over Q(Zo(ﬁal)(i)) by the elements yw,
A € P,. The fields Q(Z(L§ )(i)) are supported by distinct tensor factors, so they are linearly
disjoint subfields of Q(Z(Lf ,,)). The same is true of the fields Q(Zy (L] )(i)). Therefore, the
compositum of the fields Q(Z( 61)( ), say @', has degree (I"™)" over the compositum of the
ﬁelds Q(Z0(L£51)), which is Q(Zo( 6.))- By the same argument, Q(Z(US")) has degree
™" over Q(ZO(US%)). Now, recall from (18) the isomorphism of algebras @, : ;o £ ,, — UZ"™.
Consider the induced isomorphism of fields ®,,: Q(Z (100 L5 ,)) = Q(Z(UE™)), and the field
extensions in Q(2 (locxﬁan)),

0@ = Q' IV - [{ )
1o Q(Z0(£5,0)) = Q(Z0(L5,))[{¥)] A l}l T,

Compose ®, with the linear automorphism of Q(Z(U®")) induced by ¢, ' = ®%" o o, !
(see (11) for the latter). The image of ;o Q(Z20(L5,,)) by Yo @, is Q(Zo(US™)). Since
" =[Q : Q(20(L£5,))] = l1ov @' + 10 Q(Z20(L5,))] = [ © Prlioe Q) : Q(Z0(UE™))] and
QEWUE™) - Q(Zo(UE™)] = 1™, it follows that 6" 0 B, (10 Q) = Q(Z(UE™)), whence
loc’Q/ = Q(Z(loc’ﬁa,n)) = lOC’Q(Z(’CB,n))v and then Ql = Q(Z(‘Ca,n)) This eventually proves
™ = [Q(2(L5,)) : Q(Z0(Lon))]- =

Recall the ring
Q(L5,) = Q(Z(L5,) @22y Lo
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The center of Q(Lj,,) is Q(Z(L5,,)). By the comment before Lemma 5.2 we have another
description of Q(L§ ,), namely

(47) QL) = Q(20(L5,0)) @z(25,,) Lo
Recall that we denote by N the number of positive roots of g.
Proposition 5.3. Q(Lj,,) is a central simple algebra of dimension PN over Q(Z( 0.n))-

Proof. From its definition Q(Lj,,) is a vector space over Q(Z(Lj,,)). Because Lj,, has no
non-trivial divisors and Q(Lj ,,) is finite-dimensional over Q(Z(Lj,,)), it is a division algebra
over Q(Z(Lg,,)), whence a simple algebra. Its center being Q(Z(L ,)), this proves the first
part of the statement. By classical theory (see eg. Section 13.3.5 of [69], or [72], Corollary
2.3.25), it then follows that there is a finite extension (a splitting field) F of Q(Z(Lj,,)) such
that

F®qzcs,,)) @Lon) = Ma(F)

where d € N, the PI degree of Q(Lj ,,), is given by d? = [Q( on) : Q(2(L5 )] Therefore
[Q( g,n) : Q(ZO( B,n))] _ lgNn
[QRIZ(£5,,)) - Q(Z0(£5 )]

where we use Theorem 4.7 and Lemma 5.2, and we recall that dimg = m + 2N. O

d? =

Let us recall for the sake of clarity different notions of ring theory, bearing in mind that
we will apply them to the case where A = £j,. Let A be a ring with no non-trivial zero
divisors. The center Z = Z(A) is a commutative integral domain. Denote by Q(Z) its field
of fractions, and let

Q(A) = Q(2) ®z A.
It is an algebra over its center Q(Z).

An element a € A is integral over Z if Z[a] is a finitely generated Z-module. A is integral
over Z if every element of A is integral over Z. An element a € A is c-integral over Z if
Zla] is contained in a finitely generated Z-module. A is c-integral over Z if every element of
A is c-integral over Z. When Z is a Noetherian ring these two notions are equivalent ([69],
Lemma 5.3.2).

If Q(A) has finite dimension over Q(Z), it is a division algebra and therefore a central
simple algebra. Moreover Q(A) is integral over Q(Z).

There are different notions of orders, that are equivalent in our context. Let B C Q(A) be
a subring. B is said to be an order of Q(A) ([69], 3.1.2) if every element ¢ of Q(A) can be
written as ¢ = rs~ ' = s’ "1/, where r, 5,7/, s’ € B. In particular, A is an order of Q(A) and
5,8 can in this case be chosen in Z. B is a classical order of Q(A) ([69], 5.3.5) if Z C B,
Q(Z)B = Q(A), and B is finitely generated as a Z-module. In particular, if A is a finitely
generated Z-module then A is a classical order of Q(A). Finally, B is a Z-order of Q(A)
([69], 5.3.6) if Z C B, Q(Z)B = Q(A) and B is c-integral over Z.

We now assume that Z is Noetherian and Q(A) is of finite dimension over Q(Z). Let B
be a subring of Q(A) having center Z(B) = Z(A) = Z. Then the following assertions are
equivalent:

(1) B is an order of Q(A);

(2) B is a classical order of Q(A);

(3) Bis a Z-order of Q(A).
Indeed, from the definitions we trivially have (2) = (3). From the Noetherianity of Z,
Proposition 5.3.14 of [69] gives (3) = (2). Because Q(A) is a central simple algebra, the
equivalence (1) < (3) is part of Proposition 5.3.10 of [69].
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In particular, because A is always an order of Q(A) these equivalences imply that A
is a classical order, whence a finitely generated Z-module. Moreover A is Noetherian by
Proposition 5.3.14 of [69].

There are two standard notions of maximality for Z-orders B of Q(A). One applies strictly
to Z-orders ([69], 5.3.13): namely, a Z-order B of Q(A) is a mazimal Z-order if B C C with
C a Z-order implies B = C'. The other notion of maximality applies to arbitrary orders of
Q(A) (see [69], 5.1.1); when B is a Z-order with center Z, B is a maximal Z-order if and
only if it is maximal in this latter sense.

If A is a maximal order, then Z contains all the c-integral elements over it, ie. Z is c-
integrally closed ([69], 5.3.13). Since Z is Noetherian, it is then integrally closed (in the usual
sense, see [69], Lemma 5.3.2), and by [71], Theorem 10.1, it therefore coincides with the trace
ring of A (ie. the subring of Q(Z) generated over Z by the coefficients of the characteristic
polynomials of elements of A, represented by left multiplication as elements of the matrix
algebra Q(A) ®z F, where F is a splitting field of Q(A)).

Finally, we say that A is DCK-integrally closed if the following condition holds: for every
subring R of Q(A) such that A € R C 2! A for some non zero z € Z(A), we have R = A. We
borrow this notion from [38]; it is closely related to that of fractional ideal of Q(A) (see [69],
3.1.11-3.1.12 and 5.1.4), but simpler. Its relevance comes from the following lemma, which
shows that in the commutative and Noetherian case it is equivalent to the usual definition of
integrally closure.

Lemma 5.4. Let B be a commutative Noetherian ring with mo non-trivial zero divisors.
Then B is integrally closed in Q(B) if and only if B is DCK-integrally closed.

Proof. Assume B is DCK-integrally closed. Let x = b/c € Q(B) be integral over B. Denote
by n the degree of its minimal polynomial over B. The ring R = B[z] is contained in ¢ "B,
so R = B and = € B. (Note that this does not need B Noetherian.)

Conversely, let R be a subring of Q(B) such that B € R C 2 'B, and let € R. Then
M = Blz] is a B-submodule of Q(B) such that 2M C M. It is also a B-submodule of 27 B,
which is free with basis 27! over B. Since B is Noetherian, !B is a Noetherian B-module,
and therefore M is a finite B-module. It follows that x is integral over B (Proposition 5.1 of
[7]), whence z € B. O

Lemma 5.5. Assume that A is a ring with no non-trivial zero divisors, with center Z Noe-
therian and such that Q(A) has finite dimension over Q(Z). Then A is DCK-integrally closed
if and only if A is a maximal order.

Proof. Assume that A is DCK-integrally closed. Let B a Z-order of Q(A) such that A C B,
and let b € B. Since b is c-integral over Z and Z is Noetherian, b is integral and thus A[b]
is a finitely generated A-module. Let e; = a;/z; € Q(A), z; € Z and i = 1,...,n, be the
generators of A[b]. We have A[b] C z7'A with z = [}, z;. Therefore A[b] = A, whence
b € A. This proves that A is a maximal order.

Conversely, assume that A is maximal order, and let B be a subring of Q(A) such that
A C B c z'A. Since A is a finitely generated Z-module, B is contained in a finitely
generated Z-module, which is necessarily a Noetherian Z-module because Z is Noetherian.
Therefore B is a finitely generated Z-module. As clearly Z C B and Q(Z)B = Q(A), it is
in fact a classical order of Q(A). Because A is maximal, we have A = B, which proves A is
DCK-integrally closed. O

Theorem 5.6. L, is a mazimal order of Q(Lj ,)-

Proof. We derive the result by “twisting” the analogous statement for O, obtained in
Theorem 7.4 of [42]. We have already proved that Lf,, satisfies the hypothesis on A in
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Lemma 5.5. So let R C Q(Lj,,) be a subring such that £, C R C x_lﬁan for some non
zero x € Zo(L§,,). We have to show that L£f, = R. We know Lj, = OF" as Zo(Lf,)-
modules (Proposition 4.2 (1)), so aflﬁg’n =271 x O®". Also, the product of R is inherited
from that of Lj,, (for, given 71, ro € R we have riry = x72(zr1)(zr2)), and the latter
is defined from the one of O®™ by two consecutive twists (see the formulas (3) and (6)).
Therefore, by applying the inverse twists on the inclusions £j,, C R C x_lﬁan we get
Of" C R C 7' % OF" where R is the vector space R endowed with the ring structure
inherited from 0. Now 0" = O.(G™) is a maximal order of Q(O.(G™)) by Theorem 7.4
in [42]. Therefore OF™ = R', and finally L§, = R. O

Corollary 5.7. The ring Z(Eg’n) is integrally closed and coincides with the trace ring of
O.n- Moreover Z(L§,,) = Z(£5,)%", and it is a free Zo(L],,)-module of rank ™.

Proof. The first two claims follow from the last theorem and the discussion before Lemma
5.4. The third follows from the proof of Proposition 5.2 (ie. the inclusion Z(Lfj,) D
Z(L£51)®", and the fact that both rings have quotient fields of the same degree I over
Q(20(L5,,)))- Finally, it is enough to show the last claim for n = 1. Denote by t,.q: Q(Lj 1) —
Q(Z(L51)) the reduced trace map of the central simple algebra Q (L ;) (see eg. [71], Section
9). Because Z(Lj,) is the trace ring of L£f |, we have Z(Lj;) = tyea(Lhy). Trivially the
inclusion map i: Z(Lj ;) — Q(Lf ) satisfies t,eq 0@ = id, so Z(Lf) is a direct summand of
L1 as a Zo(Ly 1)-module. But L§; is free over Zo(Lj ), so Z(Lg ;) is a projective Zo(Lg ;)-
module. Arguing as in Theorem 4.7, one deduces that the module is free. The rank is, again,
given by Proposition 5.2. O

A proof of Theorem 5.6 independent of Theorem 7.4 of [42] seems to be difficult for arbitrary
g, even for n = 1. In the case of Ly 1(sl(2)) we can however apply a similar reasoning. Let
us explain the details.

Identify Zo(Lg(sl(2)) with O(SLz) as described in Lemma 4.4 and before Lemma 4.3.
We proceed in two steps : (a) we show that £671(sl(2))[d_l] and Lal(sl(Q))[b_l] are maximal
orders, (b) from this we deduce the result.

As for (a), recall that Eal(sl(Z))[d_l} =~ UM (s1(2))[¢']. We have UY (s1(2))[¢'] = U*(sl(2)),
which is a maximal order by Theorem 1.8 of [38]. Using (44) one computes easily that

671(81(2))[17_[] is generated by w, b*! and d, with defining relations: w is central, db = ¢*bd.
Therefore L ; (sl (2))[b~] is the tensor product of C[w] with a quasi-polynomial algebra. The
I-th powers of d, b are central, and Clw]| is integrally closed, so by a direct application of
Proposition 1.8 of [38] it follows that Eg,l(sl(Q))[b_l] is a maximal order.
Let us now deduce that £{,(sl(2)) is a maximal order. Let z € Zo(Lg;(sl(2)) and R a
subring of Q(Lj,(sl(2))) such that £j,(sl(2)) C R C x_1£571(sl(2)). Let y € R. Because

6.1(s1(2))[d""] is maximal, we have £§  (s1(2))[d "] = R[d™"]. So yd""* € L§ ,(sl(2)) for some
non negative integer ng. Similarly, yb'"™ € L5.1(sl(2)) for some non negative integer np. Now,
note that d'<1t,, = b'. Consider the open subsets U(d') and U (b') of SLy consisting of matrices
with non vanishing lower right entry and non vanishing upper right entry, respectively. As
in the proof of Theorem 4.7 we have Maxspec(Zo(L§ (sl(2))) = SLy = U(d') UU(b'). Since
U(d) = U(d"), U®') = U@®'™), likewise Maxspec(Zo(L§;(s1(2))) = U(d-ma) U UB-™).
This implies that the ideal of Zo(Lj,(sl(2))) generated by d“™a and b is Zo( 0.1(s1(2)))
itself; hence there are elements uq, up € Z0(Lg1(s1(2))) such that ugd™" 4 upb™™ = 1, which
proves y = ugd ™y + upb "y € L£51(sl(2)). This concludes the proof that L§,(sl(2)) is a
maximal order.
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Proof of Theorem 1.3 (2) and (3). Denote by A™: O, — OF", n > 2, the n-
fold coproduct, that is AM™ = (id ® A) o A for n > 3, and A® := A, the standard
coproduct of Oc. Identifying Lf, with OF™ as a vector space, we consider A™ as a map
A L5, — L§,. It is an algebra morphism ([28], Proposition 6.16), injective because
(2D @ id)A™ = id. Then it extends uniquely to the fraction algebra Q(L51). As noted
above Q(Lf 1) = Q(Z0(L5 1)) ®z0(L,) L51- Since Z0(L5 1) = Z0(O) is a Hopf subalgebra of
O, ([42], Proposition 6.4), A™ maps Z0(L§1) to Z0(L1)®". Then, extending the scalars of
AP (Q( 0.1)) by the field Q(Z(L5,,)), consider

Q(A™ (£61)) = Q(Z(L5,)) OAm (2o(L5 1)) Al (£51)
= Q(Z2(LHn)) OAM(Q(20(L5,1))) AM(Q(L 1))
= (Q(Z(Lh0)) ®amazoics,n A" (QE(LH 1))
®Am(Q(z(L5,)) AM(Q(L 1))

By Proposition 5.3 the right factor is a A(")(Q(Z(ﬁal)))—central simple algebra. The left
factor is a field and is equal to

QZ(L5,0) = QUE(Lh0) Eaezyics ) A (Z(L51))

for it contains Q(Z(L ,)), it is contained in its fraction field, and Q(Z (£5.,)) is a field because
Z(L5,) is finite over Zo(Lg ;) and has no non trivial zero divisors. Therefore QAM)( 0.1)) 18
a central simple algebra over Q(Z( 0.n)) (see eg. [72], Theorem 1.7.27, or [79], Lemma 4.9).
We proved in Proposition 6.17 of [28] that the ring (Eén)UA is the centralizer of A (Eél)
in Eén; the same arguments show that (Can)Uf is the centralizer of A™( 0.1) in LG ,,, so
QULEY) = QZ(L)4)) ®z(cs,) (£5,)" s the centralizer of Q(AM(L)) in Q(L,)-
Then the double centralizer theorem (see eg. [72], Theorem 7.1.9, or [79], Theorem 7.1)
implies that Q(( Bm)UE) is a simple algebra, with dimension

[Q( a,n) : Q(Z( 6,71))] _ l2nN—(2N+m)
[QAM (LG 1)) : Q(Z(L5,))] ’
and the centralizer of Q((£87n)UE) is Q(A™ (£6.1)). In particular Q(( B,R)UE) has center
Q(Z(L5,)) = QULH)") NQAM (LG ). It then follows

~ [QU(LH,)T) : QIZ(£5,))]
€ Ue . Z([E v ) )
[Q(£5,,)7) = QIZ(Lp )] Q(Z(£5.) : QUE (L)

— l2nN7(2N+m).l7m — lQ(N(nfl)fm)'

[QULE)Y) : QE(L,))] =

Therefore Q(( Bm)UE) is a central simple algebra of PI degree I’V (n=1)—m Next, consider
the centralizer of Q(Z( 0n)) N Q(LG,). It is a Q(2( 0.n))-central simple algebra of di-
mension 2"V =2 over Q(Z( 0.n)), wWhence PriN=am gme —EN=me over Q(2( 0.n)), and
it may be identified with Q(A()( 0.1)) Do(z(c5,.)) Q((ﬁan)Uf) by using the product map
m: Q(AM( 0.1)) ®Gz(c5.) Q((ﬁan)Uf) — Q(L5,,) (see the proof of [72], Theorem 7.1.9

(i)). Being a simple algebra, it has a unique simple (left) module up to isomorphisms. Be-
ing a division algebra, it has no non trivial primitive idempotent, so this simple module is
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Q(A™)( 0,1)) Baz(cs.)) Q((ﬁan)Ue) with its left regular action. Moreover, the left regu-
lar action on Q(Lj,,) is completely reducible. The above computation of dimension over
Q(Z(L5,,)) then yields the following decomposition into simple left Q(AM( 0,1)) 5 z( 5 )
Q((£5,,)")-modules,

(48) Qo) = (QUAM(L5) gy QL))

The product map m: Q(A™ (£61)) ®G(z(cs,)) Q(( B,H)UE) — Q(L§,,) gives one summand,
and it is the localisation by Z(Lf,,) of the inclusion A (£6,1) @am(z(cs ) (Ef)’n)U€ = LG s

for we have

QAM(L5,1)) ®g(zz5 ) QL))
= (QUZ(£5.)) ®am zcs ) A™(E£5)) @azies ) (QELE ) @z(cs,) (L6.)™)

= Q(Z(L5,0) ®z(c5,.) (A"(L£5.1) Baenze5,y) (Lom)")

Now, by the Skolem-Noether theorem (eg. in the form of [72], Theorem 7.1.10, or [5], Theorem
[I1.3.1) any summand of (48) is related to Im(m) by an inner automorphism of Q(Lg,,),

x +— uzu~ ', where clearly one may take u in L5 ,- Then we have an embedding of left
(A(n)(ﬁgg) A (z(c5,)) ( B,H)Ue)—modules,

(49) n: (MM (L5 ® (o.)7) " £
m: 0,1 ¥am(z(Lg ) ~on 0,n

made componentwise of m and these inner automorphisms. We claim m is an isomor-
phism. Indeed, consider the source and target as Z(Lj ,,)-modules, and the quotient module
L5, /Im(m). We have

Q(2(Lo ) @z(cy,) (L£on/Tm(m)) = Q(L )/ (Q(Z(L5)) ©z(c5,,) Im(m)) =0

by (48), and therefore L, /Im(m) = 0 (see eg. [7], Corollary 3.4 and Proposition 3.5 and
3.8). Because Z(Lg,) is a direct summand of £f; (see the proof of Corollary 5.7), we can

decompose A (L£61) ®Am(2(L5,)) (E&TL)Ue =1®( Byn)Ue o AP (M) @ ( Bm)UE for some
Z0(L5 1)-submodule M of L§ ;. This, (49) and Theorem 4.7 (Lj,, is free over Zy(Lj,,)) then
imply that (Ef),n)U€ is a projective Zy(Lj ,,)-module, and the arguments in the proof (ie. [10]
plus [68]) eventually show that (Ean)Ue is a free Zo(Lj,,))-module. Denoting by r the rank
of ( S,R)UE over Zo(Lj,,), we deduce [r-dima — pm 2N g whence 1 = (T D-dims,

Finally we prove that ( an)Ue is a maximal order of Q((ﬁan)Ue). We use Lemma 5.5. Let
B C Q((Ean)Ue) a subring such that ( Sm)Ue CBC z_l(ﬁg,n)Ue for some non zero element
z € 2(L5,,). We have to show B C ( Eyn)UE. Because of (47) we can as well assume that
z € 20(Lg,,). Then (49), thought as an identification, yields inclusions (in Q(L,,)):

L5, (A<">(£€ ) ® B)@lm c 2L
0n 0,1) WA (z(cg ,)) 0,n:

By Theorem 5.6, in such a situation we have £j,, = (A (L£6.1) Ram (2(£5.,)) B)®'™ . The
summands must be the simple components of £j ,,, so necessarily A (£6,1)®awm) (2(25 1)) B =

A (£6,1) Ram (2(£5 ,)) (L',g,n)Ue , and therefore B C ( fm)Ue. This concludes the proof. O
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6. APPENDIX

6.1. Quantum Weyl group. We recall some of the formulas of [32]. Let e,(2) be the formal
power series in z with coefficients in C(q) defined by:

+oo

(50) (ol2) =3

We first consider the case of g = sl(2). As explained in [28], Section 3, the Cartan element
H € g defines an element of U,(sl(2)). Viewed as elements of U, we have L = ¢"/?. The

series © = ¢T®H/2 Jefines an element of U,(s1(2))%?, its image under multiplication being
¢'"/?. The R-matrix can be expressed as R = ©OR where R = eq-1((qg— ¢ HE®F) is a well

defined element of [U(?? Consider the Lusztig [60] braid group automorphism of Ug(sl(2)),
defined by

(51) T(L)=L"YT(E)=-FK !,T(F) = -KE.

For every x € Uy(sl(2)) it satisfies:

(52 AT(2) = RN T @ T)(A@)ER

Define the quantum Weyl group element w € Ug,(sl(2)) by Saito’s formula [74]:

(53) b = eq 1 (F)g " ey (=B)g ey (F)g 12,

For every x € U,(sl(2)) it satisfies:

(54) T(z) = wzw -,
(55) AW) = R (v @ w),
(56) w? = ¢ /20,

where 6 € U,(sl(2)) is the ribbon element, and § € Uy(sl(2)) is the central group element
whose value on the type 1 simple module X of U,(sl(2)) of dimension k + 1 is the scalar
endomorphism (—1)%idy.

In order to compare our setting to the one of [42] we need an explicit formula of w. Consider
the type 1 simple module V,. 1 of dimension r + 1, and its basis vectors vy, ..., v, such that:

Kuwv; = eT*ijj,

Fuj=vjif j<r, Fuv, =0,

Ew; = [F]e[r — 7 + 1]67)3’—1 if j >0, Fovyg=0.
Setting v} = v;/[j]! and using (51), (54) and (56), we obtain:

(57) v, = (—1)igIhi=D=kyl

In [42] another quantum Weyl group element w is defined. It is dual to the Vaksman-
Soibelman functional t: Oy(SLy) — C(q) of [77, 76], so t(a) = (a,w), o € Oy(SL2). By
comparing (57) with the formulas defining the action of ¢ in Section 1.7 of [42], we find

w=Ewk
and the basis vectors w? of [42] are related to the vectors v} above as follows:

" — NP
vj = Ajwy
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where k =2p, j=p—1, =1, \{ = [k]q_k, and

o [£]! JGHD—ik+2)
Y- G- o B
Explicit formulas of the evaluation of ¢ on basis vectors of O4(SL2) can be computed. We
get:
P

(58) HE™ * 57 d7) = g [0 - 072,
i=1
~ p
(59) @™ 5 & x dP) = (=1)" G "POT[(1 - ¢7)
i=1
where
(60) i=a,b=qgb,é=q'c,d=d

and as usual a, b, ¢, d are the standard generators of Oy(SLo), ie. the matrix coefficients in
the basis of weight vectors vy, v1 = F.vg of the 2-dimensional irreducible representation V2 of
Uq(sl(2)). Here we have introduced the generators @, ..., d to facilitate the comparison with
the formulas in [42]; these generators come naturally in their setup because they use different
generators [; and F; of U,(g), which in our notations can be written respectively as K, 'E;
and Fsz

The formulas (58)-(59) can be shown by two independent methods. The first uses a
definition of t as a GIN S state associated to an infinite dimensional representation of O4(SLs),
as recalled in Section 1.6 of [42]. The second is to write eg.

(61) t(d*m % B*n *J*p) — <&®m ® B@n ® j@p’ A(m+n+P—1)(w)>

and to use explicit expressions of A(m+7+p— 1)( ) when represented on V®(m+"+p ). In general
one can check that

(62) AM(@) = (A V@id) (R) (A2 2id) (R) @id)
.. ((A ® id) (E—l) ® ¢d®<"—3>) (sz—l ® id®("_2)) I
By (57) or (58)-(59) we see that w (or w) and ¢ are well-defined on the integral forms,
w e Up, t: Oa(SLy) — A.
We now consider the case where g is of rank m > 2. To each simple root «;, 1 < m,

<z

it is associated the subalgebra of U, generated by E;, F;, L;, L; . Tt is a copy of Uy, (sl(2)),
where ¢; = ¢%. Let @; be the corresponding quantum Weyl group element in U, = Uy(g),
defined by Saito’s formula (53), replacing H, E, F by H;, E; and F;. Also, denote by
vi: Oy — O (SLa) the projection map dual to the inclusion Uy, (sl(2)) ®c(q,) C(q) — U,
associated to «;, and put ¢; = t o ;. Let w; be the corresponding quantum Weyl group
element in Uy, ie. t;(a) = (o, w;) for all a € O,. On integral forms they yield well-defined
elements w;, w; € Ur and t;: O4 — A (see [42], Proposition 5.1). They satisfy the defining
relations of the braid group B(g) of g [55]:

ﬁiﬂi]jﬁ}i = Uf)jl[)ﬂ@j if aijaji =1
(i;)F = (wjy)* for k =1,2,3 if aja; = 0,2,3

and similarly by replacing w; with w;, or with ¢; (see [76] for the latter). The Weyl group
W =W(g) = N(Tg)/Tc is generated by the reflexions s; associated to the simple roots ;.



46 STEPHANE BASEILHAC, PHILIPPE ROCHE

Denote by n; € N(Tg) a representative of s;. Let w € W and denote by w = s;, ...s;,
a reduced expression. Because of the braid group relations the elements w = w;, ... w;,,
W= wy W, and the functional t,, = t;, ...t; do not depend on the choice of reduced
expression. The Lusztig [60] braid group automorphism T,,: I' — T" associated to w satisfies
(see [42]):

Ty(x) = wzw™, =zl

Let wg be the longest element in W. We have

~

(63) A(tbg) = R~ (1o ® o)

where as usual R = OR.

6.2. Regular action on O.. The following result is proved in Section 1.10 of [42]. For
completeness let us give a (different) proof. Recall from (25) that we may identify Zy(O.)
with O(G).

Proposition 6.1. For every f € Zy(O,), g € O, we have

(64) ti(f) = f(ni)
(65) ti(f *g) =ti(f)ti(g)-

Proof. 1t is sufficient to prove the results for SLs because v; : O, — O(SLs) is a morphism
of Hopf algebras and v;(Z0(O;)) C Z0(O(SL2)). In this case (64) can be proved by using
(58)-(59), evaluating ¢ on basis elements of Zy(O((SL2)) as is done in Lemma 1.5 (a) of [42].

Such a basis is formed by monomials like in (58)-(59), with all exponents divisible by I; then
for instance

t(d*ml * B*nl * J*pl) = p,05m,0 = me’ndp(n)

where a, . ..,d are the generators of O(G) = O1(G) corresponding to a,...,d, and we take

()

as representative of the reflexion s generating the Weyl group W (sl(2)). Here is an alternative
proof of (64): (65) shows that ¢ is a homomorphism on Zy(O.(SL2)), so by proving (65) at
first one is reduced to check (64) on the generators a*,...,d*, which is easy by means of
(61) and (63).

We provide a proof of (65) that we find more conceptual than the one in Lemma 1.5 (b)
of [42] (which uses again (58)-(59)). As above let us denote w = (WK. For any f,g € O, we
have

t(fxg) = (f ®g)(Aw))
—(feg) (Al wew)

= > fo (B ) fo@ g (B ew)
(R=1),(6)

= fo(w) g ((fy @ id) (R ).
()
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Assume now f € Zy(Oc(SL2)). Since Z¢(O(SL2)) is a Hopf subalgebra of O.(SL2) we have
fa) € 20(Oc(SLz)). From Theorem 2.15 (2) we deduce

(Fay @ id)(R™") € Ue(n-) 0 Zo(Ue).
Denote by z this element. Note that from its expression we have €(z) = €(f(1)). Now
g(zw) = Z(g) 9(1)(2)g2)(w), but g(1) is a linear combination of matrix elements of I'-modules,
on which Zy(Ue) acts by the trivial character. Therefore

g(zw) = () e(2)90)(Dgo) (w) = e(2)g(w) = e(fr))g(w)
and eventually

t(f*g) = Zf Je(fay)g(w) = t(f)t(g)-

This concludes the proof. O
For the sake of completeness, let us show how this result implies:
Proof of Proposition 2.16 (ie. Proposition 7.1 of [42]). We have f <t; = Z(f) ti(f)) fe2)s
f € 20(Oc). Since Zo(O,) is a Hopf subalgebra of O, f2) € Zo(Oc) and therefore the maps
<ti: Oc = O preserve Zy(O.). Moreover, (f<ti)(a) = X4 fa)(ni) fi2)(@) = f(nia), a € G,
by (64).
It remains to show that (f x o) < t; = (f <t;)(a <t;) for every f € Zp(O), o € Or. We
have

(fx9) Ati=Y e ti (Fx9) ) (F*Dy = D ti (foy*91)) oy * 92
(f):(9)

= > t(vilfa)vilam)) fo) * 9e)
():(9)

(66) = > t(wlfy) t (vilgw)) fio) * 902
(£):(9)
using that v; is a homomorphism in the third equality, and (65) in the last one. The result
is just (f <1t;)(g <ty). O
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