Unrestricted quantum moduli algebras, II: noetherianity and simple fraction rings at roots of 1 - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Unrestricted quantum moduli algebras, II: noetherianity and simple fraction rings at roots of 1

Philippe Roche

Résumé

We prove that the quantum graph algebra and the quantum moduli algebra associated to a punctured sphere and complex semisimple Lie algebra $\mathfrak{g}$ are Noetherian rings and finitely generated rings over $\mathbb{C}(q)$. Moreover, we show that these two properties still hold on $\mathbb{C}[q, q^{−1}]$ for the integral version of the quantum graph algebra. We also study the specializations $\mathcal{L}_{0,n}^\epsilon$ of the quantum graph algebra at a root of unity $\epsilon$ of odd order, and show that $\mathcal{L}_{0,n}^\epsilon$ and its invariant algebra under the quantum group $U_\epsilon(\mathfrak{g})$ have classical fraction algebras which are central simple algebras of PI degrees that we compute.
Fichier principal
Vignette du fichier
2MODULI_V3_ArXiv.pdf (799.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03265204 , version 1 (19-06-2021)
hal-03265204 , version 2 (03-09-2021)
hal-03265204 , version 3 (15-10-2023)
hal-03265204 , version 4 (30-01-2024)
hal-03265204 , version 5 (06-06-2024)

Identifiants

  • HAL Id : hal-03265204 , version 3

Citer

Stéphane Baseilhac, Philippe Roche. Unrestricted quantum moduli algebras, II: noetherianity and simple fraction rings at roots of 1. 2023. ⟨hal-03265204v3⟩
104 Consultations
115 Téléchargements

Partager

More