Rate of convergence for particle approximation of PDEs in Wasserstein space * - Archive ouverte HAL
Article Dans Une Revue Journal of Applied Probability Année : 2022

Rate of convergence for particle approximation of PDEs in Wasserstein space *

Résumé

We prove a rate of convergence for the $N$-particle approximation of a second-order partial differential equation in the space of probability measures, like the Master equation or Bellman equation of mean-field control problem under common noise. The rate is of order $1/N$ for the pathwise error on the solution $v$ and of order $1/\sqrt{N}$ for the $L^2$-error on its $L$-derivative $\partial_\mu v$. The proof relies on backward stochastic differential equations techniques.
Fichier principal
Vignette du fichier
MKV-particle-last.pdf (224.21 Ko) Télécharger le fichier
Meanfield_referencesbis.bib (43.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03154021 , version 1 (26-02-2021)
hal-03154021 , version 2 (24-06-2021)
hal-03154021 , version 3 (16-11-2021)

Identifiants

Citer

Maximilien Germain, Huyên Pham, Xavier Warin. Rate of convergence for particle approximation of PDEs in Wasserstein space *. Journal of Applied Probability, In press, 59 (4). ⟨hal-03154021v3⟩
277 Consultations
150 Téléchargements

Altmetric

Partager

More