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Abstract. We prove that the unrestricted quantum moduli algebra of a punctured sphere
and complex simple Lie algebra g is a finitely generated ring and a Noetherian ring, and that
its specialization at a root of unity of odd order l, coprime to 3 if g has type G2, embeds in

a natural way in a maximal order of a central simple algebra of PI degree l(n−1)N−m, where
N is the number of positive roots of g, m its rank, and n + 1 ≥ 3 the number of punctures.
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1. Introduction

This paper is the second part of our work on the unrestricted quantum moduli algebras,
that we initiated in [28]. These algebras, denoted by MA

g,n(g) hereafter, are defined over the

ground ring A = C[q, q−1] and associated to unrestricted quantum groups of complex simple
Lie algebras g, and surfaces of genus g with n + 1 punctures (thus, n = −1 corresponds to

closed surfaces). We are in particular interested in the specializationsMA,ε
g,n(g) ofMA

g,n(g) at
roots of unity q = ε.

As in [28] we focus in this paper on the algebrasMA
0,n(g) associated to punctured spheres.

From now on we fix a complex simple Lie algebra g, and when no confusion may arise we
omit g from the notation of the various algebras.

1
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The rational form Mg,n of MA
g,n = MA

g,n(g), which is an algebra over C(q), has been

introduced in the mid ′90s by Alekseev-Grosse-Schomerus [2, 3] and Buffenoir-Roche [30, 31].
They defined Mg,n by a q-deformation of the algebra of functions on the Fock-Rosly lattice

models of the moduli spaces Mcl
g,n of flat g-connections on surfaces of genus g with n + 1

punctures. Because of this geometric input, it is quite natural to expect that the represen-
tation theory of the specializations MA,ε

g,n(g) of MA
g,n(g) at roots of unity q = ε provides a

(2+1)-dimensional TQFT for 3-manifolds endowed with general flat g-connections, extending
the known TQFTs based on quantum groups (where purely topological ones correspond to
the trivial connection).

For instance, representations of the semisimplification ofMA,ε
g,n have been constructed and

classified in [4]; they involve only the irreducible representations of the finite dimensional
“small”, also called “restricted”, quantum group uε(g), which is a quotient of Uε(g) below,
and a version of the Frobenius-Lusztig kernel of g at ε (see [23], III.6.4). Moreover, [4] deduced

from their representations of MA,ε
g,n a family of representations of the mapping class groups

of surfaces, that is equivalent to the one associated to the Witten-Reshetikin-Turaev TQFT
[81, 73].

Recently, representations of another quotient of MA,ε
g,n have been constructed in [47]. The

corresponding representations of the mapping class groups of surfaces are equivalent to those
previously obtained by Lyubashenko-Majid [62], and are associated to the so called non-
semisimple TQFT defined by Geer, Patureau-Mirand and their collaborators (see eg. [44,
45]). In the sl(2) case they involve the irreducible and also the principal indecomposable
representations of uε(sl(2)). The related link and 3-manifold invariants coincide with those
of [64] and [19].

In general, the representation theory of MA,ε
g,n is by now far from being completely un-

derstood. As mentioned above, it is expected to provide a good framework to construct
and study quantum invariants of 3-manifolds equipped with general flat g-connections. A
family of such invariants, called quantum hyperbolic invariants, has already been defined for
g = sl(2) by means of certain 6j-symbols, Deus ex machina; they are closely connected to
classical Chern-Simons theory, provide generalized Volume Conjectures, and contain quan-
tum Teichmüller theory (see [12]–[18]). It is part of our present program, initiated in [9],
to shed light on these invariants and to generalize them to arbitrary g by developing the
representation theory of MA,ε

g,n.
Besides, the quantum moduli algebras are now recognized as central objects from the

viewpoints of factorization homology [20] and(stated) skein theory [22, 49, 34]. As already
suggested above, their underlying formalism of combinatorial quantisation is very-well suited
to the construction of mapping class group representations [48]. In another direction, one
may expect that the equivalence proved in [63] between combinatorial quantisation for the
Drinfeld double D(H) of a finite-dimensional semisimple Hopf algebra H, and Kitaev’s lattice
model in topological quantum computation, can be extended to the setup of quantum moduli
algebras.

We introduced MA
0,n and began its study in [28]. Its definition is based on the original

combinatorial quantization method of [2, 3] and [30, 31], and uses also twists of module-
algebras. This allows us to exploit fully the representation theory of quantum groups, by
following ideas of classical invariant theory. Namely, as we shall describe more precisely
below, MA

0,n can be regarded as the invariant subalgebra of a certain module-algebra LA0,n,
endowed with an action of the unrestricted (De Concini-Kac) integral form UA = UA(g) of the

quantum group Uq = Uq(g). We therefore study LA0,n and its specializations Lε0,n at q = ε a
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root of unity. Under such a specializationMA
0,n embeds in (Lε0,n)Uε , the invariant subalgebra

of Lε0,n under the action of the specialization Uε of UA at q = ε.
In [28], for q a root of unity we focused on the case g = sl(2) and described a Poisson action

of the center onMA,ε
0,n(sl(2)), derived from the quantum coadjoint action of De Concini-Kac-

Procesi [38, 39, 40]. The results we prove in the present paper hold for every complex simple

Lie algebra g. The main ones are a proof that LA0,n andMA
0,n are Noetherian, finitely generated

rings (Theorem 1.1), and Lε0,n and (Lε0,n)Uε are maximal orders of their central localizations
(Theorem 1.3). We conclude with an application to their representation theories (Corollary
1.4).

Let us now state precisely and comment our results. First we need to fix notations. Let
Uq be the simply-connected quantum group of g, defined over the field C(q). From Uq one
can define a Uq-module algebra L0,n, called graph algebra, where Uq acts by means of a

right coadjoint action. The quantum moduli algebra M0,n is the subalgebra LUq0,n of invariant

elements of L0,n for this action. The unrestricted quantum moduli algebraMA
0,n is an integral

form of M0,n (thus, defined over A = C[q, q−1]). As a C(q)-module L0,n is just O⊗nq , where
Oq = Oq(G) is the standard quantum function algebra of the connected and simply-connected
Lie group G with Lie algebra g. The product of L0,n is obtained by twisting both the product
of each factor Oq and the product between them. It is equivariant with respect to a (right)
coadjoint action of Uq, which defines the structure of Uq-module of L0,n. The module algebra

L0,n has an integral form LA0,n, defined over A, endowed with a coadjoint action of the

unrestricted integral form UA of Uq introduced by De Concini-Kac [38]. The algebra LA0,n
is obtained by replacing Oq in the construction of L0,n with the restricted dual OA of the
integral form U resA of Uq defined by Lusztig [60], or equivalently with the restricted dual of
the integral form Γ of Uq defined by De Concini-Lyubashenko [42]. The unrestricted integral

form MA
0,n of M0,n is defined as the subalgebra of invariant elements,

MA
0,n := (LA0,n)UA .

A cornerstone of the theory of MA
0,n is a map originally due to Alekseev [1], building on

works of Drinfeld [36] and Reshetikhin and Semenov-Tian-Shansky [70]. In [28] we showed
that it eventually provides isomorphisms of module algebras and algebras respectively,

Φn : LA0,n → (U⊗nA )lf ,Φn : MA
0,n → (U⊗nA )UA

where U⊗nA is endowed with a right adjoint action of UA, and (U⊗nA )lf is the subalgebra of

locally finite elements with respect to this action. When n = 1 the algebra U lfA has been
studied in great detail by Joseph-Letzter [52, 53, 51]; their results we use have been greatly
simplified in [80].

All the material we need about the results discussed above is described in [28], and recalled
in Section 2.1-2.2.

Our first result, proved in Section 3, is:

Theorem 1.1. L0,n, M0,n and their unrestricted integral forms and specializations at q ∈
C \ {0, 1} are Noetherian rings, and finitely generated rings.

In [28] we proved that these algebras have no non-trivial zero divisors. Also, we deduced
Theorem 1.1 in the sl(2) case by using an isomorphism between M0,n(sl(2)) and the skein
algebra of a sphere with n+ 1 punctures, which by a result of [66] is Noetherian and finitely
generated. Our approach here is completely different. For L0,n we adapt the proof given

by Voigt-Yuncken [80] of a result of Joseph [51], which asserts that U lfq is a Noetherian ring
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(Theorem 3.1). For M0,n we deduce the result from the one for L0,n, by following a line of
proof of the Hilbert-Nagata theorem in classical invariant theory (Theorem 3.2).

From Section 4 we consider the specializations Lε0,n of LA0,n at q = ε, a root of unity of odd
order l coprime to 3 if g has G2 components. In [42], De Concini-Lyubashenko introduced
a central subalgebra Z0(Oε) of Oε isomorphic to the coordinate ring O(G), and proved that

the Z0(Oε)-module Oε is projective of rank ldimg. As observed by Brown-Gordon-Stafford
[25], Bass’ Cancellation theorem in K-theory and the fact that K0(O(G)) ∼= Z, proved by
Marlin [68], imply that this module is free. Alternatively, this follows also from the fact
that Oε is a cleft extension of O(G) by the dual of the Hopf algebra uε(g), as proved by
Andruskiewitsch-Garcia (see [6], Remark 2.18(b), and also Section 3.2 of [21]; this argument
was explained to us by K. A. Brown).

The section 4 proves the analogous property for Lε0,n. Namely:

Theorem 1.2. Lε0,n has a central subalgebra Z0(Lε0,n) isomorphic to O(G)⊗n, and it is a free

Z0(Lε0,n)-module of rank ln.dimg, isomorphic to the O(G)⊗n-module O⊗nε .

A similar statement for (Lε0,n)Uε is in Theorem 1.3 (3) below.

We prove the first and third claims of Theorem 1.2 in Proposition 4.2. Since Lε0,n and O⊗nε
are the same modules over O(G)⊗n, at this point we can just deduce the second claim from
the results of [42] and [68], or [6], recalled above. Nevertheless we give a self-contained proof

that Lε0,1 is finite projective of rank ldimg over Z0(Lε0,1) by adapting the original arguments
of Theorem 7.2 of De Concini-Lyubashenko [42]. In particular we study the coregular action
of the braid group of g on Lε0,1; by the way, in the Appendix we provide different proofs of
some technical facts shown in [42]. Of course, it remains an exciting problem to describe

the centralizing extension O(G)⊗n ⊂ Lε0,n (and similarly O(G)⊗n ⊂ (Lε0,n)Uε below), aiming
at generalizing the results of [6] and finding a direct, more structural proof of freeness in
Theorem 1.2.

It is worth noticing that the most natural definition of Z0(Lε0,1) is Φ−1
1 (U lfε ∩Z0(Uε)), where

Z0(Uε) is the De Concini-Kac-Procesi central subalgebra of Uε, and U lfε the specialization

at q = ε of the algebra U lfA . Thus it is not directly connected to Z0(Oε), and the algebra
structures of Lε0,1 and Oε are completely different indeed. For arbitrary n we set Z0(Lε0,n) =

Z0(Lε0,1)⊗n. The fact that Z0(Lε0,n) is central in Lε0,n, and Z0(Lε0,1) and Z0(Oε) coincide and
give Lε0,1 and Oε the same module structures over these subalgebras, relies on results of De
Concini-Kac [38], De Concini-Procesi [39, 40], and De Concini-Lyubashenko [42], that we
recall in Section 2.3-2.4.

Also, we note that basis of Lε0,n over Z0(Lε0,n) are complicated. The only case we know is
g = sl(2), described in [43], and it is far from being obvious (see (43)).

In Section 5 we turn to fraction rings. As mentioned above Lε0,n has no non-trivial zero
divisors. Therefore its center Z(Lε0,n) is an integral domain. Denote by Q(Z(Lε0,n)) its

fraction field. Denote by (Lε0,n)Uε the subring of Lε0,n formed by the invariant elements of
Lε0,n with respect to the right coadjoint action of Uε. Note that we trivially have an inclusion

MA,ε
0,n ⊂ (Lε0,n)Uε , and these two algebras are distinct in general; for instance, when n = 1 we

have by definition (Lε0,1)Uε = Z(Lε0,1), which is a finite extension of O(G) by Theorem 1.2

and Corollary 5.7 discussed below, whereas MA,ε
0,n is the specialization at q = ε of Z(LA0,1), a

polynomial algebra which may be identified via Φ1 with Z(UA), generated by the quantum

Casimir elements. Also the center Z(Lε0,n) of Lε0,n is contained in (Lε0,n)Uε (this follows from
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[28], Proposition 6.17). Consider the rings

Q(Lε0,n) = Q(Z(Lε0,n))⊗Z(Lε0,n) Lε0,n

and

Q((Lε0,n)Uε) = Q(Z(Lε0,n))⊗Z(Lε0,n) (Lε0,n)Uε .

In general, given a ring A with center Z an integral domain we reserve the notation Q(A)

to the central localization of A, ie. Q(A) := Q(Z) ⊗Z A. Though the center Z((Lε0,n)Uε) of

(Lε0,n)Uε is larger than Z(Lε0,n), the notation Q((Lε0,n)Uε) is not ambiguous, for Z((Lε0,n)Uε) is

an integral domain finite over Z(Lε0,n), and hence the central localization of (Lε0,n)Uε coincides

with Q((Lε0,n)Uε) as defined above. Throughout the paper, unless we mention it explicitly we
follow the conventions of Mc Connell-Robson [69] as regards the terminology of ring theory;
in particular, for the notions of central simple algebras, (maximal) orders and PI degrees, see
in [69] the sections 5.3 and 13.3.6-13.6.7.

Denote by m the rank of g, and by N the number of its positive roots. We prove:

Theorem 1.3. (1) Q(Lε0,n) is a central simple algebra of PI degree lnN , and Lε0,n is a maximal
order of Q(Lε0,n).

(2) Q((Lε0,n)Uε), n ≥ 2, is a central simple algebra of PI degree lN(n−1)−m, and (Lε0,n)Uε is a

maximal order of Q((Lε0,n)Uε).

(3) (Lε0,n)Uε is a Noetherian ring, its center is Z(Lε0,n) ⊗∆(n)(Z0(Lε0,1)) ∆(n)(Z(Lε0,1)), and as

a Z0(Lε0,n)-module (Lε0,n)Uε, n ≥ 2, is free of rank l(n−1).dimg.

The first claim of the statement (1) means that Q(Lε0,n) is a complex subalgebra of a full

matrix algebra Matd(F), where d = lnN and F is a finite extension of Q(Z(Lε0,n)) such that

F⊗Q(Z(Lε0,n)) Q(Lε0,n) = Matd(F).

We deduce it from Theorem 1.2 and the computation of the degree of Q(Z(Lε0,n)) as a field
extension of Q(Z0(Lε0,n)). This computation uses Φn and the computation of the degree of
Q(Z(Uε)) over Q(Z0(Uε)) by De Concini-Kac [38] (see Proposition 5.3).

The second claim of (1) is proved in Theorem 5.6. More precisely we prove that Lε0,n is
integrally closed in Q(Lε0,n), in the sense of [38, 40]. So, before the theorem we show in Lemma
5.5 that a ring A with no non-trivial zero divisors, Noetherian center, and finite dimensional
classical fraction algebra Q(A), which is the case of Lε0,n and (Lε0,n)Uε , is integrally closed
in Q(A) if and only if it is maximal as a (classical) order. For the sake of clarity we have
included a general discussion of these notions before Theorem 5.6. The proof of that theorem
uses the facts that Oε is a maximal order of its classical fraction algebra, which is Theorem
7.4 of [42], and that the twist which defines the algebra structure of Lε0,n from O⊗nε keeps the
Z0-module structure unchanged. It seems harder to prove directly that Lε0,n is a maximal
order, without this twist argument, essentially because we know only one localization of Lε0,n
which is a maximal order (and thus cannot apply the Serre argument as in Theorem 7.4 of
[42]), and, in another direction, we lack of a complete set of defining relations, allowing for
degeneration arguments as in [40, 41]. However, as an example we do it in the sl(2) case
when n = 1.

As a consequence of the maximality of Lε0,n and the fact that Z(Lε0,n) is Noetherian, it is

an integrally closed domain, equal to the trace ring of Lε0,n. In fact Z(Lε0,n) = Z(Lε0,1)⊗n,
and it is a free Z0(Lε0,n)-module of rank lmn (see Corollary 5.7).
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We deduce the first claim of (2) and the second of (3) from the assertion (1), the double
centralizer theorem for central simple algebras, a few results of [28] and [42], and Theorem
1.2 again.

The first claim of (3) follows directly from the fact that O(G) and Lε0,n are Noetherian
rings (the latter by Theorem 1.1; see the proof of Theorem 4.7 for details). Finally, the left

regular action of ∆(n)(Lε0,1)⊗∆(n)(Z(Lε0,1)) (Lε0,n)Uε on Lε0,n yields the following decomposition

into simple components,

Lε0,n ∼=
(

∆(n)(Lε0,1)⊗∆(n)(Z(Lε0,1)) (Lε0,n)Uε
)⊕lm

.

From this and our previous results for Lε0,n we deduce the last claims of (2) and (3). We note

that Z(Lε0,1) = (Lε0,1)Uε , and a certain localization of Lε0,1 is a direct summand of Uε (see
Theorem 2.2 (2) and Corollary 2.5 (2)). So one can view the freeness of the Z0(Lε0,n)-module

(Lε0,1)Uε as a generalization of the fact that Z(Uε) is free of rank lm over Z0(Uε) (proved in
[40], Proposition 20.2).

We conclude with an application of Theorem 1.3, providing a characterization of the ir-
reducible representations of maximal dimension. Recall that given a classical order A of PI
degree d and with center Z a Noetherian and integrally closed domain, the discriminant D(A)
is the ideal of Z generated by the elements det((tred(xixj))1≤i,j≤d), where x1, . . . xd ∈ A and
tred : A→ Z is the reduced trace map of Q(A) restricted to A (see [71], Section 10). Given a
central character χ ∈ Maxspec(Z) denote by Iχ the ideal of A generated by the kernel of χ,

and let Aχ := A/Iχ. Our results show all this applies in particular to A := Lε0,n or (Lε0,n)Uε .
Classical arguments then imply that if A has no non-trivial zero divisors, then Aχ 6= 0, and
moreover we have (see eg. Lemma 3.7 of [38]):

Corollary 1.4. (a) (Lε0,n)χ is isomorphic to Md(C), d := lnN , if and only if χ /∈ D(Lε0,n),
and if χ ∈ D(Lε0,n) every irreducible representation of (Lε0,n)χ has dimension less than d.

(b) Same statement for ((Lε0,n)Uε)χ, putting d := lN(n−1)−m and replacing D(Lε0,n) with

D((Lε0,n)Uε).

Much more can be said on irreducible representations of dimension < d, eg. by using
lower discriminant ideals (see the Main Theorem of [26]). Also, it follows from Theorem 7.18
of [28] that Lε0,n(sl(2)) is a Poisson order relative to its center, which is a Poisson central
finite extension of O(SL(2,C)n) endowed with the Fock-Rosly Poisson structure. This should
extend without difficulty to all g beyond the sl(2) case. By the results of [24], the zero locus of
D(Lε0,n(sl(2))) is then a union of symplectic leaves in Maxspec(Z(Lε0,n(sl(2)))) (a determined,
finite covering space of SL(2,C)n). There is a similar result for Mε

0,n(sl(2)) (Corollary 7.21
of [28]), in terms of the Atiyah-Bott-Goldman Poisson structure on the invariant coordinate

ring O(SL(2,C)n)SL(2,C).

In [29] we use all this to describe the subalgebra MA,ε
0,n ⊂ (Lε0,n)Uε and its representations,

and we give applications to skein algebras (which is the sl(2) case). In [27] we consider the

algebras MA,ε
g,n for genus g 6= 0.

Acknowledgements. We are grateful to K. A. Brown for pointing out the reference [26]
above, and [6] and [21] (see the comments before Theorem 1.2).

1.1. Basic notations. Given a ring R, we denote by Z(R) its center, by Spec(R) its spec-
trum, and by Maxspec(R) its maximal spectrum. When R is commutative and has no
non-trivial zero divisors, Q(R) denotes its fraction field.
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Given a Hopf algebra H with product m and and coproduct ∆, we denote by Hcop (resp.
Hop) the Hopf algebra with the same algebra (resp. coalgebra) structure asH but the opposite
coproduct σ ◦∆ (resp. opposite product m ◦ σ), where σ(x ⊗ y) = y ⊗ x, and the antipode
S−1. We use Sweedler’s coproduct notation, ∆(x) =

∑
(x) x(1) ⊗ x(2), x ∈ H.

We let g be a finite dimensional complex simple Lie algebra of rank m, with Cartan matrix
(aij). We fix a Cartan subalgebra h ⊂ g and a basis of simple roots αi ∈ h∗R; we denote
by d1, . . . , dm the unique coprime positive integers such that the matrix (diaij) is symmetric,
and ( , ) the unique inner product on h∗R such that diaij = (αi, αj). For any root α the coroot

is α̌ = 2α/(α, α); in particular α̌i = d−1
i αi. The root lattice Q is the Z-lattice in h∗R defined

by Q =
∑m

i=1 Zαi. The weight lattice P is the Z-lattice formed by all λ ∈ h∗R such that
(λ, α̌i) ∈ Z for every i = 1, . . . ,m. So P =

∑m
i=1 Z$i, where $i is the fundamental weight

dual to the simple coroot α̌i, ie. satisfying ($i, α̌j) = δi,j . We denote by P+ :=
∑m

i=1 Z≥0$i

the cone of dominant integral weights, by N the number of positive roots of g, by ρ half the
sum of the positive roots, and by D the smallest positive integer such that D(λ, µ) ∈ Z for
every λ, µ ∈ P . Note that (λ, α) ∈ Z for every λ ∈ P , α ∈ Q, and D is the smallest positive
integer such that DP ⊂ Q. We denote by B(g) the braid group of g; we recall its standard
defining relations in the Appendix (Section 6.1).

We let G be the connected and simply-connected Lie group with Lie algebra g. We put
TG = exp(h), the maximal torus of G generated by h; N(TG) is the normalizer of TG,
W = N(TG)/TG is the Weyl group, B± the unique Borel subgroups such that B+∩B− = TG,
and U± ⊂ B± their unipotent subgroups.

We let q be an indeterminate, set A = C[q, q−1], qi = qdi , and given integers p, k with
0 ≤ k ≤ p we put

[p]q =
qp − q−p

q − q−1
, [0]q! = 1 , [p]q! = [1]q[2]q . . . [p]q ,

[
p
k

]
q

=
[p]q!

[p− k]q![k]q!

(p)q =
qp − 1

q − 1
, (0)q! = 1 , (p)q! = (1)q(2)q . . . (p)q ,

(
p
k

)
q

=
(p)q!

(p− k)q!(k)q!
.

We denote by ε a primitive l-th root of unity such that ε2di 6= 1 is also a primitive l-th
root of unity for all i ∈ {1, . . . ,m}. This means that l is odd, and coprime to 3 if g has
G2-components.

In this paper we use the definition of the unrestricted integral form UA(g) given in [40],
[42]; in [28] we used the one of [38], [39]. The two are (trivially) isomorphic, and have the
same specialization at q = ε. Also, we denote here by Li the generators of Uq(g) we denoted
by `i in [28].

To facilitate the comparison with [42] we note that their generators, that we will denote

by K̃i, Ẽi and F̃i, can be written respectively as Ki,K
−1
i Ei and FiKi in our notations. They

satisfy the same algebra relations.

2. Background results

2.1. On Uq, Oq, L0,n, M0,n, and Φn. Except when stated differently, we refer to [28],
Sections 2-4 and 6, and the references therein for details about the material of this section.
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The simply-connected quantum group Uq = Uq(g) is the Hopf algebra over C(q) with

generators Ei, Fi, Li, L
−1
i , 1 ≤ i ≤ m, and defining relations

LiLj = LjLi , LiL
−1
i = L−1

i Li = 1 , LiEjL
−1
i = q

δi,j
i Ej , LiFjL

−1
i = q

−δi,j
i Fj

EiFj − FjEi = δi,j
Ki −K−1

i

qi − q−1
i

1−aij∑
r=0

(−1)r
[

1− aij
r

]
qi

E
1−aij−r
i EjE

r
i = 0 if i 6= j

1−aij∑
r=0

(−1)r
[

1− aij
r

]
qi

F
1−aij−r
i FjF

r
i = 0 if i 6= j.

where for λ =
∑m

i=1mi$i ∈ P we set Kλ =
∏m
i=1 L

mi
i , and Ki = Kαi =

∏m
j=1 L

aji
j . The

coproduct ∆, antipode S, and counit ε of Uq are given by

∆(Li) = Li ⊗ Li , ∆(Ei) = Ei ⊗Ki + 1⊗ Ei , ∆(Fi) = K−1
i ⊗ Fi + Fi ⊗ 1

S(Ei) = −EiK−1
i , S(Fi) = −KiFi , S(Li) = L−1

i
ε(Ei) = ε(Fi) = 0, ε(Li) = 1.

We fix a reduced expression si1 . . . siN of the longest element w0 of the Weyl group of g. It
induces a total ordering of the positive roots,

β1 = αi1 , β2 = si1(αi2), . . . , βN = si1 . . . siN−1(αiN ).

The root vectors of Uq with respect to such an ordering are defined by

Eβk = Ti1 . . . Tik−1
(Eik) , Fβk = Ti1 . . . Tik−1

(Fik)

where Ti is Lusztig’s algebra automorphism of Uq associated to the simple root αi ([61, 60],
see also [35], Ch. 8). In the Appendix we recall the relation between Ti and the generator
ŵi of the quantum Weyl group, which we will mostly use. Let us just recall here that the
monomials F r1β1 . . . F

rN
βN
KλE

tN
βN
. . . Et1β1 (ri, ti ∈ N, λ ∈ P ) form a basis of Uq.

Uq is a pivotal Hopf algebra, with pivotal element

` := K2ρ =
∏m
j=1 L

2
j .

So ` is group-like, and S2(x) = `x`−1 for every x ∈ Uq.
The adjoint quantum group Uadq = Uadq (g) is the Hopf subalgebra of Uq generated by the

elements Ei, Fi (i = 1, . . . ,m) and Kα with α ∈ Q; so ` ∈ Uadq . When g = sl(2), we simply
write the above generators E = E1, F = F1, L = L1, K = K1.

We denote by Uq(n+), Uq(n−) and Uq(h) the subalgebras of Uq generated respectively by
the Ei, the Fi, and the Kλ (λ ∈ P ), and by Uq(b+) and Uq(b−) the subalgebras generated
by the Ei and the Kλ, and by the Fi and the Kλ, respectively (they are the two-sided ideals

generated by Uq(n±)). We do similarly with Uadq .

Uadq is not a braided Hopf algebra in a strict sense, but it has braided categorical comple-

tions. Namely, denote by C the category of type 1 finite dimensional Uadq -modules, by V ect
the category of finite dimensional C(q)-vector spaces, and by FC : C → V ect the forgetful

functor. The categorical completion Uadq of Uadq is the set of natural transformations FC → FC .
Let us recall briefly what this means and implies. For details we refer to the sections 2 and

3 of [28] (see also [80], Section 2.10, where Uq below is formulated in terms of multiplier Hopf

algebras). An element of Uadq is a collection (aV )V ∈Ob(C), where aV ∈ EndC(q)(V ) satisfies
FC(f) ◦ aV = aW ◦ FC(f) for any objects V,W of C and any arrow f ∈ HomUadq

(V,W ). It is
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not hard to see that Uadq inherits from C a natural structure of Hopf algebra such that the
map

ι : Uadq −→ Uadq
x 7−→ (πV (x))V ∈Ob(C)

is a morphism of Hopf algebras, where πV : Uadq → End(V ) is the representation associated

to a module V in C. It is a theorem that this map is injective; Uadq can be understood as a

weak-∗ completion of Uadq by means of the pairing 〈., .〉 introduced below. From now on, let

us extend the coefficient ring of the modules and morphisms in C to C(q1/D). Put

Uq = Uadq ⊗C(q) C(q1/D)

One can show that the map ι above extends to an embedding of Uq⊗C(q) C(q1/D) in Uq. The

category C, with coefficients in C(q1/D), is braided and ribbon. We postpone a discussion of
that fact to Section 2.3, where it will be developed. As a consequence, Uq is a quasitriangular
and ribbon Hopf algebra. The R-matrix of Uq is the family of morphisms

R = ((Rh)V,W )V,W∈Ob(C)

where q = eh, Rh is the universal R-matrix of the quantized universal enveloping algebra
Uh(g), and (Rh)V,W ∈ End(V ⊗ W ), for every modules V,W in C, is the endomorphism
defined by the action of Rh on V ⊗W (which is well-defined). The ribbon element vh of
Uh(g) defines similarly the ribbon element v = ((vh)V )V of Uq. One defines the categorical

tensor product U⊗̂2
q similarly as Uq; it contains all the infinite series of elements of U⊗2

q having
only a finite number of non-zero terms when evaluated on a given module V ⊗W of C. The

expansion of Rh as an infinite series in Uh(g)⊗̂2 induces an expansion of R as an infinite series

in U⊗̂2
q . Adapting Sweedler’s coproduct notation ∆(x) =

∑
(x) x(1) ⊗ x(2) we find convenient

to write this series as

(1) R =
∑
(R)

R(1) ⊗R(2).

We put R+ := R, R− := (σ ◦R)−1 where σ is the flip map x⊗ y 7→ y ⊗ x.

The quantum function Hopf algebra Oq = Oq(G) is the restricted dual of Uadq , ie. the set

of C(q)-linear maps f : Uadq → C(q) such that Ker(f) contains a cofinite two sided ideal I (ie.

such that I ⊕M = Uq for some finite dimensional vector space M), and
∏r
s=−r(Ki − qsi ) ∈ I

for some r ∈ N and every i. The structure maps of Oq are defined dually to those of Uadq .
We denote by ? its product. The algebras Oq(TG), Oq(U±), Oq(B±) are defined similarly,

by replacing Uadq with Uadq (h), Uadq (n±), Uadq (b±) respectively. Oq is generated as an algebra

by the functionals x 7→ w(πV (x)v), x ∈ Uadq , for every object V ∈ Ob(C) and vectors v ∈ V ,
w ∈ V ∗. Such functionals are called matrix coefficients. We can uniquely extend the (non-

degenerate) evaluation pairing 〈., .〉 : Oq ⊗Uadq → C(q) to a bilinear pairing 〈., .〉 : Oq ⊗Uq →
C(q1/D) such that the following diagram is commutative:

Oq ⊗ Uadq
〈.,.〉 //

id⊗ι
��

C(q)

Oq ⊗ Uq
〈.,.〉

::

This pairing is defined by
〈Y φwv , (aX)X〉 = w(aY v)
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for every (aX)X ∈ Uq, Y φwv ∈ Oq. It is a perfect pairing, and reflects the properties of the

R-matrix R ∈ U⊗̂2
q in a subtle way. In particular, these properties imply that the maps

(2)

Φ± : Oq −→ U copq

α 7−→ (α⊗ id)(R±) =
∑
(R±)

〈α,R±(1)〉R
±
(2)

are well-defined morphisms of Hopf algebras. Here we stress that it is the simply-connected
quantum group U copq that is the range of Φ±. This will be explained in more details in Section
2.3.

The quantum loop algebra L0,1 = L0,1(g) is defined by twisting the product ? of Oq, keeping
the same underlying linear space. The new product is equivariant with respect to the right
coadjoint action coadr of Uadq ; noting that coadr extends to an action of the simply-connected
quantum group Uq, the new product thus gives L0,1 a structure of Uq-module algebra. Recall
that

coadr(x)(α) =
∑
(x)

S(x(2)) � α� x(1)

for all x ∈ Uq and α ∈ Oq, where �, � are the left and right coregular actions of Uq on Oq,
defined by

x� α :=
∑
(α)

α(1)〈α(2), x〉, α� x :=
∑
(α)

〈α(1), x〉α(2).

Using the fact that Uq ⊗ C(q1/D) can be regarded as a subspace of Uq, these actions extend
naturally to actions of Uq. The product of L0,1 is expressed in terms of ? by the formula
([28], Proposition 4.1):

(3) αβ =
∑

(R),(R)

(R(2′)S(R(2)) � α) ? (R(1′) � β �R(1)),

where
∑

(R)R(1)⊗R(2) and
∑

(R)R(1′)⊗R(2′) are expansions of two copies of R ∈ U⊗̂2
q . Note

that the sum in (3) has only a finite number of non zero terms. This product gives L0,1 (like
Oq) a structure of module algebra for the actions �, �, and also for coadr(x). Spelling this
out for coadr, this means

coadr(x)(αβ) =
∑
(x)

coadr(x(1))(α)coadr(x(2))(β).

The relations between Oq, L0,1 and Uq (the simply-connected quantum group) are encoded
by the map

(4)
Φ1 : Oq −→ Uq

α 7−→ (α⊗ id)(RR′)

where R′ = σ ◦R, and as usual σ : x⊗ y 7→ y ⊗ x. Note that

Φ1 = m ◦ (Φ+ ⊗ (S−1 ◦ Φ−)) ◦∆.

We call Φ1 the RSD map, for Drinfeld, Reshetikhin and Semenov-Tian-Shansky introduced
it first (see [36, 70],[67]). Recall that Uq embeds in Uq. It is a fundamental result of the
theory ([33, 51, 11]) that Φ1 affords an isomorphism of Uq-modules

Φ1 : Oq → U lfq .
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For full details on that result we refer to Section 2.12 of [80] (where different conventions are

used). Here, U lfq is the set of locally finite elements of Uq, endowed with the right adjoint
action adr of Uq. It is defined by

U lfq := {x ∈ Uq | rkC(q)(ad
r(Uq)(x)) <∞}

and

adr(y)(x) =
∑
(y)

S(y(1))xy(2)

for every x, y ∈ Uq. The action adr gives in fact U lfq a structure of right Uq-module algebra.
Moreover, Φ1 affords an isomorphism of Uq-module algebras

(5) Φ1 : L0,1 → U lfq .

The centers Z(L0,1) of L0,1, and Z(Uq) of Uq, coincide respectively with LUq0,1 and U
Uq
q , the

subsets of Uq-invariants elements of L0,1 and Uq. As a consequence, Φ1 affords an isomorphism
between Z(L0,1) and Z(Uq).

The quantum graph algebra L0,n = L0,n(g) is the braided tensor product of n copies of L0,1

(considered as a Uq-module algebra). Thus it coincides with L⊗n0,1 as a linear space, and it is

a right Uq-module algebra, the action of Uq (extending coadr on L0,1) being given by

coadrn(y)(α(1) ⊗ . . .⊗ α(n)) =
∑
(y)

coadr(y(1))(α
(1))⊗ . . .⊗ coadr(y(n))(α

(n))

for all y ∈ Uq and α(1) ⊗ . . . ⊗ α(n) ∈ L0,n. The algebra structure can be explicited as

follows. For every 1 ≤ a ≤ n define ia : L0,1 → L0,n by ia(x) = 1⊗(a−1) ⊗ x⊗ 1⊗(n−a); ia is an
embedding of Uq-module algebras. We will use the notations

L(a)
0,n := Im(ia) , (α)(a) := ia(α).

Take (α)(a), (α′)(a) ∈ L(a)
0,n and (β)(b), (β′)(b) ∈ L(b)

0,n with a < b. Then the product of L0,n is

given by the following formula (see in [28] the proposition 6.2-6.3 and the formulas (13)-(41)-
(42)):

(6)

(
(α)(a) ⊗ (β)(b)

) (
(α′)(a) ⊗ (β′)(b)

)
=

∑
(R1),...,(R4)

(
α
(
S(R3

(1)R
4
(1)) � α′ �R1

(1)R
2
(1)

))(a)

⊗
((
S(R1

(2)R
3
(2)) � β �R2

(2)R
4
(2)

)
β′
)(b)

where Ri =
∑

(Ri)R
i
(1) ⊗ R

i
(2), i ∈ {1, 2, 3, 4}, are expansions of four copies of R ∈ U⊗̂2

q , and

on the right-hand side the product is componentwise that of L0,1. Later we will use the fact
that the product of L0,n is obtained from the standard (componentwise) product of L⊗n0,1 by

a process that may be inverted. Indeed, (6) can be rewritten as

(7)
(

(α)(a) ⊗ (β)(b)
)(

(α′)(a) ⊗ (β′)(b)
)

=
∑
(F )

(α)(a)
(

(α′)(a) · F(2)

)
⊗
(

(β)(b) · F(1)

)
(β′)(b)

where F =
∑

(F ) F(1)⊗F(2) := (∆⊗∆)(R′), and the symbol “·” stands for the right action of

U⊗2
q on L0,1 that may be read from (6). The tensor F is known as a twist. Then, by replacing
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F with its inverse F̄ = (∆ ⊗∆)(R′−1), one can express the product of L⊗n0,1 in terms of the
product of L0,n by

(8) (α)(a)(α′)(a) ⊗ (β)(b)(β′)(b) =
∑
(F̄ )

(
(α)(a) ⊗

(
(β)(b) · F̄(1)

))((
(α′)(a) · F̄(2)

)
⊗ (β′)(b)

)
.

We call quantum moduli algebra and denote by

M0,n =M0,n(g)

the subalgebra LUq0,n of L0,n formed by the Uq-invariant elements.

Consider the following action of Uq on the tensor product algebra U⊗nq , which extends adr

on Uq:

(9) adrn(y)(x) =
∑
(y)

∆(n)(S(y(1)))x∆(n)(y(2))

for all y ∈ Uq, x ∈ U⊗nq . This action gives U⊗nq a structure of right Uq-module algebra. In [1]

Alekseev introduced a morphism of Uq-module algebras Φn : L0,n → U⊗nq which extends Φ1.
In Proposition 6.5 and Lemma 6.8 of [28] we showed that Φn affords isomorphisms

(10) Φn : L0,n → (U⊗nq )lf , Φn :M0,n → (U⊗nq )Uq

where (U⊗nq )lf is the set of adrn-locally finite elements of U⊗nq . We call Φn the Alekseev map;
we will not use the definition of Φn in this paper.

It is a key argument of the proof of (10), to be used later, that the set of locally finite

elements of U⊗nq for (adr)⊗n◦∆(n−1) coincides with (U lfq )⊗n; this follows from the main result
of [57]. Using that the map

(11) ψn = Φn ◦ (Φ−1
1 )⊗n

extends to a linear automorphism of U⊗nq which intertwines the actions (adr)⊗n ◦∆(n−1) and

adrn of Uq, we deduced that ψn((U lfq )⊗n) = (U⊗nq )lf , whence Im(Φn) = (U⊗nq )lf .

Remark 2.1. We have (U lfq )⊗n 6= (U⊗nq )lf , and in fact there is not even an inclusion. Indeed

let Ω = (q − q−1)2FE + qK + q−1K−1 be the standard Casimir element of Uq(sl(2)). We

trivially have ∆(Ω) ∈ (U⊗2
q )lf but

∆(Ω) = (q − q−1)2(K−1E ⊗ FK + F ⊗ E) + Ω⊗K +K−1 ⊗ Ω− (q + q−1)K−1 ⊗K

and therefore ∆(Ω) /∈ (U lfq )⊗2, since K /∈ U lfq (see eg. Theorem 2.2 (2)).

Let us point out here two important consequences of (10). First, Φn yields isomorphisms

between centers, Z(L0,n) ∼= Z(Uq)
⊗n and Z(LUq0,n) ∼= Z((U⊗nq )Uq), where one can show that

([28], Lemma 6.25)

Z((U⊗nq )Uq) ∼= ∆(n−1)(Z(Uq))⊗C(q) Z(Uq)
⊗n.

Second, we see that L0,n (and therefore M0,n) has no non-trivial zero divisors, by using the

isomorphisms Φn : L0,n → (U⊗nq )lf ⊂ U⊗nq and U⊗nq
∼= Uq(g

⊕n), and the fact that Uq(g
⊕n)

has no non-trivial zero divisors (proved eg. in [38]).
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2.2. Integral forms and specializations. An integral form of a (Hopf) C(q)-algebra is
a (Hopf) A-subalgebra, where A = C[q, q−1], that becomes isomorphic to the algebra after
tensoring it with C(q). We consider three integral forms related by the pairing 〈 , 〉, one of

Uq, one of Uadq , and one of Oq.
The unrestricted integral form of Uq is the A-subalgebra UA = UA(g) introduced by De

Concini–Kac–Procesi in [40], Section 12 (and in a differently normalized form in [38] and
[39]). It is generated by the elements (i = 1, . . . ,m)

Ēi = (qi − q−1
i )Ei , F̄i = (qi − q−1

i )Fi , Li , L
−1
i .

Clearly, the subalgebra of locally finite elements of UA is U lfA = UA ∩ U lfq . Similarly, we

define the unrestricted integral form of Uadq as the A-subalgebra UadA ⊂ UA generated by the

elements Ēi, F̄i and K±1
i , for i = 1, . . . ,m.

The restricted integral form of Uadq is the A-subalgebra Γ = Γ(g) introduced by De Concini-
Lyubashenko in [42], Sections 2-3. It is generated by the elements (i = 1, . . . ,m)

E
(k)
i =

Eki
[k]qi !

, F
(k)
i =

F ki
[k]qi !

, (Ki; t)qi =
t∏

s=1

Kiq
−s+1
i − 1

qsi − 1
, K−1

i

where k ∈ N, t ∈ N (setting (Ki; 0)qi = 1 by convention).

Note that Γ contains the elements Ki, and the unrestricted integral form UadA . It plays a
fundamental rôle in relation with the integral pairings π±A considered in Section 2.3; it is by
this rôle that Γ is more suited to our purposes than the more standard restricted integral
form U resA defined by Lusztig, and discussed below.

The integral forms UA(h), UA(b±) and Γ(h), Γ(b±) associated to the subalgebras h, b± ⊂ g
are the subalgebras of UA and Γ defined in the obvious way. For instance the “Cartan”
subalgebra Γ(h) is generated by the elements (Ki; t)qi and K−1

i .
Denote by CA the category of Γ-modules which are free A-modules of finite rank, and

semisimple as Γ(h)-modules; so they have a basis where Ki and (Ki; t)qi act diagonally with
respective eigenvalues of the form

qki ,

(
k
t

)
qi

k ∈ Z, t ∈ N∗.

The integral quantum function Hopf algebra OA = OA(G) is the restricted dual of Γ, ie.
the set of A-linear maps f : Γ → A such that Ker(f) contains a cofinite two sided ideal I,
and

∏r
s=−r(Ki − qsi ) ∈ I for some r ∈ N and every i. OA is an integral form of Oq. The

algebras OA(TG), OA(U±), OA(B±) are defined similarly, by replacing Γ with Γ(h), Γ(n±),
Γ(b±) respectively. OA is generated as an algebra by the matrix coefficients x 7→ vi(πV (x)vi),
x ∈ Γ, for every module V in CA where (vi) is an A-basis of V and (vi) the dual A-basis of
the dual module V ∗.

It is immediate that the Uq-module structure of Oq restricts to an UA-module structure
on OA.

We note that OA is also the restricted dual of U resA , the Lusztig integral form of Uadq [60, 61],
defined as Γ except that the (Ki; t)qi (i = 1, . . . ,m), are replaced by the elements

[Ki; t]qi =

t∏
s=1

Kiq
−s+1
i −K−1

i qs−1
i

qsi − q
−s
i

.

Indeed, Γ(h) contains U resA (h) strictly, but the restriction functor CA → CresA is an equivalence
of categories, where CresA is the category of U resA -modules defined as CA above, but replacing
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the condition on (Ki; t)qi by its analog for [Ki; t]qi , ie. that it acts diagonally with eigenvalues[
k
t

]
qi

k ∈ Z, t ∈ N∗.

The integral form LA0,1 of L0,1 is defined as the UA-module OA endowed with the product of

L0,1, and the integral form LA0,n of L0,n is the braided tensor product of n copies of LA0,1. That
these two products are well-defined over A is elementary (see Definition 4.10 and 6.7 of [28]
for the details). The integral quantum moduli algebra is

MA
0,n = (LA0,n)UA .

Finally, given q = ε′ ∈ C× we define Uε′ , Γε′ , Oε′ , Lε
′

0,n andMA,ε′

0,n as the C-algebras obtained

by tensoring UA, Γ, OA, LA0,n and MA
0,n respectively with Cε′ , the A-module C where q acts

by multiplication by ε′. They are the specializations of the latter algebras at q = ε′; they can
also be defined as the quotients by the ideal generated by q − ε′. We find convenient to use
the notations

(12) (U⊗nA )UAε′ := (U⊗nA )UA ⊗A Cε′ , (U⊗n)lfε′ := (U⊗nA )lf ⊗A Cε′ .

Let us stress here that when ε′ is a root of unity, taking the locally finite part and taking the
specialization at ε′ are non commuting operations. Indeed, when ε′ has odd order, it follows
from Theorem 2.14 below that Uε′ is finite over Z0(Uε′) and therefore has all its elements

locally finite for adr; on another hand U lfA ⊗A Cε′ , ie. U lfε′ in the notations above, does not
contain the elements Li.

In a similar manner, taking invariants and taking the specialization at ε′ are non commuting

operations when ε′ is a root of unity: indeed, it is easily checked that in this case (U⊗nA )UAε′

and (U⊗nε′ )Uε′ , or MA,ε′

0,n = MA
0,n ⊗A Cε′ and (Lε′0,n)Uε′ , are distinct spaces. As explained in

the introduction, when ε′ is a root of unity, we will not consider the algebras MA,ε′

0,n in this
paper.

The morphism Φn has also an integral form. In order to define it, we first consider the

relations between UA and U lfA . Denote by T ⊂ UA the multiplicative Abelian group formed
by the elements Kλ, λ ∈ P , and by T2 ⊂ T the subgroup formed by the Kλ, λ ∈ 2P . Consider
the subset T2− ⊂ T2 formed by the elements K−λ, λ ∈ 2P+. It is easily seen to be an Ore
subset of UA. Clearly T2 = T−1

2− T2− and Card(T/T2) = 2m.

Theorem 2.2. (1) U lfA = ⊕λ∈2P+ad
r(UA)(K−λ).

(2) UA = T−1
2−U

lf
A [T/T2], so UA is free of rank 2m over T−1

2−U
lf
A .

(3) The ring U lfA is (left and right) Noetherian.

Proof. These results are immediate adaptations to U lfA of those for U lfq , proved in Theorem
4.10 of [53], Theorem 6.4 of [52], and Theorem 7.4.8 of [51], respectively (see also the sections
7.1.6, 7.1.13 and 7.1.25 in [51]). For (1) and (3) we refer to Theorem 2.113 and 2.137 in [80],
which provides simpler proofs. 2

Remark 2.3. The summands in (1) are finite-dimensional UA-modules (by eg. (14) below),

so the action adr is completely reducible on U lfA . In fact, U lfA is the socle of adr on UA, and

by the theorem of separation of variables ([53, 51, 11], see also [80]), U lfA has an UA-invariant
subspace H such that the multiplication in UA affords an isomorphism of UA-modules from

H ⊗C(q) Z(UA) onto U lfA . In particular, U lfA is free over Z(UA). Moreover, any simple finite
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dimensional UA-module has in H a multiplicity equal to the dimension of its zero-weight
subspace.

Recall the RSD map Φ1 : Oq → U lfq . By construction 〈., .〉 induces a perfect pairing
〈., .〉 : OA ⊗ UΓ → A. Let V−λ be the lowest weight Γ-module of lowest weight −λ ∈ −P+

(ie. the highest weight Γ-module V−w0(λ) of highest weight −w0(λ), where w0 is the longest
element of the Weyl group; note that −w0 permutes the simple roots). Let v ∈ V−λ be a
lowest weight vector, and v∗ ∈ V ∗−λ be such that v∗(v) = 1 and v∗ vanishes on a Γ(h)-invariant
complement of v. Define ψ−λ ∈ OA by 〈ψ−λ, x〉 = v∗(xv), x ∈ Γ. From the definition (4) it
is quite easy to see that

(13) Φ1(ψ−λ) = K−2λ.

Corollary 2.4. Φ1 restricts on OA to an isomorphism of UA-modules Φ1 : OA → U lfA and

an isomorphism of UA-module algebras Φ1 : LA0,1 → U lfA .

Proof. An elementary computational proof of this result in the sl(2) case is given in Section
5 of [28]. A proof of the general case can be found in Lemma 4.11 of [28]. It uses Theorem
2.2 (1). We point out an alternative proof in Remark 2.13 (1). 2

Corollary 2.5. Let us denote d = ψ−ρ ∈ LA0,1. We have:

(1) The set {dn}n∈N is a left and right multiplicative Ore set in LA0,1. We can therefore define

the localization LA0,1[d−1].

(2) Φ1 extends to an isomorphism of UA-module algebras Φ1 : LA0,1[d−1]→ T−1
2−U

lf
A .

Proof. (1) Because LA0,1 has no non-trivial zero divisors, d is a regular element. It is enough

to show that for all x ∈ LA0,1 there exists elements y, y′ ∈ LA0,1 such that xd = dy and

dx = y′d. But Φ1(x)Φ1(d) = Φ1(x)K−2ρ = K−2ρad
r(K2ρ)(Φ1(x)), and adr(K2ρ)(Φ1(x)) =

Φ1(coadr(K2ρ)(x)). Therefore the left Ore condition is satisfied with y = coadr(K2ρ)(x).
Similarly one finds y′.

(2) Because Φ1(d) = K−2ρ =
∏m
j=1 L

−2
j , localizing in d we obtain L2

j =
∏
k 6=j L

−2
k Φ1(d−1) =

Φ1(
∏
k 6=j ψ−$kd

−1)) ∈ Φ1(LA0,1[d−1]). Therefore T−1
2− ⊂ Φ1(LA0,1[d−1]), which implies the

assertion (2). 2

Remark 2.6. When g = sl(2) the element d is the generator of L0,1(sl(2)) appearing in (44)

below. In this case we had already shown in [28] that Φ1 : LA0,1[d−1] → UadA = T−1
2−U

lf
A is an

isomorphism of algebras.

Denote by C(µ), µ ∈ P+, the linear subspace of L0,1 generated by the matrix coefficients
of Vµ, the Uq-module of type 1 and highest weight µ. The formula (13) can be used to prove
(see Section 7.1.22 in [51], or page 112 of [80]) that Φ1 yields the following linear isomorphism,
which illuminates the claim (1) of Theorem 2.2:

(14) Φ1 : C(µ)→ adr(Uq)(K−2w0(µ)).

Working over the ground ring A one has to consider for Vµ the highest weight Γ-module of
highest weight µ. In that situation Φ1 affords an isomorphism from C(µ)A = EndA(Vµ)∗ to
adr(UA)(K−2w0(µ)).

By (13) we have Φ1(ψ−ρ) = `−1, where as usual ` is the pivotal element of UA. Because
the latter has the elementary factorization ` =

∏m
j=1 L

2
j , this naturally raises the question of

the factorization of ψ−ρ. This question is considered in [54], where L0,1(g) for g = gl(r + 1)
is analysed and quantum minors are extensively studied. Let us review here some of their
results in relation with ψ−ρ.



16 STÉPHANE BASEILHAC, PHILIPPE ROCHE

First note that for for g = sl(r+ 1) the irreducible representation V−ρ of lowest weight −ρ
is isomorphic to the representation of highest weight Vρ because −w0(ρ) = ρ. By the Weyl

formula the dimension of this representation is
∏
α>0

(2ρ,α)
(ρ,α) = 2N . In [58] a presentation of

Uq(gl(r+1)) is given, which differs from our presentation of Uq(sl(r+1)) only by its subalgebra
Uq(h), generated by r + 1 elements K1, ...,Kr+1. The inclusion Uq(sl(r + 1)) ⊂ Uq(gl(r + 1))

is such that Ki = K2
iK−2

i+1, i = 1, ..., r. The quantum minors, properly defined in [54], of the
matrix of matrix elements of the natural representation of Uq(gl(r+1)) are denoted detq(A≥k)
for k = 1, ..., r + 1. We have detq(A≥1) = 1 in the case of sl(r + 1). Then [54] proves that

detq(A≥k) = (Kk...Kr+1)2, and there exists an element K ∈ Uq(gl(r + 1)) such that

K−2ρ = detq(A≥1)−rdetq(A≥2)...detq(A≥r+1).

This has to be interpreted in the sl(r + 1) case as K−2ρ = Φ1(detq(A≥2)...detq(A≥r+1)). As
a result this gives the equality

ψ−ρ = detq(A≥2)...detq(A≥r+1).

Corollary 2.4 can be extended as follows:

Theorem 2.7. Φn restricts to an isomorphism of UA-module algebras Φn : LA0,n → (U⊗nA )lf ,

and it restricts to an isomorphism of algebras Φn : MA
0,n → (U⊗nA )UA.

The proof relies on (10) and the expression of Φn in terms of Φ1 and R-matrices (see [28],
Proposition 6.5 and Lemma 6.8).

In the case of g = sl(2) we proved in [30] the existence of elements ξ(i) ∈ LA0,n (i = 1, ..., n),

and we defined an algebra locLA0,n generalizing LA0,1[d−1] above, containing LA0,n as a subalgebra

and the inverses of the elements ξ(i). We showed that Φn extends to locLA0,n, and that

Φn(locLA0,n) = UadA (sl(2))⊗n. The key property of ξ(i) is

(15) Φn(ξ(i)) = (K−1)(i) · · · (K−1)(n).

For general g we now describe a partial generalization of this result. Define elements ξ
(i)
j ∈

LA0,n, for i = 1, ..., n and j = 1, ...,m, by

(16) ξ
(i)
j = v∗(M

(i)
j · · ·M

(n)
j )(v)

where M
(i)
j ∈ End(V−$j )⊗LA0,n is the matrix of matrix coefficients 1⊗(i−1)⊗V−$jφ

el
ek
⊗1⊗(n−i),

where {ek} is the canonical basis of weight vectors of V−$j , v is a lowest non-zero weight
vector of V−$j , and v∗ the associated linear form, vanishing on a Γ(h)-invariant complement

of v. Similarly to (15) the elements ξ
(i)
j satisfy

(17) Φn(ξ
(i)
j ) = (L−2

j )(i) · · · (L−2
j )(n).

The elements ξ
(i)
j commute, and the argument in Corollary 2.5 (1) shows that {ξ(1)

j
k}k∈N is

an Ore subset of LA0,n. For i ≥ 2 this argument implies only that {ξ(i)
j
k}k∈N is an Ore subset

of the subalgebra of LA0,n generated by the subalgebras L(a)
0,n, a ≥ i. Nevertheless, one can

show it satisfies the left and right Ore conditions in all of LA0,n by using the exchange relations

(30) in the graded algebra GrF2(LA0,n) (see Section 3). For simplicity we omit the details, and

sketch hereafter the idea behind the resulting construction of the localization of LA0,n with

respect to the elements ξ
(i)
j .
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Let us explain the case n = 2. Since the elements ξ
(1)
j , j ∈ {1, . . . ,m}, are commuting

regular Ore elements of LA0,2 we can define the localisation of LA0,2 with respect to the multi-

plicative sets {ξ(1)
1

k}k∈N, . . . , {ξ(1)
m

k}k∈N. Denote it LA0,2[{ξ(1)
j1
−1}]. Let us add new elements

ν
(1)
j1

such that (ν
(1)
j1

)2 = ξ
(1)
j1

and Φ2(ν
(1)
j1

) = (L−1
j1

)(1)(L−1
j1

)(2). They are Ore elements, and we

can define similarly the localisation LA0,2[{ν(1)
j1
−1}] (see Remark 2.10 for an explanation of this

additional construction). We want to define the inverses of the elements ξ
(2)
j , j ∈ {1, . . . ,m},

and a new algebra LA0,2[{ξ(1)
j1
−1}][{ξ(2)

j2
−1}] such that LA0,2[{ξ(1)

j1
−1}] ⊂ LA0,2[{ξ(1)

j1
−1}][{ξ(2)

j2
−1}]

and Φ2 extends naturally to an algebra homomorphism Φ2 : LA0,2[{ξ(1)
j1
−1}][{ξ(2)

j2
−1}] → U⊗2

A

such that Φn(ξ
(2)
j2

) = (L−2
j2

)(2) for all j2 ∈ {1, . . . ,m}. As in the sl(2) case described in [28],

this can be done by writing explicitly, for every j2 ∈ {1, . . . ,m}, the exchange relations be-

tween the matrices M
(1)
j1

and M
(2)
j2

involving ξ
(2)
j2

, for every j1 ∈ {1, . . . ,m} (these matrices are

defined in (16)). Similarly, by replacing the elements ξ
(1)
j1

, ξ
(2)
j2

with square roots ν
1)
j1

, ν
(2)
j2

we

get a localization LA0,2[{ν(1)
j1
−1}][{ν(2)

j2
−1}] such that LA0,2[{ν(1)

j1
−1}] ⊂ LA0,2[{ν(1)

j1
−1}][{ν(2)

j2
−1]}

and Φ2 extends to an algebra homomorphism Φ2 : LA0,2[{ν(1)
j1
−1}][{ν(2)

j2
−1}]→ U⊗2

A such that

Φn(ν
(2)
j2

) = (L−1
j2

)(2) for all j2 ∈ {1, . . . ,m}. This morphism of algebras will be shown to be
an isomorphism.

For any n ≥ 2 we can proceed in the same way:

Definition 2.8. By iterating the above construction we define:

locLA0,n = LA0,n[{ξ(n)
jn
−1}][{ξ(n−1)

jn−1

−1}] · · · [{ξ(1)
j1
−1}],

loc′LA0,n = LA0,n[{ν(n)
jn
−1}][{ν(n−1)

jn−1

−1}] · · · [{ν(1)
j1
−1}].

In the sequel it will be convenient to define invertible elements
√
δj

(i) ∈ loc′LA0,n, for i = 1, ..., n

and j = 1, ...,m, satisfying ν
(i)
j =

√
δ

(i)

j · · ·
√
δ

(n)

j , i.e
√
δ

(i)

j = ν
(i)
j /ν

(i+1)
j .

The elements
√
δ

(i)

j are invertible, commute and satisfy

Φn(
√
δ

(i)

j ) = (L−1
j )(i).

Theorem 2.9. Φn restricts to an isomorphism of UA-module algebras Φn : loc′LA0,n → U⊗nA .

Proof. We know from Corollary 2.4 that Φ1 : LA0,n → U lfA is an isomorphism of algebra.

Using UA = T−1
2−U

lf
A [T/T2] and the fact that the image by Φ1 of the elements (

√
δ

(1)

j )±1

generates the group T we get the result for n = 1. The result for Φn is obtained by induction.
We have

(id⊗ Φn)(
V
M

(n)) = R0nR
′
0n

(id⊗ Φn)(
V
M

(a)) = (R0n . . . R0a+1)R0aR
′
0a (R0n . . . R0a+1)−1 , 1 ≤ a < n.

Because the matrix elements of (id ⊗ Φn)(
V
M

(n)) generate 1⊗n−1 ⊗ U lfA when V varies, the

image of (LA0,n)(n)[{ν(n)
jn
−1}] by Φn is 1⊗(n−1) ⊗ UA. Since the matrix elements of R0n and

R−1
0n are in 1⊗(n−1) ⊗ UA, they belong to Φn(LA0,n[{ν(n)

jn
−1}]) by the preceding remark. It
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follows that Φn(loc′LA0,n) contains the matrix elements of R−1
0n (id⊗Φn)(

V
M

(n−1))R0n, whence

the matrix elements of R0n−1R
′
0n−1, and therefore the space 1⊗(n−2) ⊗ U lfA ⊗ 1. It contains

also the elements Φn(
√
δ

(n−1)

j ) = (L−1
j )(n−1), so Φn(loc′LA0,n) contains 1⊗(n−2) ⊗UA ⊗ 1. By a

trivial induction we finally obtain that Φn(loc′LA0,n) = U⊗nA . 2

Remark 2.10. It is a natural problem to determine the image by Φn of locLA0,n, and it is

natural to expect that it would be (T−1
2−U

lf
A )⊗n, because this is true for n = 1, as well as for

any n in the sl(2) case, as shown in [28]. Unfortunately this is not so. This comes from the

fact, eg. for n = 2, that the matrix elements of R02R01R
′
01R

−1
02 do not belong to (T−1

2−U
lf
A )⊗2

as can be shown by an explicit computation in the sl(3) case. This explains the reason why

we had to introduce the square roots ν
(i)
j in the previous theorem.

Arguments similar to those mentioned at the end of Section 2.1 imply that the algebras

LA0,n, MA
0,n and Lε′0,n, MA,ε′

0,n , ε′ ∈ C×, have no non-trivial zero divisors (see [28], Proposition

7.1). By Theorem 2.7 the Alekseev map yields isomorphisms of Uε′-module algebras, and of
algebras for the latter,

(18) Φn : Lε′0,n → (U⊗n)lfε′ , Φn : loc′Lε
′

0,n → U⊗nε′ , Φn : MA,ε′

0,n → (U⊗nA )UAε′ ⊂ (U⊗nε′ )Uε′

where we use the notations (12).

2.3. Perfect pairings. We will need restrictions on the integral forms OA(B+), OA(B−)
of the morphisms Φ+, Φ− in (2). We collect their properties in Theorem 2.11 and the
discussion thereafter. In order to state it, we recall first a few facts about R-matrices and
related pairings.

In [60, 61] Lusztig proved that the category of U resA -modules CresA ⊗A C[q±1/D] (ie. with

coefficients extended to C[q±1/D]) is braided and ribbon, with braiding given by the collection
of endomorphisms

RA = ((Rh)V,W )V,W∈Ob(CresA ).

Actually, (Rh)V,W is represented by a matrix with coefficients in q±1/DZ[q±1] on the basis
of V ⊗W formed by the tensor products of the canonical (Kashiwara-Lusztig) basis vectors
of V and W . The restriction functor CA → CresA is an equivalence of categories, so CA ⊗A
C[q±1/D] has the same braided and ribbon structure. This can be rephrased as follows in
Hopf algebra terms. Denote by UΓ the categorical completion of Γ, ie. the Hopf algebra of
natural transformations FCA → FCA . Then UΓ ⊗A C[q±1/D] is quasi-triangular and ribbon
with R-matrix

RA ∈ U⊗̂2
Γ ⊗A C[q±1/D].

As in (1), we can write

R±A =
∑
(R)

R±(1) ⊗R
±
(2).

There are pairings of Hopf algebras naturally related to the R-matrix R ∈ U⊗̂2
q . What follows

is standard (see eg. [55, 56, 59]), for details we refer to the results 2.73, 2.75, 2.92, 2.106 and
2.107 in [80]:

• There is a unique pairing of Hopf algebras ρ : Uq(b−)cop ⊗ Uq(b+) → C(q1/D) such
that, for every α, λ ∈ P and l, k ∈ Uq(h),

ρ(Kλ,Kα) = q(λ,α) , ρ(Fi, Ej) = δi,j(qi − q−1
i )−1 , ρ(l, Ej) = ρ(Fi, k) = 0.
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• The Drinfeld pairing τ : Uq(b+)cop⊗Uq(b−)→ C(q1/D) is the bilinear map defined by
τ(X,Y ) = ρ(S(Y ), X); it satisfies

τ(Kλ,Kα) = q−(λ,α) , τ(Ej , Fi) = −δi,j(qi − q−1
i )−1 , τ(l, Fi) = τ(Ej , k) = 0.

• ρ and τ are perfect pairings; this means that they yield isomorphisms of Hopf algebras
i± : Uq(b±) → Oq(B∓)op (with coefficients a priori extended to C(q1/D), but see
below) defined by, for every X ∈ Uq(b+), Y ∈ Uq(b−),

〈i+(X), Y 〉 = τ(S(X), Y ) , 〈i−(Y ), X〉 = τ(X,Y ).

Since Oq(B∓)op is equipped with the inverse of the antipode SOq of Oq(B∓), it follows

that i± ◦ S = S−1
Oq ◦ i±.

• Denote by p± : Oq(G)→ Oq(B±) the canonical projection map, ie. the Hopf algebra
homomorphism dual to the inclusion map Uq(b±) ↪→ Uq(g). For every α, β ∈ Oq(G)
we have

(19) 〈α⊗ β,R〉 = τ(i−1
+ (p−(β)), i−1

− (p+(α)).

Note that it is the use of weights α, λ ∈ P that forces the pairings ρ, τ to be defined over
C(q1/D), instead of C(q). Then, let us consider the restrictions π+

q of ρ, and π−q of τ , obtained

by taking α ∈ Q and l ∈ Uq(h), k ∈ Uadq (h). They take values in C(q), and define pairings

π+
q : Uq(b−)cop ⊗ Uadq (b+)→ C(q) , π−q : Uq(b+)cop ⊗ Uadq (b−)→ C(q).

By the same arguments as for ρ and τ (eg. in [80], Proposition 2.92), it follows that π±q
are perfect pairings. Note also that π−q = κ ◦ π+

q ◦ (κ ⊗ κ), where κ is the conjugate-
linear automorphism of Uq, viewed as a Hopf algebra over C(q) with conjugation given by

κ(q) = q−1, defined by

(20) κ(Ei) = Fi , κ(Fi) = Ei , κ(Kλ) = K−λ , κ(q) = q−1.

In [42], De Concini-Lyubashenko described integral forms of π±q as follows. Denote by
m∗ : OA → OA(B+)⊗OA(B−) the map dual to the multiplication map Γ(b+)⊗ Γ(b−)→ Γ,
so m∗ = (p+ ⊗ p−) ◦ ∆OA . Let UA(H) be the sub-Hopf algebra of UA(b−)cop ⊗ UA(b+)cop

generated by the elements (i ∈ {1, . . . ,m})
1⊗K−1

i Ēi , F̄iKi ⊗ 1 , L±1
i ⊗ L

∓1
i .

Note that UA(H) is free over A, and that a basis is given by the elements

F̄n1
β1
. . . F̄nNβN Kn1β1+...+nNβNKλ ⊗K−λK−p1β1...−pNβN Ē

p1
β1
. . . ĒpNβN

where λ ∈ P and n1, ..., nN , p1, ..., pN ∈ N.

Recall the lowest weight Γ-module V−λ, λ ∈ P+, the lowest weight vector v ∈ V−λ, the
dual vector v∗ ∈ V ∗−λ, and ψ−λ ∈ OA (see before Corollary 2.4). For every positive root α

define elements ψα−λ, ψ
−α
−λ ∈ OA by the formulas (where x ∈ Γ, and we note that the root

vectors Eα, Fα ∈ Γ):

〈ψα−λ, x〉 = v∗(xEαv) , 〈ψ−α−λ , x〉 = v∗(Fαxv).

Consider the maps j±q : Oq(B±)→ Uq(b∓)cop defined by

〈α+, X〉 = π+
q (j+

q (α+), X) , 〈α−, Y 〉 = π−q (j−q (α−), Y )

where α± ∈ Oq(B±), X ∈ Uadq (b+), Y ∈ Uadq (b−).

The following theorem summarizes results proved in the sections 3 and 4 of [42]. For
the sake of clarity, let us spell out the correspondence between statements. First, π+

q , π−q ,
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Uq(b∓)cop, UA(b∓)cop, OA(B±), UA(H) and J are denoted in [42] respectively by π′′, π̄′′,
Uq(b∓)op, Rq[B±]′′, Rq[B±], A′′ and µ′′. Also, the definition of j±A is implicit in the section
4.2 of [42], and the formulas in Theorem 2.11 (3) are related to those in Lemma 4.5 of [42] by

observing that their generators Ẽi and F̃i are respectively K−1
i Ei and FiKi in our notations;

this also explains the appearance of qi, q
−1
i in the formulas in (3). Finally, κ in (20) maps Ēi,

F̄i to −F̄i, −Ēi, whence the sign for the expression of J(ψαi−$j ).

Theorem 2.11. (1) π±q restricts to a perfect Hopf pairing between the unrestricted and

restricted integral forms, π±A : UA(b∓)cop ⊗ Γ(b±)→ A.

(2) j±q yields an isomorphism of Hopf algebras j±A : OA(B±)→ UA(b∓)cop, satisfying 〈α±, x±〉 =

π±A(j±A (α±), x±) for every α± ∈ OA(B±), x± ∈ Γ(b±).

(3) The map J = (j+
A ⊗ j

−
A ) ◦m∗ : OA → UA(H) ⊂ UA(b−)cop ⊗ UA(b+)cop is an embedding

of Hopf algebras, and it extends to an isomorphism J : OA[ψ−1
−ρ] → UA(H). In particular it

satisfies (where λ ∈ P+):

J(ψ−λ) = K−λ ⊗Kλ , J(ψαi−$j ) = −δi,jqiL−1
i ⊗LiK

−1
i Ēi , J(ψ−αi−$j ) = δi,jq

−1
i F̄iKiL

−1
i ⊗Li.

For our purposes it is necessary to reformulate this result. Consider the morphisms of Hopf
algebras Φ± : OA(B±)→ UA(b∓)cop, α 7→ (α⊗ id)(R±A).

Lemma 2.12. We have Φ± = j±A .

Thus, the theorem above tells us that Φ± is an isomorphism of Hopf algebras, such that
〈α±, x±〉 = π±A(Φ±(α±), x±) for every α± ∈ OA(B±), x± ∈ Γ(b±). Moreover, changing the
notation J for Φ,

(21) Φ := (Φ+ ⊗ Φ−) ◦m∗ : OA → UA(H) ⊂ UA(b−)cop ⊗ UA(b+)cop

is an embedding of Hopf algebras, and it extends to an isomorphism Φ: OA[ψ−1
−ρ] → UA(H)

which in particular satisfies:

(22) Φ1(ψ−λ) = K−2λ , Φ1(ψαi−$j ) = δi,jL
−2
i Ēi. , Φ1(ψ−αi−$j ) = δi,jq

−1
i F̄iKiL

−2
i .

Proof of Lemma 2.12. By definitions, for every X ∈ Uq(b+)cop, Y ∈ Uadq (b−) we have

〈i+(S−1(X)), Y 〉 = π−q (X,Y ), and similarly for every X ∈ Uadq (b+), Y ∈ Uq(b−)cop we have

〈i−(S−1(Y )), X〉 = π+
q (Y,X). By keeping these respective notations for X and Y , we deduce

j−q (i+(S−1(X))) = X and j+
q (i−(S−1(Y ))) = Y , ie.

(23) j±q = S ◦ i−1
∓ .

Because S−1
Oq ◦ i± = i± ◦ S, it follows that

(24) j±q ◦ SOq = S−1 ◦ j±q .

Also, for every α− ∈ Oq(B−) we have

〈α−,Φ+(i−(Y ))〉 = 〈i−(Y )⊗ α−, R〉 = τ(i−1
+ (α−), Y ) = π−q (j−q (SOq(α−)), Y ) = 〈α−, S(Y )〉
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where the first equality is by definition of Φ+ (see (2)), the second is (19), the third follows
from (24), and the last from the definition of j−q . Similarly, for every α+ ∈ Oq(B+) we have

〈α+,Φ
−(i+(X))〉 = 〈i+(X)⊗ α+, R

−〉
= 〈α+ ⊗ S−1

Oq ◦ i+(X), R〉
= 〈α+ ⊗ i+(S(X)), R〉
= τ(S(X), i−1

− (α+))

= π+
q (S(i−1

− (α+)), S(X)) = π+
q (j+

q (α+), S(X)) = 〈α+, S(X)〉.

These computations imply Φ± = S◦i−1
∓ = j±q , and the result follows by taking integral forms.

2

Remark 2.13. (1) Since Φ1 = m ◦ (id ⊗ S−1) ◦ Φ and Im(Φ) ⊂ UA(b−)cop ⊗ UA(b+)cop,

Φ1(OA) ⊂ UA. Because Φ1(Oq) = U lfq , we have also Φ1(OA) ⊂ U lfA . The converse inclusion

Φ1(OA) ⊃ U lfA holds true as well, since Φ1(Oq) = U lfq and OA is an A-lattice of Oq.
(2) The components of R±A may be described explicitly: if {ξi}i is a basis of Γ(b+) (say, as
obtained in section 3 of [42]), one can determine the dual basis {ξ∗i }i of UA(b−) by using

the perfect pairing π+
A ; then R+

A =
∑

i ξi ⊗ ξ∗i . Note that, like UadA is contained in Γ, UA is

contained in the restricted integral form of Uq, whose categorical completion is UΓ⊗C[q±1/D].

Therefore the components ξ∗i of R+
A can be viewed as elements of UΓ ⊗ C[q±1/D]. This is

compatible with the fact that R+
A is an element of U⊗̂2

Γ ⊗ C[q±1/D].
(3) The dualities of Theorem 2.11 (2) afford a refinement defined over A of the quantum

Killing form κ : Uq ⊗C(q) Uq → C(q1/D) (studied eg. in [80], Section 2.8). This form is the
duality realizing the isomorphism adr(UA)(K−2w0(µ)) ∼= EndA(AVµ)∗ stated after (14).

2.4. Structure theorems for Uε and Oε. As usual we denote by ε a primitive l-th root of
unity, where l is odd, and coprime to 3 if g has G2-components.

Let G0 = B+B− (the big cell of G), and define the group

H = {(u+t, u−t
−1), t ∈ TG, u± ∈ U±}.

Consider the map

σ : B+ ×B− −→ G0

(b+, b−) 7−→ b+b
−1
− .

The restriction of σ to H is an unramified covering of degree 2m. It can be seen as the
classical analog of the map m ◦ (id⊗ S−1) : Oε(B+)⊗Oε(B−)→ Oε(G).

Denote by Z1(Uε) the image of Z(Uq) in Z(Uε) under the specialization map Uq → Uε,

and by Z0(Uε) ⊂ Uε the subalgebra generated by Elβk , F lβk , L±li , for k ∈ {1, . . . , N} and
i ∈ {1, . . .m}. In [38], Section 1.8-3.3-3.8, and [40], Theorem 14.1 and Section 20-21, the
following results are proved:

Theorem 2.14. (1) Uε has no non-trivial zero divisors, Z0(Uε) is a central Hopf subalgebra

of Uε, and Uε is a free Z0(Uε)-module of rank ldimg. Moreover Uε is a maximal order of its
classical fraction algebra Q(Uε) = Q(Z(Uε))⊗Z(Uε) Uε, and Q(Uε) is a central simple algebra

of PI degree lN .
(2) Maxspec(Z0(Uε)) is a group isomorphic to H above, and the multiplication map yields an
isomorphism Z0(Uε)⊗Z0∩Z1 Z1(Uε)→ Z(Uε).
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It follows from (1) and dimg = m+2N that the field Q(Z(Uε)) is an extension of Q(Z0(Uε))
of degree lm. Conversely, this degree and the rank of Uε over Z0(Uε) imply that Q(Uε) has

PI degree lN .
As for (2), note that Z0(Uε) being an affine and commutative algebra, Maxspec(Z0(Uε)),

viewed as the set of characters of Z0(Uε), acquires by duality a structure of affine algebraic
group. Thus, the first claim means precisely the identification of this group with H.

In addition to (2), Maxspec(Z0(Uε)) and H have natural Poisson structures, that the
isomorphism identifies. Moreover we have the following identifications (see [40], Section 21.2).

Consider the lm-fold covering T̃G → TG. Recall that T is the group formed by the elements
Kλ ∈ UA, λ ∈ P . We can identify T with the additive group P , UA(h) = C[T ] = C[P ] with

O(T̃G), and therefore Z0(Uε) ∩ Uε(h) = C[lP ] with O(TG). The quantum Harish-Chandra

isomorphism then identifies Z1(Uε) with C[2P ]W ∼= O(T̃G/(2))W , where we denote by (2) the

subgroup of 2-torsion elements in T̃G. Composing σ : H → G0 with the quotient map under
conjugation, G0 ↪→ G→ G//G, we get dually an embedding of O(G//G) = O(G)G in O(H).
The isomorphism of Theorem 2.14 (2) then affords identifications

Z0(Uε) ∩ Z1(Uε) ∼= O(G)G

as a subalgebra of Z0(Uε) ∼= O(H), and

Z0(Uε) ∩ Z1(Uε) = C[2lP ]W ∼= O(T̃G/(2l))
W ∼= O(TG/(2))W

as a subalgebra of Z1(Uε) ∼= O(T̃G/(2))W .

A result similar to Theorem 2.14 holds true for Oε. Namely, take the specializations at
q = ε in Theorem 2.11. Denote by Z0(Uε(H)) the subalgebra of Uε(H) generated by the
elements (k ∈ {1, . . . , N}, i ∈ {1, . . .m})

1⊗K−lβkE
l
βk
, F lβkKlβk ⊗ 1 , L±li ⊗ L

∓l
i .

It is a central Hopf subalgebra. Recall that O(G) can be realized as a Hopf subalgebra
of U(g)◦, the restricted dual of the envelopping algebra U(g) over C. In [42] De Concini-
Lyubashenko introduced an epimorphism of Hopf algebras η : Γε → U(g) (essentially a
version of Lusztig’s “Frobenius” epimorphism in [60]). Let us put

(25) Z0(Oε) := η∗(O(G))

where η∗ : U(g)◦ → Γ◦ε is the monomorphism dual to η.

Theorem 2.15. (1) Z0(Oε) is a central Hopf subalgebra of Oε ⊂ Γ◦ε , and Q(Z(Oε)) is an
extension of Q(Z0(Oε)) of degree lm if l is coprime to the coefficients of the Cartan matrix
of g.
(2) ψ−lρ ∈ Z0(Oε), and Z0(Oε) is generated by the matrix coefficients of the irreducible
Γ-modules of highest weight lλ, λ ∈ P+. Moreover, the map Φ in (21) affords an alge-
bra embedding Z0(Oε) → Z0(Uε(H)) and algebra isomorphisms Z0(Oε)[ψ−1

−lρ] → Z0(Uε(H)),

Oε[ψ−1
−lρ]→ Uε(H).

(3) Oε has no non-trivial zero divisors, and it is a free Z0(Oε)-module of rank ldimg. Moreover
Oε is a maximal order of its classical fraction algebra Q(Oε) = Q(Z(Oε)) ⊗Z(Oε) Oε, and

Q(Oε) is a central simple algebra of PI degree lN .

For the proof, see in [42]: the proposition 6.4 for the first claim of (1) (where Z0(Oε) and
Z0(Uε(H)) are denoted F0 and A0 respectively), the appendix of Enriquez and [46] for the
second claim of (1), the propositions 6.4-6.5 for (2), the theorem 7.2 (where Oε is shown to
be projective over Z0(Oε)) and [25] (which provides the additional K-theoretic arguments to
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deduce that Oε is free), or Remark 2.18(b) of [6], for the first claim of (3), and the theorem
7.4 for the second claim.

As above for Uε, it follows directly from (3) that Q(Z(Oε)) has degree lm over Q(Z0(Oε)).
A complete description of Z(Oε) is obtained in [46] and Enriquez’ Appendix in [42]. We do
not know a basis of Oε over Z0(Oε) for general G, but see [43] for the case of SL2. We will
recall the known results in this case of SL2 before Lemma 4.3.

There is a natural action of the braid group B(g) on Oε, that we will use. Namely, let
ni ∈ N(TG) be a representative of the reflection si ∈W = N(TG)/TG associated to the simple
root αi. In [77, 76] Soibelman-Vaksman introduced functionals ti : OA → A which quantize
the elements ni. They correspond dually to generators of the quantum Weyl group of g; in the
Appendix we recall their main properties (see also [35], Section 8.2, and [55, 77, 59, 56, 42]).
Denote by � the natural right action of functionals onOA, namely (using Sweedler’s notation)

α� h =
∑
(α)

h(α(1))α(2)

for every α ∈ OA and h ∈ OA → A. Let us identify Z0(Oε) with O(G) by means of (25). We
have ([42], Proposition 7.1):

Proposition 2.16. The maps �ti on Oε preserve Z0(Oε), and satisfy (f � ti)(a) = f(nia)
and (f ? α) � ti = (f � ti)(α� ti) for every f ∈ Z0(Oε), a ∈ G, α ∈ Oε.

We provide an alternative, non computational, proof of this result in the Appendix (Section
6.2).

3. Noetherianity and finiteness

In this section we prove Theorem 1.1. Recall that by Noetherian we mean right and left
Noetherian.

Theorem 3.1. The algebras L0,n, LA0,n and Lε′0,n, ε′ ∈ C×, are Noetherian.

Let us note that the algebras in this theorem are generated by a finite number of elements
over their respective ground rings C(q), A and C. Indeed, by the formula (6) it is enough

to verify this for LA0,1, but LA0,1 = OA as a vector space, and OA with its product ? is
well-known to be finitely generated by the matrix coefficients of the fundamental Γ-modules

AV$k , k ∈ {1, . . . ,m}. Then the claim follows from the formula inverse to (3), expressing the
product ? in terms of the product of L0,1 (see (18) in [28]).

Proof of Theorem 3.1. The result for L0,1 and LA0,1 follows immediately from Theorem 2.2

(3) by identifying LA0,1 with U lfA via Φ1. Assume now that n > 1. We are going to develop the

proof for L0,n; the arguments can be repeated verbatim for LA0,n, and the result for Lε′0,n will

then follow immediately by lifting ideals by the quotient map LA0,n → Lε
′

0,n = LA0,n/(q−ε′)LA0,n.
Recall the isomorphism of Uq-modules (see (11)):

(26) L0,n
Φn−→ (Uq(g)⊗n)lf

ψ−1
n−→ U lfq (g)⊗n = U lfq (g⊕n)

where lf means respectively locally finite for the action adrn of Uq(g) on Uq(g)⊗n, locally

finite for the action adr of Uq(g) on Uq(g), and locally finite for the action adr of U lfq (g⊕n)

on itself. It is a fact that Theorem 2.2 (3) holds true by replacing U lfq (g) with U lfq (g⊕n), but
one cannot use this to deduce the result because ψn is not a morphism of algebras. However,
one can adapt the arguments of the proof of Theorem 2.2 (3) given in Theorem 2.137 of [80].
Let us begin by recalling these arguments.
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As usual let C(µ) be the vector space generated by the matrix coefficients of Vµ, the simple
Uq-module of type 1 and highest weight µ ∈ P+. Denote by C(µ)λ ⊂ C(µ) the subspace of
weight λ for the left coregular action of Uq(h); so α ∈ C(µ)λ if

Kν � α = q(ν,λ)α , ν ∈ P.
Consider the ordered semigroup

Λ = {(µ, λ) ∈ P+ × P, λ is a weight of Vµ}
with the partial order (µ, λ) ≤ (µ′, λ′) if and only if µ′− µ ∈ P+, λ

′− λ ∈ P+. Since L0,1 and
Oq are isomorphic vector spaces we have L0,1 =

⊕
µ∈P+

C(µ) =
⊕

(µ,λ)∈ΛC(µ)λ. Consider

the filtration F2 of the vector space L0,1 given by the family of subspaces

Fµ,λ2 =
⊕

(µ′,λ′)≤(µ,λ)

C(µ′)λ′ , (µ, λ) ∈ Λ.

Denote by GrF2(L0,1) the associated graded vector space. The standard vector space isomor-

phism L0,1 → GrF2(L0,1), assigning to x ∈ C(µ)λ its coset x̄ ∈ Fµ,λ2 /
(
⊕(µ′,λ′)<(µ,λ)C(µ′)λ′

)
,

implies
GrF2(L0,1) =

⊕
(µ,λ)∈ΛC(µ)λ.

Now, one has the following facts:

(i) First, taking the product in L0,1 we have

(27) αβ ∈ Fµ1+µ2,λ1+λ2
2 for α ∈ C(µ1)λ1 , β ∈ C(µ2)λ2 .

Therefore F2 is an algebra filtration of L0,1, and GrF2(L0,1) a graded algebra. Denote by
α ◦ β the product in GrF2(L0,1) of α, β ∈ L0,1; by definition, if α ∈ C(µ1)λ1 , β ∈ C(µ2)λ2
then α ◦ β is the projection of αβ onto C(µ1 + µ2)λ1+λ2 .

(ii) Second, denote by ?̄ the product ? of Oq followed by the projection onto the component
C(µ+ ν). Then we have

(28) C(µ) ◦ C(ν) = C(µ) ?̄ C(ν) = C(µ+ ν).

(iii) Finally, for every µ ∈ P+ fix a basis of weight vectors eµ1 , . . . , e
µ
m of Vµ. Denote by

e1
µ, . . . , e

m
µ ∈ V ∗µ the dual basis, and by w(eµi ) the weight of eµi . One can assume that the

ordering of eµ1 , . . . , e
µ
m is such that w(eµi ) > w(eµj ) implies i < j; indeed, eµ1 generates the

subspace of weight µ, then come (in any order) the eµi such that w(eµi ) = µ − αs for some
s, then those such that w(eµi ) = µ − αs − αt for some s and t, etc. Consider the matrix

coefficients µφ
j
i (x) := eiµ(πV (x)(eµj )), x ∈ Uq. By (3), using the explicit form of the R-matrix

it can be shown that

νφ
l
k ◦ µφ

j
i − qijkl µφ

j
i ◦ νφ

l
k =

m∑
r=i

k∑
s=1

l−1∑
u=1

m∑
v=j+1

δijklrsuv µφ
v
r ◦ νφus(29)

−
m∑

r=i+1

k−1∑
s=1

qijklγ
ijkl
rs µφ

j
r ◦ νφls

where qijkl = q(w(eµj )+w(eµi ),w(eνk)−w(eνl )), and γijklrs , δijklrsuv ∈ C(q1/D) are such that γijklrs = 0

unless w(eµr ) < w(eµi ) and w(eνs) > w(eνk), and δijklrsuv = 0 unless w(eνu) > w(eνl ), w(eµv ) < w(eµj ),

w(eµr ) ≤ w(eµi ) and w(eνs) ≥ w(eνk).
By (28) (or more simply by using (3), as observed before the proof), GrF2(L0,1) is gen-

erated by the matrix coefficients $kφ
j
i of the fundamental representations V$k . One can list
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these matrix coefficients, say M in number, in an ordered sequence u1, . . . , uM such that the
following condition holds: if w(e$sk ) < w(e$ri ), or w(e$sk ) = w(e$ri ) and w(e$sl ) < w(e$rj ),

then ua := $rφ
j
i and ub := $sφ

l
k satisfy b < a. Then denoting µφ

j
i , νφ

l
k in (29) by uj , ui

respectively, and assuming uj < ui, one finds that all terms us := µφ
v
r , µφ

j
r in the sums are

< uj . Therefore, for all 1 ≤ j < i ≤M it takes the form:

(30) ui ◦ uj − qijuj ◦ ui =

j−1∑
s=1

M∑
t=1

αstijus ◦ ut

for some qij ∈ C(q1/D)×, αstij ∈ C(q1/D). By Proposition I.8.17 of [23] (see also Proposition
2.133 of [80]) an algebra A over a field K generated by elements u1, . . . , uM such that

(31) ui ◦ uj − qijuj ◦ ui =

j−1∑
s=1

M∑
t=1

αstijus ◦ ut + βstijut ◦ us

for all 1 ≤ j < i ≤ M and some qij ∈ K× and αstij , β
st
ij ∈ K, is Noetherian. In fact A has

an algebra filtration, say F3, such that GrF3(A) is a quotient of a skew-polynomial algebra,
and thus is Noetherian. Moreover, it is classical that a filtered algebra which graded algebra
is Noetherian is Noetherian too (see eg. [69], 1.6.9-1.6.11). Applying this to A = GrF2(L0,1)
and going up the filtration F2 it follows that L0,1 is Noetherian too.

We are going to extend all these facts to L0,n. The main point is to generalize the filtration
F2, which we do first. Consider the semigroup

[Λ] =
{

([µ], [λ]) ∈ Pn+ × Pn | (µi, λi) ∈ Λ where [µ] = (µi)
n
i=1, [λ] = (λi)

n
i=1

}
.

Put the lexicographic partial order on [Λ], starting from the tail: so ([µ′], [λ′]) ≤ ([µ], [λ]) if
µn − µ′n ∈ P+ \ {0}, or µn = µ′n and λn − λ′n ∈ P+ \ {0}, or there is k ∈ {n, . . . , 2} such
that µi = µ′i, λi = λ′i for i ∈ {n, . . . , k} and µk−1 − µ′k−1 ∈ P+ \ {0}, or µk−1 = µ′k−1 and
λk−1−λ′k−1 ∈ P+ \{0}, replacing this last condition by λ1−λ′1 ∈ P+ when k = 2. Now recall

that L0,n = L⊗n0,1 = O⊗nq as vector spaces. For every ([µ], [λ]) ∈ [Λ] consider the subspaces

C([µ])[λ] ⊂ C([µ]) ⊂ L0,n defined by

C([µ]) = C(µ1)⊗ . . .⊗ C(µn)

C([µ])[λ] = C(µ1)λ1 ⊗ . . .⊗ C(µn)λn .

Then L0,n =
⊕

[µ]∈Pn+
C([µ]) and C([µ]) =

⊕
([µ],[λ])∈[Λ]C([µ])[λ]. For every ([µ], [λ]) ∈ [Λ]

define

(32) F [µ],[λ]
2 =

⊕
([µ′],[λ′])≤([µ],[λ])

n⊗
j=1

C(µ′j)λ′j .

Clearly F [µ′],[λ′]
2 ⊂ F [µ],[λ]

2 for ([µ′], [λ′]) ≤ ([µ], [λ]), and the vector space L0,n is the union of

the subspaces F [µ],[λ]
2 over all ([µ], [λ]) ∈ [Λ], so these form a filtration of L0,n. Let us denote

it F2, as when n = 1. As usual, write ([µ′], [λ′]) < ([µ], [λ]) for ([µ′], [λ′]) ≤ ([µ], [λ]) and
([µ′], [λ′]) 6= ([µ], [λ]), and put

F<[µ],[λ]
2 =

∑
([µ′],[λ′])<([µ],[λ])

F [µ′],[λ′]
2 .

Then define

GrF2(L0,n)[µ],[λ] = F [µ],[λ]
2 /F<[µ],[λ]

2 .
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This space is canonically identified with C([µ])[λ], so the graded vector space associated to
F2 is

(33) GrF2(L0,n) =
⊕

([µ],[λ])∈[Λ]

GrF2(L0,n)[µ],[λ] =
⊕

([µ],[λ])∈[Λ]

C([µ])[λ].

We claim that F2 is an algebra filtration with respect to the product of L0,n, and therefore
GrF2(L0,n) is a graded algebra.

For notational simplicity let us prove it for n = 2, the general case being strictly similar.
Recall that the product of L0,n is given by the formula (6). Take ([µ], [λ]), ([µ′], [λ′]) ∈ [Λ],
and elements α ⊗ β ∈ C(µ1)λ1 ⊗ C(µ2)λ2 and α′ ⊗ β′ ∈ C(µ′1)λ′1 ⊗ C(µ′2)λ′2 . The R-matrix

expands as R = ΘR̂, where Θ = q
∑m
i,j=1(B−1)ijHi⊗Hj ∈ U⊗2

q , with B ∈Mm(Q) the matrix with

entries Bij := d−1
j aij , and R̂ =

∑
(R̂) R̂(1) ⊗ R̂(2) ∈ Uq(n+) ⊗ Uq(n−) (see eg. [35], Theorem

8.3.9, or [80], Theorem 2.108). If x, y are weight vectors of weights µ, ν respectively, then

Θ(x ⊗ y) = q(µ,ν)x ⊗ y. Moreover, R̂ has weight 0 for the adjoint action of Uq(h); that is,

complementary components R̂(1) and R̂(2) have opposite weights. Note also that the coregular
actions �, � fix globally each component C(µ), µ ∈ P+. Then, for every ν ∈ P and any of
the components R1

(2), . . . , R
4
(2) we have

Kν �

(
S(R1

(2)R
3
(2)) � β �R2

(2)R
4
(2)

)
=
∑

(β),(β)

β(1)(R
2
(2)R

4
(2))

(
KνS(R1

(2)R
3
(2)) � β(2)

)
= q−(ν,γ)

∑
(β),(β)

β(1)(R
2
(2)R

4
(2))

(
S(R1

(2)R
3
(2))Kν � β(2)

)
= q(ν,λ2−γ)

∑
(β),(β)

β(1)(R
2
(2)R

4
(2))

(
S(R1

(2)R
3
(2)) � β(2)

)
= q(ν,λ2−γ)

(
S(R1

(2)R
3
(2)) � β �R2

(2)R
4
(2)

)
.

for some positive root γ ∈ Q+. Therefore S(R1
(2)R

3
(2))�β�R

2
(2)R

4
(2) ∈ C(µ2)λ2−γ ; by a similar

computation we find that S(R3
(1)R

4
(1)) � α′ � R1

(1)R
2
(1) ∈ C(µ′1)λ′1+γ for the complementary

components R1
(1), . . . , R

4
(1). Then we always have S(R1

(2)R
3
(2)) � β �R2

(2)R
4
(2) ∈ F

µ2,λ2
2 , and if

S(R1
(2)R

3
(2)) � β �R2

(2)R
4
(2) ∈ C(µ2)λ2 then S(R3

(1)R
4
(1)) � α′ �R1

(1)R
2
(1) ∈ C(µ′1)λ′1 . Since the

product of L0,n is componentwise that of L0,1, by (27) we have

(34)
(
S(R1

(2)R
3
(2)) � β �R2

(2)R
4
(2)

)
β′ ∈ Fµ2+µ′2,λ2+λ′2

2

and if (S(R1
(2)R

3
(2)) � β �R2

(2)R
4
(2))β

′ ∈ C(µ2 + µ′2)λ2+λ′2
then

(35) α
(
S(R3

(1)R
4
(1)) � α′ �R1

(1)R
2
(1)

)
∈ C(µ1)λ1C(µ′1)λ′1 ⊂ F

µ1+µ′1,λ1+λ′1
2 .

In conclusion

(α⊗ β)(α′ ⊗ β′) ∈ F [µ],[λ]
2 .

Similar arguments work for any n ≥ 2. This proves that GrF2(L0,n) is a graded algebra
with the product inherited from L0,n, which we denote by ◦n. Recall that it is defined on

homogeneous elements α⊗ β ∈ GrF2(L0,n)[µ],[λ], α′ ⊗ β′ ∈ GrF2(L0,n)[µ′],[λ′] by

α⊗ β ◦n α′ ⊗ β′ = (α⊗ β)(α′ ⊗ β′) + F<[µ+µ′],[λ+λ′]
2 .
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Next we show that (28) implies the same property for the product ◦ of GrF2(L0,n). First
it gives

(
C(µ1) ◦ C(µ′1)

)
⊗
(
C(µ2) ◦ C(µ′2)

)
= C([µ+ µ′]). Now, by the previous remark and

(34), (35) we have

C([µ]) ◦n C([µ′]) ⊂
(
C(µ1) ◦ C(µ′1)

)
⊗
(
C(µ2) ◦ C(µ′2)

)
.

The converse inclusion holds true as well, as one can see by reasoning as above, starting with
the standard (componentwise) product of L⊗n0,1 expressed in terms of the product of L0,n by

the formula (8). In conclusion

(36) C([µ]) ◦n C([µ′]) = C([µ+ µ′]).

We are left to show that (29) generalizes to L0,n. Again we note that this cannot be deduced
from the case n = 1, because for the vector space isomorphism GrF2(L0,n) → GrF2(L0,1)⊗n

induced from the equality L0,n = L⊗n0,1 is not a morphism of algebras with respect to the

products ◦n and ◦⊗n. Therefore one cannot take the filtration on GrF2(L0,n) which is com-
ponentwise F3, and that we will denote again by F3, to deduce that GrF3(GrF2(L0,n)) is
a quotient of a quasi-polynomial algebra, whence Noetherian. However, we can proceed in
essentially the same way. We give the details when n = 2, the general case being similar. Let
us write the twist F in (7) as

F =
∑
(F )

F(1) ⊗ F(2) =
∑
(F )

F(1)1 ⊗ F(1)2 ⊗ F(2)1 ⊗ F(2)2

that is, setting F(1)1 := R2
(2)R

4
(2), F(1)2 := R1

(2)R
3
(2), F(2)1 := R1

(1)R
2
(1), F(2)2 := R3

(1)R
4
(1). Keep

the notations of (29), and put d(µ) := dim(Vµ), µ ∈ P+, and

∆(2)(µ2φ
l2
k2

) =

d(µ2)∑
p,s=1

µ2φ
p
k2
⊗ µ2φ

s
p ⊗ µ2φ

l2
s , ∆(2)(µ′1φ

l′1
k′1

) =

d(µ′1)∑
p′,s′=1

µ′1
φp
′

k′1
⊗ µ′1

φs
′
p′ ⊗ µ′1

φ
l′1
s′ .

Assume that µ′2
φ
l′2
k′2
< µ2φ

l2
k2

and µ′1
φ
l′1
k′1
< µ1φ

l1
k1

. From (6) and then (29)-(30) in the second

equality, one obtains(
µ1φ

l1
k1
⊗ µ2φ

l2
k2

)
◦2
(
µ′1
φ
l′1
k′1
⊗ µ′2

φ
l′2
k′2

)
=
∑
(F )

d(µ2)∑
p,s=1

d(µ′1)∑
p′,s′=1

(
µ1φ

l1
k1
◦ µ′1φ

s′
p′

(
µ′1
φp
′

k′1
(F(2)1)µ′1φ

l′1
s′(S(F(2)2))

))
⊗
(
µ2φ

s
p ◦ µ′2φ

l′2
k′2

(
µ2φ

p
k2

(F(1)1)µ2φ
l2
s (S(F(1)2))

))
=
∑
(F )

d(µ2)∑
p,s=1

d(µ′1)∑
p′,s′=1

qp′s′k1l1 qk′2l′2ps

(
µ′1
φs
′
p′ ◦ µ1φ

l1
k1

(
µ′1
φp
′

k′1
(F(2)1)µ′1φ

l′1
s′(S(F(2)2))

))
⊗
(
µ′2
φ
l′2
k′2
◦ µ2φsp

(
µ2φ

p
k2

(F(1)1)µ2φ
l2
s (S(F(1)2))

))
+ . . .

Here the dots are sums of tensors of the form (x1 ◦ x2) ⊗ (y1 ◦ y2) where x1 < µ′1
φ
l′1
k′1

and

y1 < µ′2
φ
l′2
k′2

. In fact, by the expression of R = ΘR̂ we have µ2φ
p
k2

(F(1)1)µ2φ
l2
s (S(F(1)2)) = 0

unless k2 ≥ p and s ≥ l2, and µ′1
φp
′

k′1
(F(2)1)µ′1φ

l′1
s′(S(F(2)2) = 0 unless k′1 ≤ p′ and s′ ≤ l′1. It is

immediate that µ2φ
s
p ∈ C(µ2)w(e

µ2
s ). By definition s > l2 implies w(eµ2s ) ≤ w(eµ2l2 ), and by (27)

if w(eµ2s ) < w(eµ2l2 ) then µ′2
φ
l′2
k′2
◦ µ2φsp ∈ F

<µ′′2 ,λ
′′
2

2 , where µ′′2 := µ2 + µ′2, λ′′2 := w(eµ2l2 ) +w(e
µ′2
l′2

).
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In that case the term (µ′1φ
s′
p′ ◦µ1φ

l1
k1

)⊗ (µ′2φ
l′2
k′2
◦µ2φsp) in the sum above vanishes in GrF2(L0,2).

Moreover, the computations before (35) show that such a summand achieves the maximal

weight w(eµ1l1 )+w(e
µ′1
l′1

)+w(eµ2l2 )+w(e
µ′2
l′2

) only if w(e
µ′1
s′ ) = w(e

µ′1
l′1

) and w(eµ2s ) = w(eµ2l2 ), which

occurs when F(1)2, F(2)2 have no component of R̂ but only of Θ. Also, if p = k2, s = l2,

p′ = k′1, s′ = l′1 then∑
(F )

µ2φ
k2
k2

(F(1)1)µ2φ
l2
l2

(S(F(1)2))µ′1φ
k′1
k′1

(F(2)1)µ′1φ
l′1
l′1

(S(F(2)2)

=
〈
µ2φ

k2
k2
⊗ µ2φ

l2
l2
⊗ µ′1

φ
k′1
k′1
⊗ µ′1

φ
l′1
l′1
,Θ13Θ−1

14 Θ24Θ−1
23

〉
= q

(
w(e

µ2
k2

)−w(e
µ2
l2

),w(e
µ′1
k′1

)−w(e
µ′1
l′1

)

)
.

Denoting by q′k2l2k′1l′1
this scalar, it follows(

µ1φ
l1
k1
⊗ µ2φ

l2
k2

)
◦2
(
µ′1
φ
l′1
k′1
⊗ µ′2

φ
l′2
k′2

)
= qk′1l′1k1l1 qk′2l′2k2l2 q

′
k2l2k′1l

′
1

((
µ′1
φ
l′1
k′1
◦ µ1φ

l1
k1

)
⊗
(
µ′2
φ
l′2
k′2
◦ µ2φ

l2
k2

))
+

k2−1∑
p=1

d(µ′1)∑
p′=k′1+1

α
l′1l1l

′
2l2

p′k1k′2p

((
µ′1
φ
l′1
p′ ◦ µ1φ

l1
k1

)
⊗
(
µ′2
φ
l′2
k′2
◦ µ2φl2p

))
+ . . .

for some scalars α
l′1l1l

′
2l2

p′k1k′2p
∈ C(q1/D), with the dots as above. Moreover α

l′1l1l
′
2l2

p′k1k′2p
= 0 unless

w(eµ2p ) > w(eµ2k2 ) and w(e
µ′1
p′ ) < w(e

µ′1
k′1

). Now, recall (8). In a similar way we find for all

p ∈ {1, . . . , k2}, p′ ∈ {k′1, . . . , d(µ′1)} that(
µ′1
φ
l′1
p′ ◦ µ1φ

l1
k1

)
⊗
(
µ′2
φ
l′2
k′2
◦ µ2φl2p

)
=
∑
(F̄ )

d(µ1)∑
r,t=1

d(µ′2)∑
r′,t′=1

(
µ′1
φ
l′1
p′ ⊗ µ′2

φt
′
r′

(
µ′2
φr
′

k′2
(F̄(2)1)µ′2φ

l′2
t′ (S(F̄(2)2))

))
◦2
(
µ1φ

t
r

(
µ1φ

r
k1(F̄(1)1)µ1φ

l1
t (S(F̄(1)2))

)
⊗ µ2φ

l2
p

)
= q′k1l1k′2l′2

−1
((

µ′1
φ
l′1
p′ ⊗ µ′2

φ
l′2
k′2

)
◦2
(
µ1φ

l1
k1
⊗ µ2φ

l2
p

))
+

k1−1∑
r=1

d(µ′2)∑
r′=k′2+1

β
l′1l
′
2l1l2

p′r′rp

((
µ′1
φ
l′1
p′ ⊗ µ′2

φ
l′2
r′

)
◦2
(
µ1φ

l1
r ⊗ µ2φ

l2
p

))
for some scalars β

l′1l
′
2l1l2

p′r′rp ∈ C(q1/D) such that β
l′1l
′
2l1l2

p′r′rp = 0 unless w(eµ1r ) > w(eµ1k1 ) and w(e
µ′2
r′ ) <

w(e
µ′2
k′2

). Summing up we obtain(
µ1φ

l1
k1
⊗ µ2φ

l2
k2

)
◦2
(
µ′1
φ
l′1
k′1
⊗ µ′2

φ
l′2
k′2

)
= qk′1l′1k1l1 qk′2l′2k2l2 q

′
k2l2k′1l

′
1
q′k1l1k′2l′2

−1
((

µ′1
φ
l′1
k′1
⊗ µ′2

φ
l′2
k′2

)
◦2
(
µ1φ

l1
k1
⊗ µ2φ

l2
k2

))
+

k2∑
p=1

d(µ′1)∑
p′=k′1

k1−1∑
r=1

d(µ′2)∑
r′=k′2+1

α
l′1l1l

′
2l2

p′k1k′2p
β
l′1l
′
2l1l2

p′r′rp

((
µ′1
φ
l′1
p′ ⊗ µ′2

φ
l′2
r′

)
◦2
(
µ1φ

l1
r ⊗ µ2φ

l2
p

))
+ . . .
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where at p = k2, p′ = k′1 we set α
l′1l1l

′
2l2

k′1k1k
′
2k2

:= qk′1l′1k1l1 qk′2l′2k2l2 q
′
k2l2k′1l

′
1
, and the dots are sums

of tensors of the form (x1⊗ y1) ◦2 (x2⊗ y2) where y1 < µ′2
φ
l′2
k′2

. Recall that in (30) we denoted

by u1, . . . , uM the ordered list of matrix coefficients $kφ
j
i . Let us order in a lexicographic

way the elements ui ⊗ uj , ie. as a sequence u
(2)
1 , . . . , u

(2)
M2 such that the following condition

holds: if $l′φ
t′
s′ < $k′φ

j′

i′ , or $l′φ
t′
s′ = $k′φ

j′

i′ and $lφ
t
s < $kφ

j
i , then u(2)

a := $kφ
j
i ⊗ $k′φ

j′

i′

and u
(2)
b := $lφ

t
s ⊗ $l′φ

t′
s′ satisfy u

(2)
b < u(2)

a . Then, by the conditions ensuring when α
l′1l1l

′
2l2

p′k1k′2p

and β
l′1l
′
2l1l2

p′r′rp are non zero, the last identity takes the form of (30) by replacing ui, uj with

u
(2)
i := µ1φ

l1
k1
⊗ µ2φ

l2
k2

, u
(2)
j := µ′1

φ
l′1
k′1
⊗ µ′2

φ
l′2
k′2

. At the beginning of this computation we

assumed µ′2
φ
l′2
k′2
< µ2φ

l2
k2

and µ′1
φ
l′1
k′1
< µ1φ

l1
k1

, but the same result occurs (in a simpler fashion)

if µ′2φ
l′2
k′2

= µ2φ
l2
k2

and µ′1
φ
l′1
k′1
< µ1φ

l1
k1

, so eventually we find that (30) holds true for all cases

1 ≤ u(2)
j < u

(2)
i ≤M

2.

As in the case of L0,1, by using Proposition I.8.17 of [23] one can therefore conclude that
there is a filtration F3 of GrF2(L0,n) such that GrF3(GrF2(L0,n)) is a quotient of a quasi-
polynomial algebra, and finally that L0,n is Noetherian. 2

Theorem 3.2. The algebra M0,n = LUq0,n (respectively MA
0,n, and MA,ε′

0,n , ε′ ∈ C×) is Noe-

therian, and generated over C(q) (resp. A, C) by a finite number of elements.

Our method of proof follows closely that of the Hilbert-Nagata theorem (see [37]). Let us
recall one version of this theorem, which is enough for our purposes. Let A = K[a1, ..., an] be
a finitely generated commutative algebra over an arbitrary field K, and G a group of algebra
automorphisms of A.

Theorem 3.3. If the action of G on A is completely reducible on finite dimensional repre-
sentations, then the ring AG of invariants of A with respect to G is Noetherian and a finitely
generated algebra over K.

We recall here the main steps of the proof that we will adapt in order to prove Theorem
3.2:

(a) From the complete reducibility of the action of G on A one can define a linear map

R : A→ AG

namely the projection onto the space of invariants along the space of non-trivial isotypical
components of A. This linear map is called the Reynolds operator; it satisfies

(37) R(hf) = hR(f)

for every f ∈ A, h ∈ AG.

(b) Let I be an ideal of AG. Then I = R(AI) = AI ∩ AG. Because AI is an ideal of A,

and A is Noetherian, there exist elements b1, ..., bs, that can be chosen in I ⊂ AG, such that
AI = Ab1 + . . . + Abs. Since I = R(AI) = R(Ab1 + . . . + Abs) = AGb1 + . . . + AGbs, I is

finitely generated over AG. Therefore AG is Noetherian.

(c) Let B be an algebra graded over N (for simplicity of notations): B =
⊕+∞

i=0 Bn, with

Bm.Bn ⊂ Bm+n. The augmentation ideal of B is B+ =
⊕+∞

i=1 Bn. If B+ is a Noetherian
ideal of B, then B is a finitely generated algebra over B0. This is Lemma 2.4.5 of [75] (in
that statement B is commutative, but this hypothesis is not necessary for the proof).
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(d) Assume that AG is graded over N (for simplicity of notations): AG =
⊕+∞

i=0 A
G
n with

AG0 = K. Then AG+ =
⊕+∞

i=1 A
G
n is an ideal of AG, which is Noetherian by (b) above.

Applying (c) we deduce that AG is a finitely generated algebra over K.

Proof of Theorem 3.2. As for Theorem 3.1 the result forMA,ε′

0,n follows from that forMA
0,n

and M0,n, which are proved in the same way. Let us consider M0,n. Consider the filtration
F of L0,n by the subspaces

F [µ] =
⊕

[µ′]≤[µ]

C([µ′]), µ ∈ Pn+

where Pn+ is given the lexicographic partial order induced from [Λ]. It is easily seen that F
is an algebra filtration: the coregular actions �, � fix globally each component C(µ) of L0,1,
so the claim follows from (3), (6) and the fact that C(µ) ?C(ν) ⊂ C(µ+ ν) for all µ, ν ∈ P+.
Denote by GrF (L0,n) the corresponding graded algebra. Again

(38) GrF (L0,n) = L0,n =
⊕

[µ]∈Pn+

C([µ]).

Because each space C([µ]) is stabilized by the coadjoint action of Uq, the decomposition (38)
has a key advantage on (33). Indeed, since L0,n is a Uq-module algebra, the action of Uq is
well-defined on GrF (L0,n) and it gives it a structure of Uq-module algebra. As vector spaces
we have

(39) GrF (L0,n)Uq =
⊕

[µ]∈Pn+

C([µ])Uq = LUq0,n.

Now we can adapt the differents steps (a)–(d) recalled above:

(a’) The action of Uq on L0,n is completely reducible. This follows from Theorem 2.2 (1)
(noting that the summands, being isomorphic by (14) to spaces C(µ), are finite-dimensional
and thus completely reducible Uq-modules), and the isomorphism of Uq-modules (see (11)):

(40) L0,n
Φn−→ (Uq(g)⊗n)lf

ψ−1
n−→ U lfq (g)⊗n

where lf means respectively locally finite for the action adrn of Uq(g) on Uq(g)⊗n, and locally
finite for the action adr of Uq(g) on Uq(g). By (38) it follows that GrF (L0,n) is also completely

reducible. We can therefore define the Reynolds operator R : GrF (L0,n) → GrF (L0,n)Uq as
in (a).

(b’) In the proof of Theorem 3.1 we showed that GrF2(L0,n) is Noetherian, and then
deduced that L0,n is Noetherian by a classical argument (see eg. [69], 1.6.9). This same
argument implies that GrF (L0,n) is Noetherian, because (38) shows it is filtered by F2, and

GrF2(GrF (L0,n)) = GrF2(L0,n) is Noetherian. As in (b) we deduce that GrF (L0,n)Uq is

Noetherian. But GrF (L0,n)Uq = GrF (LUq0,n), which implies that LUq0,n is Noetherian.

(c’-d’) Then we can apply the steps (c)-(d). As a result GrF (L0,n)Uq is finitely generated,

say by k homogeneous elements x̄i ∈ F [µi]/(⊕[µ′]<[µi]C([µ′])).

(e’) From (39) we deduce that LUq0,n is generated by the xi ∈ C([µi]) with leading terms
x̄1, . . . , x̄k. This follows from the following elementary fact: if A is a filtered K-algebra
(K a field) which graded algebra Gr(A) is finitely generated, then A is finitely generated
by elements which leading terms generate Gr(A). Indeed, let A have the algebra filtration
(Ai)i∈N (we take a filtration over N to simplify notations). Put Gr(A) = ⊕i∈NA(i), A(i+1) :=

Ai+1/Ai. We have ā + b̄ = a+ b and āb̄ = ab + An+m−1 ∈ A(m+n), so āb̄ = 0 if ab ∈
An+m−1, and āb̄ = ab otherwise. Now assume that Gr(A) is finitely generated over K.
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Denote by f̄1, . . . , f̄n a finite set of generators. Let a ∈ A, with a ∈ Ak \ Ak−1. Then

ā ∈ A(k) can be written as ā =
∑

(i1,...,in)∈I λ(i1,...,in)f̄
i1
1 . . . f̄ inn for some finite set I ⊂ Nn and

scalars λ(i1,...,in) ∈ K. Either f̄ i11 . . . f̄ inn is zero, or f̄ i11 . . . f̄ inn = f i11 . . . f inn . We therefore have

a−
∑

(i1,...,in)∈I λ(i1,...,in)f
i1
1 . . . f inn = 0 ∈ A(k), that is, a −

∑
(i1,...,in)∈I λ(i1,...,in)f

i1
1 . . . f inn ∈

Ak−1. The conclusion follows by an easy induction. 2

Remark 3.4. (1) Because LUq0,1 is the center of L0,1, (e’) proves it is finitely generated. Of

course this follows also from the isomorphism L0,1
∼= U lfq and the fact that the center of U lfq

is the center of Uq (by Theorem 2.2), plus the well-known description of the latter. But the

argument here is elementary and it applies to LUq0,n for any n ≥ 1.

(2) In spite of the isomorphism Φn : M0,n → (U⊗nq )Uq , in order to prove Theorem 3.2 one

cannot bypass the hard study of (U⊗nq )lf , whence of L0,1
∼= U lfq , by working directly with

Uq. Indeed the adjoint action is not completely reducible thereon. In fact, U lfq is exactly the
socle of this action (see [51], Lemma 7.1.24).

(3) In the sl(2) case the filtration F on LUq0,n should correspond via the Wilson loop iso-

morphism (defined in [28], Section 8.2) to the filtration of skein algebras of spheres with n+1
punctures used in [66].

4. Proof of Theorem 1.2

As usual we let ε be a primitive l-th root of unity with l odd and l > di for all i ∈ {1, . . . ,m}.

Recall that Z0(Uε) ⊂ Uε is the central polynomial subalgebra generated by Elβk , F lβk , L±li ,
for k ∈ {1, . . . , N} and i ∈ {1, . . .m}. Define

Z0(U lfε ) = U lfε ∩ Z0(Uε).

Examples show that generating sets of Z0(U lfε ) have complicated expressions in general.
Nevertheless, specializing q at ε in Theorem 2.2 (2) we get

(41) Z0(Uε) = T
(l)−1
2− Z0(U lfε )[T (l)/T

(l)
2 ]

where T (l), T
(l)
2− and T

(l)
2 are the subsets of T , T2− and T2 formed by the elements Kλl with

λ ∈ P , λ ∈ −2P+ and λ ∈ 2P respectively. Define

Z0(Lε0,1) = Φ−1
1 (Z0(U lfε )).

Recall the isomorphism η∗ : O(G)→ Z0(Oε) (see Theorem 2.15 (1)).

Proposition 4.1. Z0(Lε0,1) = Z0(Oε), and therefore Z0(Lε0,1) is isomorphic to O(G).

Proof. The claim follows from the fact that Φ1 : Lε0,1 → U lfε is an isomorphism (see (18)),

the identity Φ1 = m ◦ (id⊗ S−1) ◦ Φ, and Theorem 2.15 (2).
Here is an alternative proof of the isomorphism Z0(Lε0,1) ∼= O(G), not using η∗. Recall the

notations introduced before Theorem 2.14. As varieties H = U+TGU− = G0, so the map σ
yields identifications O(H) = O(U+)O(TG)O(U−) and O(G0) = O(U+)O(TG/(2))O(U−); we

can identify O(G0) with the subalgebra σ∗|H(O(G0)) of O(H). Consider the space V = ∧Ng,

endowed with the action of G given on each factor by the adjoint representation. Put on g a
basis consisting of one element eα per root space gα, along with a basis of h. Let v ∈ V be
the exterior power of the eα’s for α negative, and v∗ a dual vector such that v∗(v) = 1 and v∗

vanishes on a TG-invariant complement of v. It is classical that G \G0 has defining equation
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δ(g) = 0, where δ is the matrix coefficient δ(g) = v∗(πV (g)v) (see eg. [50], page 174). Hence
O(G0) = O(G)[δ−1]. On G0 we have δ(u+tu−) = χ−ρ(t), where χ−ρ is the character of TG
associated to the root −ρ. Now we can make the connection with Uε. The isomorphism
Z0(Uε) ∼= O(H) of Theorem 2.14 (2) identifies Z0(Uε) ∩ Uε(h) = C[T (l)] with O(TG) by

mapping Kλl to the character of TG associated to λ. Therefore it maps C[T
(l)
2 ] to O(TG/(2)),

`l = Klρ to χρ, and T
(l)−1
2− Z0(U lfε ) = Z0(U lfε )[`l] to O(G0) by (41). Since O(G0) = O(G)[δ−1]

and δ−1 = χρ on G0, it follows that Z0(U lfε ) ∼= O(G). Then Z0(Lε0,1) ∼= O(G) by injectivity
of Φ1. 2

Consider the linear subspace of Lε0,n defined by

Z0(Lε0,n) = Z0(Lε0,1)⊗n.

By Proposition 4.1 we have an isomorphism of algebras (η∗−1)⊗n : Z0(Lε0,n)→ O(G)⊗n.

Proposition 4.2. (1) Z0(Lε0,n) is a central subalgebra of Lε0,n, and Lε0,n = O⊗nε as modules

over O(G)⊗n. Moreover Z0(Lε0,n) is a Noetherian ring.
(2) The Z0(Lε0,n)-module Lε0,n is generated by the elements of the spaces C([µ]) where [µ] =
(µ1, . . . , µn) ∈ Pn+ satisfies 0 ≤ (µi, α̌j) < l for every i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, where
as usual α̌j := 2αj/(αj , αj). In particular it is a finite Noetherian Z0(Lε0,n)-module, and
therefore a Noetherian ring.

Proof. (1) Recall the formula (6). It is enough to consider the case where α = β′ = 1, and

show that (1⊗ (β)(b))((α)(a)⊗ 1) = (α)(a)⊗ (β)(b) whenever α ∈ Z0(Lε0,1), for this is trivially

equal to ((α)(a) ⊗ 1)(1 ⊗ (β)(b)) (similar arguments apply if instead β ∈ Z0(Lε0,1) and α is
arbitrary). We have (denoting

∑
(α),(α),(α),(α) by

∑
(α)4 , ∆(α(1)) =

∑
(α) α(1)(1)⊗α(1)(2) etc.):(

1⊗ (β)(b)
)(

(α)(a) ⊗ 1
)

=
∑
(Ri)

(
S(R3

(1)R
4
(1)) � α�R1

(1)R
2
(1)

)(a)

⊗
(
S(R1

(2)R
3
(2)) � β �R2

(2)R
4
(2)

)(b)

=
∑

(Ri),(α)4,(β)2

(α(2))
(a) ⊗ (β(2))

(b)

× β(1)

(
α(1)(2)(R

2
(1))R

2
(2)α(3)(1)(S(R4

(1)))R
4
(2)

)
× β(3)

(
α(3)(2)(R

3
(1))R

3
(2)α(1)(1)(R

1
(1))S(R1

(2))
)
.

By Theorem 2.15 (2) it follows that α(1)(2)(R
2
(1))R

2
(2) = Φ+(α(1)(2)) ∈ Z0(Uε), and similarly

α(3)(1)(S(R4
(1)))R

4
(2), α(3)(2)(R

3
(1))R

3
(2), α(1)(1)(R

1
(1))S(R1

(2)) ∈ Z0(Uε). Denote by z any such

element. Note that Z0(Uε) acts by the trivial character on Γ-modules, and that the expression
of z in terms of the corresponding α(i)(j) implies ε(z) = ε(α(i)(j)). Then

β(1)

(
α(1)(2)(R

2
(1))R

2
(2)α(3)(1)(S(R4

(1)))R
4
(2)

)
= ε(α(1)(2)α(3)(1))β(1)(1)

= ε(α(1)(2))ε(α(3)(1))ε(β(1))

β(3)

(
α(3)(2)(R

3
(1))R

3
(2)α(1)(1)(R

1
(1))S(R1

(2))
)

= ε(α(3)(2))ε(α(1)(1))ε(β(3))

and finally (1 ⊗ (β)(b))((α)(a) ⊗ 1) = (α)(a) ⊗ (β)(b). Therefore Z0(Lε0,1)(a) is central in Lε0,n
for all a = 1, . . . , n. These algebras generate Z0(Lε0,n) in (Lε0,1)⊗n, and hence in Lε0,n (this
follows from the comment before (7)). Therefore Z0(Lε0,n) is central in Lε0,n. A computation
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similar to the above one, based on the formula (3) instead of (6), shows that αβ = α ? β
whenever α ∈ Z0(Lε0,1). Hence Lε0,1 and Oε coincide as modules over Z0(Lε0,1) = Z0(Oε). The

second claim follows immediately; for instance when n = 2, given α′, β′ ∈ Z0(Lε0,1) we have

(α′ ⊗ β′)(α⊗ β) = (α′ ⊗ 1)(1⊗ β′)(α⊗ 1)(1⊗ β) immediately by (6), and (1⊗ β′)(α⊗ 1) =
α ⊗ β′ = (α ⊗ 1)(1 ⊗ β′) as above. Then (α′ ⊗ β′)(α ⊗ β) = α′α ⊗ β′β. Finally Z0(Lε0,n) is
a Noetherian ring as it is isomorphic to O(Gn) (Proposition 4.1), the coordinate ring of an
affine algebraic variety.
(2) Let [λ] = (λ1, . . . , λn) ∈ Pn+. For all i ∈ {1, . . . , n} there are unique λi0, λi1 ∈ P+

such that λi = λi0 + lλi1 and 0 ≤ (λi0, α̌j) < l for every j ∈ {1, . . . ,m}. Then set [λ0] =
(λ10, . . . , λn0), [λ1] = (λ11, . . . , λn1). We have C([λ]) = C([λ0]) ◦ C([lλ1]) by (36), and
C(lλi1) ⊂ Z0(Oε) = Z0(Lε0,1) for all i ∈ {1, . . . , n} by Theorem 2.15 (2) and Proposition
4.1, so C([lλ1]) ⊂ Z0(Lε0,n). It follows that GrF2(Lε0,n) =

⊕
[λ]∈Pn+

C([λ]) is generated over

Z0(Lε0,n) by the elements of the spaces C([λ0]), [λ] ∈ Pn+. By step (e’) of the proof of
Theorem 3.2, formulated for modules instead of algebras, it follows that Lε0,n is generated
over Z0(Lε0,n) by the same elements. The last claims follow in a standard way: since Lε0,n
is a finitely generated Z0(Lε0,n)-module and Z0(Lε0,n) is Noetherian, Lε0,n it is a Noetherian
Z0(Lε0,n)-module (eg. by [7] Proposition 6.5). Moreover Lε0,n is a Noetherian ring (by eg.
[69], 1.3). �

Note that we had already obtained independently the Noetherianity of the ring Lε0,n as a

consequence of the Noetherianity of LA0,n (Proposition 3.1).

We need below explicit descriptions of the Z- and Z0-centers for g = sl(2). Let us recall a
few facts in this case. Denote by a, b, c, d the standard generators of Oq(SL2), ie. the matrix
coefficients in the basis of weight vectors v0, v1 = F.v0 of the 2-dimensional irreducible
representation V2 of Uq(sl(2)). Denote by x?k, k ∈ N, the k-th power of an element x ∈
OA(SL2). The algebra OA(SL2) is generated by a, b, c, d; the monomials a?i ? b?j ? d?r and

a?i ? c?k ? d?r, i, j, k, r ∈ N, k > 0, form an A-basis of OA(SL2). The algebra Z0(Oε(SL2)) is

generated by a?l, b?l, c?l, d?l; the monomials a?il ? b?jl ? d?rl and a?il ? c?kl ? d?rl form a basis
of Z0(Oε(SL2)), and Z(Oε(SL2)) is generated by Z0(Oε(SL2)) and the elements b?(l−k) ?c?k,
k = 0, . . . , l (see [42], Proposition 1.4 and the Appendix). We have the relation

(42) a?l ? d?l − b?l ? c?l = 1

and the Frobenius isomorphism of Parshall-Wang (see [65], Chapter 7) coincides with the
map

FrPW : O(SL2)→ Z0(Oε(SL2))

induced by η∗; it sends the standard generators a, b, c, d of O(SL2) = O1(SL2) respectively

to a?l, b?l, c?l, d?l. Finally, let us quote from [43] that a basis of the rank l3 free Z0(O(SL2))-

module Oε(SL2) (see Theorem 2.15 (3)) is formed by the monomials ambncs
′

and bncs
′′
dr,

with the integers m,n, r, s′, s′′ in the range

(43) 1 ≤ m ≤ l − 1 , 0 ≤ n, r ≤ l − 1 ,m ≤ s′ ≤ l − 1 , 0 ≤ s′′ ≤ l − r − 1.

Now consider LA0,1(sl(2)). Recall that LA0,1 = OA as UA-modules. The algebra LA0,1(sl(2)) is
also generated by a, b, c, d; a set of defining relations is (see [28], Section 5):

(44)

ad = da , ab− ba = −(1− q−2)bd
db = q2bd , cb− bc = (1− q−2)(da− d2)
cd = q2dc , ac− ca = (1− q−2)dc

ad− q2bc = 1.
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The element ω := qa + q−1d is central. Let Tk, k ∈ N, be such that Tk(x)/2 is the k-th
Chebyshev polynomial of the first type in the variable x/2. We have (see [28], Proposition
7.3, for the generalization to Lε0,n(sl(2))):

Lemma 4.3. Z(Lε0,1(sl(2))) = C[ω, bl, cl, dl]/I and Z0(Lε0,1(sl(2))) = C[(Tl(ω), bl, cl, dl]/I,

where I is the ideal of C[ω, bl, cl, dl] generated by (Tl(ω)− dl)dl − blcl − 1.

Here bl, cl, dl are the l-th powers of b, c, d computed using the product of LA0,1(sl(2)), not
the product ? of Z0(Oε(SL2)). The above generator of I can be interpreted as a determinant,
and ω as a quantum trace on V2.

Lemma 4.4. Viewed as element of OA(SL2), Tl(ω)− dl = a?l and xl = x?l, x ∈ {b, c, d}.

Proof. Let α and $ be the simple root and fundamental weight of sl(2). In the notations

of (22) we have b = ψ−α−$, c = ψα−$, d = ψ−$; the formulas give Φ1(b?l) = (q − q−1)lF l,

Φ1(c?l) = (q − q−1)lElK−l, Φ1(d?l) = K−l. These coincide respectively with Φ1(bl), Φ1(cl),

Φ1(dl) (see (32) in [28]). By passing to the localization OA(SL2)[d−1], and using Parshall-

Wang’s relation (42), one deduces easily Φ1(a?l) = K l+(q−q−1)2lF lEl = Tl(Ω)−K−l, where

Ω is (q − q−1)2l times the Casimir element of Uq(sl(2)), and Tl(x)/2 is the l-th Chebyshev

polynomial of the first type in the variable x/2. We have Φ1(ω) = Ω, so Φ1(a?l) = Tl(ω)−dl.
The conclusion follows from the injectivity of Φ1. 2

This lemma proves that we have a commutative diagram

O(SL2)
FrPW //

Fr ((

Z0(Oε(SL2))

��

� � // Oε(SL2)

��
Z0(Lε0,1(sl(2))) �

� // Lε0,1(sl(2))

where FrPW is Parshall-Wang’s Frobenius isomorphism recalled above, Fr is the Frobenius
isomorphism introduced in [28], Definition 7.2, and the vertical arrows are the identifications
as vector spaces (the middle one proved by Proposition 4.2).

Remark 4.5. By Lemma 4.3 the monomials Tl(ω)ibjldrl and Tl(ω)ickldrl, for i, j, k, r ∈ N
and k > 0, form an A-basis of Z0(Lε0,1(sl(2))). It is straightforward (though cumbersome) to

express these basis elements in terms of the basis elements a?il ? b?jl ? d?rl and a?il ? c?kl ? d?rl

of Z0(Oε(SL2)), and conversely; this can be done by using Lemma 4.4, the formula (3) or
the inverse one (expressing ? in terms of the product of L0,1, see (18) in [28]), and the
formula of the coproduct ∆: Lε0,1(sl(2))) → Lε0,2(sl(2))) restricted to Z0(Lε0,1(sl(2))) (given
in Proposition 6.15 and Lemma 7.7 of [28]).

Since LA0,1 = OA as an A-module, the functionals ti in Proposition 2.16 can be seen as

maps ti : LA0,1 → A. Though the algebra structures of Oε and Lε0,1 are very different, we have
the analogous result:

Proposition 4.6. The maps �ti preserve Z0(Lε0,1), and they satisfy (f� ti)(a) = f(nia) and
(fα) � ti = (f � ti)(α� ti) for every f ∈ Z0(Lε0,1), a ∈ G, α ∈ Lε0,1.

Proof. The first two claims follow from Proposition 2.16 and the equality Z0(Lε0,1) = Z0(Oε)
in Proposition 4.1.

The last claim follows from the case g = sl(2), as in the proof of Proposition 7.1 of
[42]. In fact it is enough to show that t(fg) = t(f)t(g) for every f ∈ Z0(Lε0,1(sl(2)), g ∈
Lε0,1(sl(2)); for completeness we explain this in the Appendix, see (66). A word of caution
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is needed: the proof of (66) uses that ∆: Oε → Oε ⊗ Oε is a morphism of algebras. The
analogous property for Lε0,1 is that ∆ yields a morphism of algebras ∆: Lε0,1 → Lε0,2. Since
the algebra structure of Lε0,2 is not the product one on Lε0,1 ⊗ Lε0,1, it is not true in general
that

∑
(f),(g)(f(1)⊗f(2))(g(1)⊗g(2)) =

∑
(f),(g) f(1)g(1)⊗f(2)g(2) for every f, g ∈ Lε0,1. However

it holds whenever f ∈ Z0(Lε0,1), since ∆(Z0(Lε0,1)) ⊂ Z0(Lε0,1) ⊗ Z0(Lε0,1) and therefore
f(2) ∈ Z0(Lε0,1) = Z0(Oε) commutes in Lε0,2 with any g(1) ∈ Lε0,1 = Oε.

It is enough to prove the identity t(fg) = t(f)t(g) when f ranges in a set of generators of

the algebra Z0(Lε0,1(sl(2))). So one can take f among, say, Tl(ω) − dl = a?l and xl = x?l,
x ∈ {b, c, d} (using Lemma 4.3). By (3) and Proposition 6.1 in the Appendix we have

t(fg) =
∑

(R),(R)

t
(
R(2′)S(R(2)) � f

)
t
(
R(1′) � g �R(1)

)
.

Expanding coproducts and using that R−1 = (S ⊗ id)(R) we deduce

t(fg) =
∑

(f),(R),(R)

t
(
f(1)

) 〈
f(2), R(2′)S(R(2))

〉
t
(
R(1′) � g �R(1)

)
=

∑
(f),(R),(R)

t
(
f(1)

)
t

(〈
f(2), R(2′)

〉
R(1′) � g �

〈
f(3), S(R(2))

〉
R(1)

)

=
∑
(f)

t(f(1)) t

(
S−1(Φ−(f(2))) � g � S−2(Φ−(f(3)))

)

=
∑
(f)

t(f(1))

〈
g, S−2(Φ−(f(3)))wS

−1(Φ−(f(2)))

〉

=
∑
(f)

t(f(1)) ε

(
S−2(Φ−(f(3)))

)
ε

(
S−1(Φ−(f(2)))

)
t(g)

where w ∈ UΓ is the quantum Weyl group element dual to t (see Section 6.1), and in the
last equality we used that Φ− maps Z0(Oε) into Z0(Uε) (see Theorem 2.15 (2)), which acts
on Γ-modules by the trivial character (the counit) ε : Uε → C. By (58)-(59) in the Appendix

we have t(a?l) = t(d?l) = 0 and t(b?l) = 1, t(c?l) = −1. Now the computation of t(fg)

follows easily. For instance, taking f = bl = b?l, by using ∆(b?l) = a?l ⊗ b?l + b?l ⊗ d?l and

∆(d?l) = c?l ⊗ b?l + d?l ⊗ d?l we get

t(blg) = ε

(
S−2(Φ−(b?l))

)
ε

(
S−1(Φ−(c?l))

)
t(g) + ε

(
S−2(Φ−(d?l))

)
ε

(
S−1(Φ−(d?l))

)
t(g)

Since b?l ∈ Oε(U+), Φ−(b?l) = 0. Also, it is immediate from the definition of Φ− that

Φ−(d?l) = Φ−(d)l = Ll; alternatively, one can bypass this computation by observing that Φ−

sets an isomorphism from Oε(TG) = Oε(B+)∩Oε(B−) to C[L±1] = Uε(b+)∩Uε(b−), mapping

a generator d to L or L−1. We have ε(Ll) = 1, and therefore

t(blg) = t(g) = t(bl)t(g).

The other cases f = Tl(ω)− dl, cl, dl are similar. 2

Theorem 4.7. Lε0,n is a free Z0(Lε0,n)-module of rank ln.dimg, and (Lε0,n)Uε is a Noetherian
ring and a finite, whence Noetherian, Z0(Lε0,n)-module.
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We will see in Section 5 (proof of Theorem 1.3 (2) and (3)) that in fact (Lε0,n)Uε is finite

free of rank l(n−1).dimg+m over Z0(Lε0,n).

Proof of Theorem 4.7. By Proposition 4.2 (1), Lε0,n and O⊗nε coincide as modules over

Z0(Lε0,n) = Z0(O⊗nε ), so the first claim follows immediately from Theorem 7.2 of [42], which

shows that Oε is a finitely generated projective module of rank ldimg over Z0(Oε), and the
arguments of [68] and [25], which imply that this module is free. Alternatively, it follows from
the fact that Oε is a cleft extension of O(G) (see [6] and [21]). For the second claim, since

Lε0,n is a Noetherian Z0(Lε0,n)-module, the Z0(Lε0,n)-submodule (Lε0,n)Uε is necessarily finitely

generated. But Z0(Lε0,n) being Noetherian, (Lε0,n)Uε is then a Noetherian Z0(Lε0,n)-module
and a Noetherian ring.

For the sake of clarity let us provide a self-contained proof of the first claim, not invoking di-
rectly [42, 25] or [6, 21]. Since Lε0,n and L⊗n0,1 coincide as modules over Z0(Lε0,n) = Z0(Lε0,1)⊗n,
the result follows from the case n = 1. Then we argue in four steps. First, using Theorem 2.2
we show that a certain localization of Lε0,1 is a free module of rank ldimg. Then, assuming that

Lε0,1 is finitely generated and projective, we explain why it has constant rank ldimg (this is
very classical). Thirdly, we prove that Lε0,1 is finitely generated and projective as in Theorem
7.2 of [42]. Finally we obtain that it is a free module as in [25].

We have T
(l)−1
2− U lfε = T−1

2−U
lf
ε = U lfε [`] = U lfε [`l], where ` is the pivotal element. Then

Theorem 2.14 (1) and (41) imply that Uε is a free Z0(U lfε )[`l]-module of rank 2mldimg, and

Theorem 2.2 (2) says that it is also the direct sum of 2m copies of the (free) Z0(U lfε )[`l]-

module U lfε [`l]. The decomposition being unique, it follows that U lfε [`l] is free of rank ldimg

over Z0(U lfε )[`l]. Pulling this back via Φ1, this proves Lε0,1[d−l] is free of rank ldimg over

Z0(Lε0,1)[d−l], where d = ψ−ρ = Φ−1
1 (`) (see Corollary 2.4, Theorem 2.7).

Here we note that, by the first formula of Theorem 2.11 (3), taking powers with respect
to the product of L0,1 we have

ψl−ρ = ψ−lρ.

Assume that Lε0,1 is finitely generated and projective. Let us show that its rank is ldimg.
The localization (Lε0,1)P of Lε0,1 at any prime ideal P of Z0(Lε0,1) is a free module over
Z0(Lε0,1)P ([72], Proposition 2.12.15); the ranks of such modules are finite in number ([72],
Proposition 2.12.20). If these ranks are all equal, then, by definition, it is the rank of Lε0,1
over Z0(Lε0,1). This happens if Z0(Lε0,1) has no non-trivial (ie. 6= 1) idempotent ([72],
Corollary 2.12.23), which is the case since it has non non-trivial zero divisors. To compute

the rank, suppose P does not contain dl. Such ideals P are in 1-1 correspondence with the
prime ideals of Z0(Lε0,1)[d−l] by the natural ring monomorphism Z0(Lε0,1) → Z0(Lε0,1)[d−l].
The set S = Z0(Lε0,1) \ P is multiplicatively closed, and we have also a ring morphism

Z0(Lε0,1)[d−l]→ S−1Z0(Lε0,1), which is also an injection (there are no zero divisors in Z0(Lε0,1),
whence in S). Then

(45) (Lε0,1)P = S−1Lε0,1 = Lε0,1[d−l]⊗Z0(Lε0,1)[d−l] S
−1Z0(Lε0,1)

shows that (Lε0,1)P has over Z0(Lε0,1)P = S−1Z0(Lε0,1) the same rank ldimg as Lε0,1[d−l] over

Z0(Lε0,1)[d−l]. This proves our claim.
In order to show that Lε0,1 is finitely generated and projective over Z0(Lε0,1) it is enough to

show it is finite locally free, ie. there are elements di ∈ Z0(Lε0,1) such that the localizations

Lε0,1[d−1
i ] are finite free Z0(Lε0,1)[d−1

i ]-modules, and Maxspec(Z0(Lε0,1)) is covered by the open
sets U(di) made of the ideals not containing di (see Lemma 77.2 of [78]).
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We have seen above that Lε0,1[d−l] is free of rank ldimg over Z0(Lε0,1)[d−l]. In the proof of

Proposition 4.1 we saw that there are isomorphisms Z0(Lε0,1)[d−l] ∼= Z0(U lfε )[`l] ∼= O(G0),

and O(G0) = O(G)[δ−1]. Now, given w ∈ W with a reduced expression si1 . . . sik , put
tw = ti1 . . . tik . Let w be represented by nw = ni1 . . . nik in N(TG). By Proposition 4.6 we
have (f � tw)(x) = f(nwx) for every f ∈ Z0(Lε0,1), x ∈ G. Then

Z0(Lε0,1)[d−l] � tw ∼= O(n−1
w G0) ∼= O(G)[(δ � tw)−1].

If b1, . . . , br (r := ldimg) is a basis of Lε0,1[d−l] over Z0(Lε0,1)[d−l], then Lε0,1[d−l] � tw is free

over Z0(Lε0,1)[(d � tw)−l] ∼= O(n−1
w G0) with basis b1 � tw, . . . , br � tw. Consider the Bruhat

decomposition of G: any g ∈ G can be written in the form g = b1nb2, where b1, b2 ∈ B−,
n ∈W . Hence we have g = nn−1b1nb2 ∈ nB+B− = nG0, and therefore

G = ∪w∈W (B−nwB−) = ∪w∈W (nwG
0).

For every w ∈W put

dlw := dl � tw.

Under the isomorphism of Z0(Lε0,1) with G, we thus get that Maxspec(Z0(Lε0,1)) is covered

by the open sets U(dlw) ∼= nwG
0, and Lε0,1[d−lw ] is finite free over Z0(Lε0,1)[d−lw ]. Therefore Lε0,1

is finitely generated and projective over Z0(Lε0,1).
Finally, let us explain why Lε0,1 is free over Z0(Lε0,1), following the arguments of [25]. Let R

be a commutative Noetherian ring, put X = Maxspec(R), and let P be an R-module. Denote
by RI , PI the localizations of R, P at a maximal ideal I ∈ X. Define the f-rank of P as f-
rank(P ) = infI∈X{ f-rankRI (PI)}, where f-rankRI (PI) = sup{r ∈ N, R⊗rI ⊂ PI} ∈ N ∪ {+∞}
(ie. the maximal dimension of a free summand of PI). Bass’ Cancellation theorem asserts that
if P is projective and f-rank(P ) > dim(X), and P⊕Q ∼= M⊕Q for some R-modules Q and M
such that Q is finitely generated and projective, then P ∼= M (see [10], IV.3.5 and pages 167
and 170, taking A = R, or [69], section 11.7.13). Let us apply this to R = O(G) and P = Lε0,1.

We proved above that f-rankRI (PI) = ldimg, a constant, and we have ldimg > dimg = dim(G).
By a result of Marlin [68], the Grothendieck ring K0(O(G)) is isomorphic to Z. Therefore
Lε0,1⊕Q ∼= O(G)r for some free O(G)-module Q and r ∈ N. Then Bass’ Cancellation implies
Lε0,1 is free over Z0(L0,1) ∼= O(G). 2

5. Proof of Theorem 1.3

We begin with two lemmas, interesting in themselves.

Lemma 5.1. Z(Lε0,n) is a finite Z0(Lε0,n)-module and a Noetherian ring. Therefore the ring
Z(Lε0,n) is integral over Z0(Lε0,n).

Proof. We know that Lε0,n is finite over Z0(Lε0,n) (Theorem 4.7), and Z0(Lε0,n) is a Noe-
therian ring (Proposition 4.2). Therefore Lε0,n is a Noetherian Z0(Lε0,n)-module. This implies
that the submodule Z(Lε0,n) is finitely generated. But being finite over the Noetherian ring
Z0(Lε0,n), it is a Noetherian ring (by eg. Proposition 7.2 of [7]).

Let x ∈ Z(Lε0,n). The Z0(Lε0,n)-submodule Z0(Lε0,n)[x] of Lε0,n is finitely generated by the
same argument. Using the fact that an element x is integral over Z0(Lε0,n) if and only if
Z0(Lε0,n)[x] is a finitely generated Z0(Lε0,n)-module (by eg. Proposition 5.1 of [7]), this proves
the last claim. 2

As usual, denote by Q(Z) the quotient field of a commutative integral domain Z. Then,
consider the fields Q(Z(Lε0,n)) and Q(Z0(Lε0,n)). Since Z(Lε0,n) is finite over Z0(Lε0,n) and
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has no non-trivial zero divisors, the ring Z(Lε0,n) ⊗Z0(Lε0,n) Q(Z0(Lε0,n)) is a field. Therefore

it is equal to Q(Z(Lε0,n)).

Lemma 5.2. [Q(Z(Lε0,n)) : Q(Z0(Lε0,n))] = lmn.

Proof. First consider the case n = 1. Note that Q(Z(Uε)) = Q(Z(U lfε ))(T (l)/T
(l)
2 ) by (41),

and similarly by replacing Z with Z0. Then, applying Φ1 and using that Q(Z(Uε)) has degree
lm over Q(Z0(Uε)) (see the comment after Theorem 2.14) we deduce

(46) [Q(Z(Lε0,1)) : Q(Z0(Lε0,1))] = [Q(Z(U lfε )) : Q(Z0(U lfε ))] = lm.

Next let n ≥ 1 be arbitrary. Recall from (16) the matrices M
(i)
j , for i = 1, . . . , n and

j = 1, . . . ,m. More generally, for every λ ∈ P+ and i = 1, . . . , n consider the matrix of matrix

coefficients M
(i)
λ := (Vλφ

el(i)
ek

)k,l ∈ End(Vλ)⊗LA0,n, where Vλφ
el(i)
ek

:= 1⊗(i−1)⊗ Vλφ
el
ek
⊗1⊗(n−i),

and {ek} is the canonical basis of weight vectors of Vλ. In [28], Proposition 6.22, we showed

that the elements λω
(i) := Tr(πVλ(`)M

(i)
λ ) are central in LA0,n, where Tr is the standard trace

on End(Vλ); moreover, the family {λω(i), λ ∈ P+} is a basis of the center of the i-th factor

LA0,1 of LA0,n. Now, recall the graded algebra GrF (L0,n) in (38). Take λ = $j . By (36),

for every i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and r ∈ N the leading coefficient of ($jω
(i))r in

GrF (L0,n) belongs to the space C([0, . . . , 0, r$j , 0, . . . , 0]) (with $j in the i-th entry). Take

the specialization at q = ε and denote by Z0(Lε0,1)(i) the i-th factor of Z0(Lε0,n). Recall that

Z0(Lε0,1)(i) = ⊕µ∈P+C([0, . . . , 0, lµ, 0, . . . , 0]). Then we get that the minimal polynomial of

$jω
(i) over Q(Z0(Lε0,n)(i)) has degree l. On another hand, denoting by Z(Lε0,1)(i) the center

of the i-th factor of Lε0,n, we have [Q(Z(Lε0,1)(i)) : Q(Z0(Lε0,1)(i))] = lm as in the n = 1 case

above. It follows that Q(Z(Lε0,1)(i)) is generated over Q(Z0(Lε0,1)(i)) by the elements λω
(i),

λ ∈ P+. The fields Q(Z(Lε0,1)(i)) are supported by distinct tensor factors, so they are linearly

disjoint subfields of Q(Z(Lε0,n)). The same is true of the fields Q(Z0(Lε0,1)(i)). Therefore, the

compositum of the fields Q(Z(Lε0,1)(i)), say Q′, has degree (lm)n over the compositum of the

fields Q(Z0(Lε0,1)(i)), which is Q(Z0(Lε0,n)). By the same argument, Q(Z(U⊗nε )) has degree

lmn over Q(Z0(U⊗nε )). Now, recall from (18) the isomorphism of algebras Φn : loc′Lε0,n → U⊗nε .

Consider the induced isomorphism of fields Φn : Q(Z(loc′Lε0,n)) → Q(Z(U⊗nε )), and the field
extensions in Q(Z(loc′Lε0,n)),

loc′Q
′ = Q′[{ν(n)

jn
−l}][{ν(n−1)

jn−1

−l}] · · · [{ν(1)
j1
−l}]

loc′Q(Z0(Lε0,n)) = Q(Z0(Lε0,n))[{ν(n)
jn
−l}][{ν(n−1)

jn−1

−l}] · · · [{ν(1)
j1
−l}].

Compose Φn with the linear automorphism of Q(Z(U⊗nε )) induced by ψ−1
n = Φ⊗n1 ◦ Φ−1

n

(see (11) for the latter). The image of loc′Q(Z0(Lε0,n)) by ψ−1
n ◦ Φn is Q(Z0(U⊗nε )). Since

lmn = [Q′ : Q(Z0(Lε0,n))] = [loc′Q
′ : loc′Q(Z0(Lε0,n))] = [ψ−1

n ◦ Φn(loc′Q
′) : Q(Z0(U⊗nε ))] and

[Q(Z(U⊗nε )) : Q(Z0(U⊗nε ))] = lmn, it follows that ψ−1
n ◦ Φn(loc′Q

′) = Q(Z(U⊗nε )), whence

loc′Q
′ = Q(Z(loc′Lε0,n)) = loc′Q(Z(Lε0,n)), and then Q′ = Q(Z(Lε0,n)). This eventually proves

lmn = [Q(Z(Lε0,n)) : Q(Z0(Lε0,n))]. 2

Recall the ring

Q(Lε0,n) = Q(Z(Lε0,n))⊗Z(Lε0,n) Lε0,n.
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The center of Q(Lε0,n) is Q(Z(Lε0,n)). By the comment before Lemma 5.2 we have another
description of Q(Lε0,n), namely

(47) Q(Lε0,n) = Q(Z0(Lε0,n))⊗Z0(Lε0,n) Lε0,n.

Recall that we denote by N the number of positive roots of g.

Proposition 5.3. Q(Lε0,n) is a central simple algebra of dimension l2Nn over Q(Z(Lε0,n)).

Proof. From its definition Q(Lε0,n) is a vector space over Q(Z(Lε0,n)). Because Lε0,n has no
non-trivial divisors and Q(Lε0,n) is finite-dimensional over Q(Z(Lε0,n)), it is a division algebra
over Q(Z(Lε0,n)), whence a simple algebra. Its center being Q(Z(Lε0,n)), this proves the first
part of the statement. By classical theory (see eg. Section 13.3.5 of [69], or [72], Corollary
2.3.25), it then follows that there is a finite extension (a splitting field) F of Q(Z(Lε0,n)) such
that

F⊗Q(Z(Lε0,n)) Q(Lε0,n) = Md(F)

where d ∈ N, the PI degree of Q(Lε0,n), is given by d2 = [Q(Lε0,n) : Q(Z(Lε0,n))]. Therefore

d2 =
[Q(Lε0,n) : Q(Z0(Lε0,n))]

[Q(Z(Lε0,n)) : Q(Z0(Lε0,n))]
= l2Nn

where we use Theorem 4.7 and Lemma 5.2, and we recall that dimg = m+ 2N . 2

Let us recall for the sake of clarity different notions of ring theory, bearing in mind that
we will apply them to the case where A = Lε0,n. Let A be a ring with no non-trivial zero
divisors. The center Z = Z(A) is a commutative integral domain. Denote by Q(Z) its field
of fractions, and let

Q(A) = Q(Z)⊗Z A.
It is an algebra over its center Q(Z).

An element a ∈ A is integral over Z if Z[a] is a finitely generated Z-module. A is integral
over Z if every element of A is integral over Z. An element a ∈ A is c-integral over Z if
Z[a] is contained in a finitely generated Z-module. A is c-integral over Z if every element of
A is c-integral over Z. When Z is a Noetherian ring these two notions are equivalent ([69],
Lemma 5.3.2).

If Q(A) has finite dimension over Q(Z), it is a division algebra and therefore a central
simple algebra. Moreover Q(A) is integral over Q(Z).

There are different notions of orders, that are equivalent in our context. Let B ⊂ Q(A) be
a subring. B is said to be an order of Q(A) ([69], 3.1.2) if every element q of Q(A) can be
written as q = rs−1 = s′−1r′, where r, s, r′, s′ ∈ B. In particular, A is an order of Q(A) and
s, s′ can in this case be chosen in Z. B is a classical order of Q(A) ([69], 5.3.5) if Z ⊂ B,
Q(Z)B = Q(A), and B is finitely generated as a Z-module. In particular, if A is a finitely
generated Z-module then A is a classical order of Q(A). Finally, B is a Z-order of Q(A)
([69], 5.3.6) if Z ⊂ B, Q(Z)B = Q(A) and B is c-integral over Z.

We now assume that Z is Noetherian and Q(A) is of finite dimension over Q(Z). Let B
be a subring of Q(A) having center Z(B) = Z(A) = Z. Then the following assertions are
equivalent:

(1) B is an order of Q(A);
(2) B is a classical order of Q(A);
(3) B is a Z-order of Q(A).

Indeed, from the definitions we trivially have (2) ⇒ (3). From the Noetherianity of Z,
Proposition 5.3.14 of [69] gives (3) ⇒ (2). Because Q(A) is a central simple algebra, the
equivalence (1)⇔ (3) is part of Proposition 5.3.10 of [69].
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In particular, because A is always an order of Q(A) these equivalences imply that A
is a classical order, whence a finitely generated Z-module. Moreover A is Noetherian by
Proposition 5.3.14 of [69].

There are two standard notions of maximality for Z-orders B of Q(A). One applies strictly
to Z-orders ([69], 5.3.13): namely, a Z-order B of Q(A) is a maximal Z-order if B ⊂ C with
C a Z-order implies B = C. The other notion of maximality applies to arbitrary orders of
Q(A) (see [69], 5.1.1); when B is a Z-order with center Z, B is a maximal Z-order if and
only if it is maximal in this latter sense.

If A is a maximal order, then Z contains all the c-integral elements over it, ie. Z is c-
integrally closed ([69], 5.3.13). Since Z is Noetherian, it is then integrally closed (in the usual
sense, see [69], Lemma 5.3.2), and by [71], Theorem 10.1, it therefore coincides with the trace
ring of A (ie. the subring of Q(Z) generated over Z by the coefficients of the characteristic
polynomials of elements of A, represented by left multiplication as elements of the matrix
algebra Q(A)⊗Z F, where F is a splitting field of Q(A)).

Finally, we say that A is DCK-integrally closed if the following condition holds: for every
subring R of Q(A) such that A ⊂ R ⊂ z−1A for some non zero z ∈ Z(A), we have R = A. We
borrow this notion from [38]; it is closely related to that of fractional ideal of Q(A) (see [69],
3.1.11-3.1.12 and 5.1.4), but simpler. Its relevance comes from the following lemma, which
shows that in the commutative and Noetherian case it is equivalent to the usual definition of
integrally closure.

Lemma 5.4. Let B be a commutative Noetherian ring with no non-trivial zero divisors.
Then B is integrally closed in Q(B) if and only if B is DCK-integrally closed.

Proof. Assume B is DCK-integrally closed. Let x = b/c ∈ Q(B) be integral over B. Denote
by n the degree of its minimal polynomial over B. The ring R = B[x] is contained in c−nB,
so R = B and x ∈ B. (Note that this does not need B Noetherian.)

Conversely, let R be a subring of Q(B) such that B ⊂ R ⊂ z−1B, and let x ∈ R. Then
M = B[x] is a B-submodule of Q(B) such that xM ⊂M . It is also a B-submodule of z−1B,
which is free with basis z−1 over B. Since B is Noetherian, z−1B is a Noetherian B-module,
and therefore M is a finite B-module. It follows that x is integral over B (Proposition 5.1 of
[7]), whence x ∈ B. 2

Lemma 5.5. Assume that A is a ring with no non-trivial zero divisors, with center Z Noe-
therian and such that Q(A) has finite dimension over Q(Z). Then A is DCK-integrally closed
if and only if A is a maximal order.

Proof. Assume that A is DCK-integrally closed. Let B a Z-order of Q(A) such that A ⊂ B,
and let b ∈ B. Since b is c-integral over Z and Z is Noetherian, b is integral and thus A[b]
is a finitely generated A-module. Let ei = ai/zi ∈ Q(A), zi ∈ Z and i = 1, . . . , n, be the
generators of A[b]. We have A[b] ⊂ z−1A with z =

∏n
i=1 zi. Therefore A[b] = A, whence

b ∈ A. This proves that A is a maximal order.
Conversely, assume that A is maximal order, and let B be a subring of Q(A) such that

A ⊂ B ⊂ z−1A. Since A is a finitely generated Z-module, B is contained in a finitely
generated Z-module, which is necessarily a Noetherian Z-module because Z is Noetherian.
Therefore B is a finitely generated Z-module. As clearly Z ⊂ B and Q(Z)B = Q(A), it is
in fact a classical order of Q(A). Because A is maximal, we have A = B, which proves A is
DCK-integrally closed. 2

Theorem 5.6. Lε0,n is a maximal order of Q(Lε0,n).

Proof. We derive the result by “twisting” the analogous statement for Oε, obtained in
Theorem 7.4 of [42]. We have already proved that Lε0,n satisfies the hypothesis on A in
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Lemma 5.5. So let R ⊂ Q(Lε0,n) be a subring such that Lε0,n ⊂ R ⊂ x−1Lε0,n for some non

zero x ∈ Z0(Lε0,n). We have to show that Lε0,n = R. We know Lε0,n = O⊗nε as Z0(Lε0,n)-

modules (Proposition 4.2 (1)), so x−1Lε0,n = x−1 ?O⊗nε . Also, the product of R is inherited

from that of Lε0,n (for, given r1, r2 ∈ R we have r1r2 = x−2(xr1)(xr2)), and the latter

is defined from the one of O⊗nε by two consecutive twists (see the formulas (3) and (6)).
Therefore, by applying the inverse twists on the inclusions Lε0,n ⊂ R ⊂ x−1Lε0,n we get

O⊗nε ⊂ R′ ⊂ x−1 ? O⊗nε where R′ is the vector space R endowed with the ring structure
inherited from O⊗nε . Now O⊗nε = Oε(Gn) is a maximal order of Q(Oε(Gn)) by Theorem 7.4
in [42]. Therefore O⊗nε = R′, and finally Lε0,n = R. 2

Corollary 5.7. The ring Z(Lε0,n) is integrally closed and coincides with the trace ring of

Lε0,n. Moreover Z(Lε0,n) = Z(Lε0,1)⊗n, and it is a free Z0(Lε0,n)-module of rank lmn.

Proof. The first two claims follow from the last theorem and the discussion before Lemma
5.4. The third follows from the proof of Proposition 5.2 (ie. the inclusion Z(Lε0,n) ⊃
Z(Lε0,1)⊗n, and the fact that both rings have quotient fields of the same degree lmn over
Q(Z0(Lε0,n))). Finally, it is enough to show the last claim for n = 1. Denote by tred : Q(Lε0,1)→
Q(Z(Lε0,1)) the reduced trace map of the central simple algebra Q(Lε0,1) (see eg. [71], Section
9). Because Z(Lε0,1) is the trace ring of Lε0,1, we have Z(Lε0,1) = tred(Lε0,1). Trivially the
inclusion map i : Z(Lε0,1)→ Q(Lε0,1) satisfies tred ◦ i = id, so Z(Lε0,1) is a direct summand of
Lε0,1 as a Z0(Lε0,1)-module. But Lε0,1 is free over Z0(Lε0,1), so Z(Lε0,1) is a projective Z0(Lε0,1)-
module. Arguing as in Theorem 4.7, one deduces that the module is free. The rank is, again,
given by Proposition 5.2. 2

A proof of Theorem 5.6 independent of Theorem 7.4 of [42] seems to be difficult for arbitrary
g, even for n = 1. In the case of L0,1(sl(2)) we can however apply a similar reasoning. Let
us explain the details.

Identify Z0(Lε0,1(sl(2)) with O(SL2) as described in Lemma 4.4 and before Lemma 4.3.

We proceed in two steps : (a) we show that Lε0,1(sl(2))[d−l] and Lε0,1(sl(2))[b−l] are maximal
orders, (b) from this we deduce the result.

As for (a), recall that Lε0,1(sl(2))[d−l] ∼= U lfε (sl(2))[`l]. We have U lfε (sl(2))[`l] = Uadε (sl(2)),
which is a maximal order by Theorem 1.8 of [38]. Using (44) one computes easily that

Lε0,1(sl(2))[b−l] is generated by ω, b±1 and d, with defining relations: ω is central, db = q2bd.

Therefore Lε0,1(sl(2))[b−l] is the tensor product of C[ω] with a quasi-polynomial algebra. The
l-th powers of d, b are central, and C[ω] is integrally closed, so by a direct application of

Proposition 1.8 of [38] it follows that Lε0,1(sl(2))[b−l] is a maximal order.
Let us now deduce that Lε0,1(sl(2)) is a maximal order. Let x ∈ Z0(Lε0,1(sl(2)) and R a

subring of Q(Lε0,1(sl(2))) such that Lε0,1(sl(2)) ⊂ R ⊂ x−1Lε0,1(sl(2)). Let y ∈ R. Because

Lε0,1(sl(2))[d−l] is maximal, we have Lε0,1(sl(2))[d−l] = R[d−l]. So ydl.nd ∈ Lε0,1(sl(2)) for some

non negative integer nd. Similarly, ybl.nb ∈ Lε0,1(sl(2)) for some non negative integer nb. Now,

note that dl�tw = bl. Consider the open subsets U(dl) and U(bl) of SL2 consisting of matrices
with non vanishing lower right entry and non vanishing upper right entry, respectively. As
in the proof of Theorem 4.7 we have Maxspec(Z0(Lε0,1(sl(2))) = SL2 = U(dl) ∪ U(bl). Since

U(dl) = U(dl.nd), U(bl) = U(bl.nb), likewise Maxspec(Z0(Lε0,1(sl(2))) = U(dl.nd) ∪ U(bl.nb).

This implies that the ideal of Z0(Lε0,1(sl(2))) generated by dl.nd and bl.nb is Z0(Lε0,1(sl(2)))

itself; hence there are elements ud, ub ∈ Z0(Lε0,1(sl(2))) such that udd
l.nd + ubb

l.nb = 1, which

proves y = udd
l.ndy + ubb

l.nby ∈ Lε0,1(sl(2)). This concludes the proof that Lε0,1(sl(2)) is a
maximal order.
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Proof of Theorem 1.3 (2) and (3). Denote by ∆(n) : Oε → O⊗nε , n ≥ 2, the n-

fold coproduct, that is ∆(n) := (id ⊗ ∆) ◦ ∆(n−1) for n ≥ 3, and ∆(2) := ∆, the standard

coproduct of Oε. Identifying Lε0,n with O⊗nε as a vector space, we consider ∆(n) as a map

∆(n) : Lε0,1 → Lε0,n. It is an algebra morphism ([28], Proposition 6.16), injective because

(ε⊗(n−1) ⊗ id)∆(n) = id. Then it extends uniquely to the fraction algebra Q(Lε0,1). As noted
above Q(Lε0,1) = Q(Z0(Lε0,1))⊗Z0(Lε0,1) Lε0,1. Since Z0(Lε0,1) = Z0(Oε) is a Hopf subalgebra of

Oε ([42], Proposition 6.4), ∆(n) maps Z0(Lε0,1) to Z0(Lε0,1)⊗n. Then, extending the scalars of

∆(n)(Q(Lε0,1)) by the field Q(Z(Lε0,n)), consider

Q(∆(n)(Lε0,1)) := Q(Z(Lε0,n))⊗∆(n)(Z0(Lε0,1)) ∆(n)(Lε0,1)

= Q(Z(Lε0,n))⊗∆(n)(Q(Z0(Lε0,1))) ∆(n)(Q(Lε0,1))

=
(
Q(Z(Lε0,n))⊗∆(n)(Q(Z0(Lε0,1))) ∆(n)(Q(Z(Lε0,1)))

)
⊗∆(n)(Q(Z(Lε0,1))) ∆(n)(Q(Lε0,1)).

By Proposition 5.3 the right factor is a ∆(n)(Q(Z(Lε0,1)))-central simple algebra. The left
factor is a field and is equal to

Q̃(Z(Lε0,n)) := Q(Z(Lε0,n))⊗∆(n)(Z0(Lε0,1)) ∆(n)(Z(Lε0,1))

for it containsQ(Z(Lε0,n)), it is contained in its fraction field, and Q̃(Z(Lε0,n)) is a field because

Z(Lε0,1) is finite over Z0(Lε0,1) and has no non trivial zero divisors. Therefore Q(∆(n)(Lε0,1)) is

a central simple algebra over Q̃(Z(Lε0,n)) (see eg. [72], Theorem 1.7.27, or [79], Lemma 4.9).

We proved in Proposition 6.17 of [28] that the ring (LA0,n)UA is the centralizer of ∆(n)(LA0,1)

in LA0,n; the same arguments show that (Lε0,n)Uε is the centralizer of ∆(n)(Lε0,1) in Lε0,n, so

Q((Lε0,n)Uε) := Q(Z(Lε0,n)) ⊗Z(Lε0,n) (Lε0,n)Uε is the centralizer of Q(∆(n)(Lε0,1)) in Q(Lε0,n).

Then the double centralizer theorem (see eg. [72], Theorem 7.1.9, or [79], Theorem 7.1)

implies that Q((Lε0,n)Uε) is a simple algebra, with dimension

[Q((Lε0,n)Uε) : Q(Z(Lε0,n))] =
[Q(Lε0,n) : Q(Z(Lε0,n))]

[Q(∆(n)(Lε0,1)) : Q(Z(Lε0,n))]
= l2nN−(2N+m),

and the centralizer of Q((Lε0,n)Uε) is Q(∆(n)(Lε0,1)). In particular Q((Lε0,n)Uε) has center

Q̃(Z(Lε0,n)) = Q((Lε0,n)Uε) ∩Q(∆(n)(Lε0,1)). It then follows

[Q((Lε0,n)Uε) : Q̃(Z(Lε0,n))] =
[Q((Lε0,n)Uε) : Q(Z(Lε0,n))]

[Q̃(Z(Lε0,n)) : Q(Z(Lε0,n))]

= l2nN−(2N+m).l−m = l2(N(n−1)−m).

Therefore Q((Lε0,n)Uε) is a central simple algebra of PI degree lN(n−1)−m. Next, consider

the centralizer of Q̃(Z(Lε0,n)) in Q(Lε0,n). It is a Q̃(Z(Lε0,n))-central simple algebra of di-

mension l2nN−2m over Q̃(Z(Lε0,n)), whence l2nN−2m.lm = l2nN−m over Q(Z(Lε0,n)), and

it may be identified with Q(∆(n)(Lε0,1)) ⊗Q̃(Z(Lε0,n)) Q((Lε0,n)Uε) by using the product map

m : Q(∆(n)(Lε0,1)) ⊗Q̃(Z(Lε0,n)) Q((Lε0,n)Uε) → Q(Lε0,n) (see the proof of [72], Theorem 7.1.9

(i)). Being a simple algebra, it has a unique simple (left) module up to isomorphisms. Be-
ing a division algebra, it has no non trivial primitive idempotent, so this simple module is
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Q(∆(n)(Lε0,1)) ⊗Q̃(Z(Lε0,n)) Q((Lε0,n)Uε) with its left regular action. Moreover, the left regu-

lar action on Q(Lε0,n) is completely reducible. The above computation of dimension over

Q(Z(Lε0,n)) then yields the following decomposition into simple left Q(∆(n)(Lε0,1))⊗Q̃(Z(Lε0,n))

Q((Lε0,n)Uε)-modules,

(48) Q(Lε0,n) ∼=
(
Q(∆(n)(Lε0,1))⊗Q̃(Z(Lε0,n)) Q((Lε0,n)Uε)

)⊕lm
.

The product map m : Q(∆(n)(Lε0,1)) ⊗Q̃(Z(Lε0,n)) Q((Lε0,n)Uε) → Q(Lε0,n) gives one summand,

and it is the localisation by Z(Lε0,n) of the inclusion ∆(n)(Lε0,1)⊗∆(n)(Z(Lε0,1)) (Lε0,n)Uε → Lε0,n,

for we have

Q(∆(n)(Lε0,1))⊗Q̃(Z(Lε0,n)) Q((Lε0,n)Uε)

=
(
Q(Z(Lε0,n))⊗∆(n)(Z0(Lε0,1)) ∆(n)(Lε0,1)

)
⊗Q̃(Z(Lε0,n))

(
Q(Z(Lε0,n))⊗Z(Lε0,n) (Lε0,n)Uε

)
= Q(Z(Lε0,n))⊗Z(Lε0,n)

(
∆(n)(Lε0,1)⊗∆(n)(Z(Lε0,1)) (Lε0,n)Uε

)
.

Now, by the Skolem-Noether theorem (eg. in the form of [72], Theorem 7.1.10, or [5], Theorem
III.3.1) any summand of (48) is related to Im(m) by an inner automorphism of Q(Lε0,n),

x 7→ uxu−1, where clearly one may take u in Lε0,n. Then we have an embedding of left

(∆(n)(Lε0,1)⊗∆(n)(Z(Lε0,1)) (Lε0,n)Uε)-modules,

(49) m̃ :
(

∆(n)(Lε0,1)⊗∆(n)(Z(Lε0,1)) (Lε0,n)Uε
)⊕lm

→ Lε0,n

made componentwise of m and these inner automorphisms. We claim m̃ is an isomor-
phism. Indeed, consider the source and target as Z(Lε0,n)-modules, and the quotient module
Lε0,n/Im(m̃). We have

Q(Z(Lε0,n))⊗Z(Lε0,n) (Lε0,n/Im(m̃)) = Q(Lε0,n)/(Q(Z(Lε0,n))⊗Z(Lε0,n) Im(m̃)) = 0

by (48), and therefore Lε0,n/Im(m̃) = 0 (see eg. [7], Corollary 3.4 and Proposition 3.5 and
3.8). Because Z(Lε0,1) is a direct summand of Lε0,1 (see the proof of Corollary 5.7), we can

decompose ∆(n)(Lε0,1) ⊗∆(n)(Z(Lε0,1)) (Lε0,n)Uε = 1 ⊗ (Lε0,n)Uε ⊕ ∆(n)(M) ⊗ (Lε0,n)Uε for some

Z0(Lε0,1)-submodule M of Lε0,1. This, (49) and Theorem 4.7 (Lε0,n is free over Z0(Lε0,n)) then

imply that (Lε0,n)Uε is a projective Z0(Lε0,n)-module, and the arguments in the proof (ie. [10]

plus [68]) eventually show that (Lε0,n)Uε is a free Z0(Lε0,n))-module. Denoting by r the rank

of (Lε0,n)Uε over Z0(Lε0,n), we deduce ln.dimg = lm.l2N .r, whence r = l(n−1).dimg.

Finally we prove that (Lε0,n)Uε is a maximal order of Q((Lε0,n)Uε). We use Lemma 5.5. Let

B ⊂ Q((Lε0,n)Uε) a subring such that (Lε0,n)Uε ⊂ B ⊂ z−1(Lε0,n)Uε for some non zero element

z ∈ Z(Lε0,n). We have to show B ⊂ (Lε0,n)Uε . Because of (47) we can as well assume that
z ∈ Z0(Lε0,n). Then (49), thought as an identification, yields inclusions (in Q(Lε0,n)):

Lε0,n ⊂
(

∆(n)(Lε0,1)⊗∆(n)(Z(Lε0,1)) B
)⊕lm

⊂ z−1Lε0,n.

By Theorem 5.6, in such a situation we have Lε0,n = (∆(n)(Lε0,1) ⊗∆(n)(Z(Lε0,1)) B)⊕l
m

. The

summands must be the simple components of Lε0,n, so necessarily ∆(n)(Lε0,1)⊗∆(n)(Z(Lε0,1))B =

∆(n)(Lε0,1)⊗∆(n)(Z(Lε0,1)) (Lε0,n)Uε , and therefore B ⊂ (Lε0,n)Uε . This concludes the proof. 2
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6. Appendix

6.1. Quantum Weyl group. We recall some of the formulas of [32]. Let eq(z) be the formal
power series in z with coefficients in C(q) defined by:

(50) eq(z) =
+∞∑
n=0

zn

(n)q
.

We first consider the case of g = sl(2). As explained in [28], Section 3, the Cartan element

H ∈ g defines an element of Uq(sl(2)). Viewed as elements of Uq we have L = qH/2. The

series Θ = qH⊗H/2 defines an element of Uq(sl(2))⊗̂2, its image under multiplication being

qH
2/2. The R-matrix can be expressed as R = ΘR̂ where R̂ = eq−1((q− q−1)E ⊗F ) is a well

defined element of U⊗̂2
q . Consider the Lusztig [60] braid group automorphism of Uq(sl(2)),

defined by

(51) T (L) = L−1, T (E) = −FK−1, T (F ) = −KE.

For every x ∈ Uq(sl(2)) it satisfies:

(52) ∆(T (x)) = R̂−1(T ⊗ T )(∆(x))R̂

Define the quantum Weyl group element ŵ ∈ Uq(sl(2)) by Saito’s formula [74]:

(53) ŵ = eq−1(F )q−H
2/4eq−1(−E)q−H

2/4eq−1(F )q−H/2.

For every x ∈ Uq(sl(2)) it satisfies:

T (x) = ŵxŵ−1,(54)

∆(ŵ) = R̂−1(ŵ ⊗ ŵ),(55)

ŵ2 = qH
2/2ξθ,(56)

where θ ∈ Uq(sl(2)) is the ribbon element, and ξ ∈ Uq(sl(2)) is the central group element
whose value on the type 1 simple module X of Uq(sl(2)) of dimension k + 1 is the scalar

endomorphism (−1)kidX .
In order to compare our setting to the one of [42] we need an explicit formula of ŵ. Consider

the type 1 simple module Vr+1 of dimension r + 1, and its basis vectors v0, . . . , vr such that:

K.vj = εr−2jvj ,
F.vj = vj+1 if j < r, F.vr = 0,
E.vj = [j]ε[r − j + 1]εvj−1 if j > 0, E.v0 = 0.

Setting v′j = vj/[j]! and using (51), (54) and (56), we obtain:

(57) ŵv′j = (−1)jq−j(k−j−1)−kv′k−j .

In [42] another quantum Weyl group element w is defined. It is dual to the Vaksman-
Soibelman functional t : Oq(SL2) → C(q) of [77, 76], so t(α) = 〈α,w〉, α ∈ Oq(SL2). By
comparing (57) with the formulas defining the action of t in Section 1.7 of [42], we find

w = ξŵK

and the basis vectors wpr of [42] are related to the vectors v′j above as follows:

v′j = λjw
p
r
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where k = 2p, j = p− r, λ0 = 1, λ1 = [k]q−k, and

λj =
[k]!

[j]![k − (j − 2)]!
qj(j+1)−j(k+2), j ≥ 2.

Explicit formulas of the evaluation of t on basis vectors of Oq(SL2) can be computed. We
get:

t(ã?m ? b̃?n ? d̃?p) = δm,pq
−np

p∏
i=1

(1− q−2i),(58)

t(ã?m ? c̃?n ? d̃?p) = (−1)nδm,pq
−n(p+1)

p∏
i=1

(1− q−2i)(59)

where

(60) ã = a , b̃ = qb , c̃ = q−1c , d̃ = d

and as usual a, b, c, d are the standard generators of Oq(SL2), ie. the matrix coefficients in
the basis of weight vectors v0, v1 = F.v0 of the 2-dimensional irreducible representation V2 of
Uq(sl(2)). Here we have introduced the generators ã, . . . , d̃ to facilitate the comparison with
the formulas in [42]; these generators come naturally in their setup because they use different
generators Ei and Fi of Uq(g), which in our notations can be written respectively as K−1

i Ei
and FiKi.

The formulas (58)-(59) can be shown by two independent methods. The first uses a
definition of t as a GNS state associated to an infinite dimensional representation of Oq(SL2),
as recalled in Section 1.6 of [42]. The second is to write eg.

(61) t(ã?m ? b̃?n ? d̃?p) =
〈
ã⊗m ⊗ b̃⊗n ⊗ d̃⊗p,∆(m+n+p−1)(w)

〉
and to use explicit expressions of ∆(m+n+p−1)(w) when represented on V

⊗(m+n+p)
2 . In general

one can check that

(62) ∆(n)(ω̂) =
(

∆(n−1) ⊗ id
)(

R̂−1
)((

∆(n−2) ⊗ id
)(

R̂−1
)
⊗ id

)
. . .
(

(∆⊗ id)
(
R̂−1

)
⊗ id⊗(n−3)

)(
R̂−1 ⊗ id⊗(n−2)

)
ω̂⊗n.

By (57) or (58)-(59) we see that ŵ (or w) and t are well-defined on the integral forms,

ŵ ∈ UΓ , t : OA(SL2)→ A.

We now consider the case where g is of rank m ≥ 2. To each simple root αi, 1 ≤ i ≤ m,
it is associated the subalgebra of Uq generated by Ei, Fi, Li, L

−1
i . It is a copy of Uqi(sl(2)),

where qi = qdi . Let ŵi be the corresponding quantum Weyl group element in Uq = Uq(g),
defined by Saito’s formula (53), replacing H, E, F by Hi, Ei and Fi. Also, denote by
νi : Oq → Oqi(SL2) the projection map dual to the inclusion Uqi(sl(2)) ⊗C(qi) C(q) ↪→ Uq
associated to αi, and put ti = t ◦ νi. Let wi be the corresponding quantum Weyl group
element in Uq, ie. ti(α) = 〈α,wi〉 for all α ∈ Oq. On integral forms they yield well-defined
elements ŵi, wi ∈ UΓ and ti : OA → A (see [42], Proposition 5.1). They satisfy the defining
relations of the braid group B(g) of g [55]:

ŵiŵjŵi = ŵjŵiŵj if aijaji = 1

(ŵiŵj)
k = (ŵjŵi)

k for k = 1, 2, 3 if aijaji = 0, 2, 3

and similarly by replacing ŵi with wi, or with ti (see [76] for the latter). The Weyl group
W = W (g) = N(TG)/TG is generated by the reflexions si associated to the simple roots αi.
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Denote by ni ∈ N(TG) a representative of si. Let w ∈ W and denote by w = si1 . . . sik
a reduced expression. Because of the braid group relations the elements ŵ = ŵi1 . . . ŵik ,
w = wi1 . . . wik and the functional tw = ti1 . . . tik do not depend on the choice of reduced
expression. The Lusztig [60] braid group automorphism Tw : Γ→ Γ associated to w satisfies
(see [42]):

Tw(x) = ŵxŵ−1, x ∈ Γ.

Let w0 be the longest element in W . We have

(63) ∆(ŵ0) = R̂−1(ŵ0 ⊗ ŵ0)

where as usual R = ΘR̂.

6.2. Regular action on Oε. The following result is proved in Section 1.10 of [42]. For
completeness let us give a (different) proof. Recall from (25) that we may identify Z0(Oε)
with O(G).

Proposition 6.1. For every f ∈ Z0(Oε), g ∈ Oε we have

ti(f) = f(ni)(64)

ti(f ? g) = ti(f)ti(g).(65)

Proof. It is sufficient to prove the results for SL2 because νi : Oε → Oε(SL2) is a morphism
of Hopf algebras and νi(Z0(Oε)) ⊂ Z0(Oε(SL2)). In this case (64) can be proved by using
(58)-(59), evaluating t on basis elements of Z0(Oε(SL2)) as is done in Lemma 1.5 (a) of [42].
Such a basis is formed by monomials like in (58)-(59), with all exponents divisible by l; then
for instance

t(ã?ml ? b̃?nl ? d̃?pl) = δp,0δm,0 = ambndp(n)

where a, . . . , d are the generators of O(G) = O1(G) corresponding to a, . . . , d, and we take

n =

(
0 1
−1 0

)
as representative of the reflexion s generating the Weyl group W (sl(2)). Here is an alternative
proof of (64): (65) shows that t is a homomorphism on Z0(Oε(SL2)), so by proving (65) at

first one is reduced to check (64) on the generators a?l, . . . , d?l, which is easy by means of
(61) and (63).

We provide a proof of (65) that we find more conceptual than the one in Lemma 1.5 (b)
of [42] (which uses again (58)-(59)). As above let us denote w = ξŵK. For any f, g ∈ Oε we
have

t(f ? g) = (f ⊗ g)(∆(w))

= (f ⊗ g)
(
R̂−1(w ⊗ w)

)
=
∑

(R̂−1)

f
(

(R̂−1)(1)w
)
g
(

(R̂−1)(2)w
)

=
∑

(R̂−1),(f)

f(1)

(
(R̂−1)(1)

)
f(2)(w) g

(
(R̂−1)(2)w

)
=
∑
(f)

f(2)(w) g
(

(f(1) ⊗ id)(R̂−1)w
)
.
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Assume now f ∈ Z0(Oε(SL2)). Since Z0(Oε(SL2)) is a Hopf subalgebra of Oε(SL2) we have
f(1) ∈ Z0(Oε(SL2)). From Theorem 2.15 (2) we deduce

(f(1) ⊗ id)(R̂−1) ∈ Uε(n−) ∩ Z0(Uε).

Denote by z this element. Note that from its expression we have ε(z) = ε(f(1)). Now
g(zw) =

∑
(g) g(1)(z)g(2)(w), but g(1) is a linear combination of matrix elements of Γ-modules,

on which Z0(Uε) acts by the trivial character. Therefore

g(zw) =
∑

(g) ε(z)g(1)(1)g(2)(w) = ε(z)g(w) = ε(f(1))g(w)

and eventually

t(f ? g) =
∑
(f)

f(2)(w)ε(f(1))g(w) = t(f)t(g).

This concludes the proof. 2

For the sake of completeness, let us show how this result implies:

Proof of Proposition 2.16 (ie. Proposition 7.1 of [42]). We have f � ti =
∑

(f) ti(f(1))f(2),

f ∈ Z0(Oε). Since Z0(Oε) is a Hopf subalgebra of Oε, f(2) ∈ Z0(Oε) and therefore the maps
�ti : Oε → Oε preserve Z0(Oε). Moreover, (f � ti)(a) =

∑
(f) f(1)(ni)f(2)(a) = f(nia), a ∈ G,

by (64).
It remains to show that (f ? α) � ti = (f � ti)(α � ti) for every f ∈ Z0(Oε), α ∈ Oε. We

have

(f ? g) � ti =
∑

(f?g) ti
(
(f ? g)(1)

)
(f ? g)(2) =

∑
(f),(g)

ti
(
f(1) ? g(1)

)
f(2) ? g(2)

=
∑

(f),(g)

t
(
νi(f(1))νi(g(1))

)
f(2) ? g(2)

=
∑

(f),(g)

t
(
νi(f(1))

)
t
(
νi(g(1))

)
f(2) ? g(2)(66)

using that νi is a homomorphism in the third equality, and (65) in the last one. The result
is just (f � ti)(g � ti). 2

References

[1] A. Yu. Alekseev, Integrability in the Hamiltonian Chern-Simons theory, Alg. i Anal. 6 (2) (1994) 53–66
[2] A. Y. Alekseev, H. Grosse, V. Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons

theory I, Comm. Math. Phys. 172 (1995) 317–358
[3] A. Y. Alekseev, H. Grosse, V. Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons

theory II, Comm. Math. Phys. 174 (1996) 561–604
[4] A.Y. Alekseev, V.Schomerus, Representation theory of Chern-Simons observables, Duke Math. J. 85

(1996), 447-510
[5] M. Artin, Non Commutative Rings, MIT class notes, http://www-math.mit.edu/∼etingof/18.706.html
[6] N. Andruskiewitsch, G. A. Garcia, Quantum subgroups of a simple quantum group at roots of 1, Comp.

Math. 145 (2009), 476–500
[7] M. F. Atiyah, I.G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley (1969)
[8] A. Y. Alekseev, V. Schomerus, Representation theory of Chern-Simons observables, Duke Math. J. 28 (2)

(1996) 447–510
[9] S. Baseilhac, Quantum coadjoint action and the 6j-symbols of Uq sl(2), in ”Interactions between Hy-

perbolic Geometry, Quantum Topology and Number Theory”, AMS Cont. Math. Proc. Ser. 541 (2011)
103–144

[10] H. Bass, Algebraic K-theory, W.A. Benjamin Inc. (1968)
[11] P. Baumann, Another proof of Joseph and Letzter’s separation of variables theorem for quantum groups,

Transf. Groups 5 (1) (2000) 3–20
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Bull. Soc. Math. France 122(4) (1994) 443–485

[47] M. Faitg, Mapping class groups, skein algebras and combinatorial quantization, arXiv:1910.04110

[math.QA], PhD Thesis, Université de Montpellier (2019)
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