Rate of convergence for particle approximation of PDEs in Wasserstein space * - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Rate of convergence for particle approximation of PDEs in Wasserstein space *

Résumé

We prove a rate of convergence for the $N$-particle approximation of a second-order partial differential equation in the space of probability measures, like the Master equation or Bellman equation of mean-field control problem under common noise. The rate is of order $1/N$ for the pathwise error on the solution $v$ and of order $1/\sqrt{N}$ for the $L^2$-error on its $L$-derivative $\partial_\mu v$. The proof relies on backward stochastic differential equations techniques.
Fichier principal
Vignette du fichier
MKV-particle-rev2.pdf (219.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03154021 , version 1 (26-02-2021)
hal-03154021 , version 2 (24-06-2021)
hal-03154021 , version 3 (16-11-2021)

Identifiants

  • HAL Id : hal-03154021 , version 2

Citer

Maximilien Germain, Huyên Pham, Xavier Warin. Rate of convergence for particle approximation of PDEs in Wasserstein space *. 2021. ⟨hal-03154021v2⟩
277 Consultations
150 Téléchargements

Partager

More