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Rate of convergence for particles approximation of

PDEs in Wasserstein space ∗

Maximilien Germain † Huyên Pham ‡ Xavier Warin §

June 24, 2021

Abstract

We prove a rate of convergence for the N -particle approximation of a second-order
partial differential equation in the space of probability measures, like the Master equa-
tion or Bellman equation of mean-field control problem under common noise. The rate
is of order 1/N for the pathwise error on the solution v and of order 1/

√
N for the

L2-error on its L-derivative ∂µv. The proof relies on backward stochastic differential
equations techniques.

1 Introduction

Let us consider the second-order parabolic partial differential equation (PDE) on the
Wasserstein space P2(R

d) of square-integrable probability measures on R
d, in the form:

{
∂tv +H(t, µ, v, ∂µv, ∂x∂µv, ∂

2
µv) = 0, (t, µ) ∈ [0, T )× P2(R

d),

v(T, µ) = G(µ), µ ∈ P2(R
d).

(1.1)

Here, ∂µv(t, µ) is the L-derivative on P2(R
d) (see [CD18a]) of µ 7→ v(t, µ), and it is a function

from R
d into R

d, ∂x∂µv(t, µ) is the usual derivative on R
d of x ∈ R

d 7→ ∂µv(t, µ)(x) ∈ R
d,

hence valued in R
d×d the set of d × d-matrices with real coefficients, and ∂2

µv(t, µ) is the

L-derivative of µ 7→ ∂µv(t, µ)(.), hence a function from R
d×R

d into R
d×d. The terminal

condition is given by a real-valued function G on P2(R
d), and the Hamiltonian H of this

PDE is assumed to be in semi-linear (non linear w.r.t. v, ∂µv, and linear w.r.t. ∂x∂µ, ∂
2
µv)

expectation form:

H(t, µ, y, z(.), γ(.), γ0(., .)) =

∫

R
d

[
H(t, x, µ, y, z(x)) +

1

2
tr
(
(σσ⊺ + σ0σ

⊺

0)(t, x, µ)γ(x)
)]
µ(dx)

(1.2)

+
1

2

∫

R
d ×R

d

tr
(
σ0(t, x, µ)σ

⊺

0(t, x
′, µ)γ0(x, x

′)
)
µ(dx)µ(dx′),
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‡LPSM, Université de Paris, and FiME, and CREST ENSAE pham at lpsm.paris
§EDF R&D, FiME xavier.warin at edf.fr

1

mailto:Maximilien.Germain at edf.fr
mailto:pham at lpsm.paris
mailto:xavier.warin at edf.fr


for some real-valued measurable function H defined on [0, T ]× R
d×P2(R

d)× R×R
d, and

where σ, σ0 are measurable functions on [0, T ]×R
d ×P2(R

d), valued respectively in R
d×n,

and R
d×m. Here tr(M) denotes the trace of a square matrix M , while M ⊺ is its transpose,

and . is the scalar product.

PDEs in Wasserstein space have been largely studied in the literature over the last years,
notably with the emergence of the mean-field game theory, and we mention among others
the papers [BFY15], [GS15], [PW18], [Car+19], [SZ19], [Bur+20], and other references in
the two-volume monographs [CD18a]-[CD18b]. An important application concerns mean-
field type control problems with common noise. The controlled stochastic McKean-Vlasov
dynamics is given by

dXα
s = β(s,Xα

s ,P
0
Xα

s
, αs)ds+ σ(s,Xα

s ,P
0
Xα

s
)dWs (1.3)

+ σ0(s,X
α
s ,P

0
Xα

s
)dW 0

s , t ≤ s ≤ T, Xα
t = ξ,

where W is a n-dimensional Brownian motion, independent of a m-dimensional Brownian
motion W 0 (representing the common noise) on a filtered probability space (Ω,F ,F =
(Ft)0≤t≤T ,P), the control process α is F-adapted valued in some Polish space A, and here
P
0 denotes the conditional law given W 0. The value function defined on [0, T ]×P2(R

d) by

v(t, µ) = inf
α

Et,µ

[ ∫ T

t

e−r(s−t)f(Xα
s ,P

0
Xα

s
, αs)ds+ e−r(T−t)g(Xα

T ,P
0
Xα

T

)
]
,

(here Et,µ[·] is the conditional expectation given that the law at time t of X solution to (1.3)
is equal to µ) is shown to satisfy the Bellman equation (1.1)-(1.2) (see [BFY13], [CP19],
[DPT19]) with G(µ) =

∫
g(x, µ)µ(dx), σ, σ0 as in (1.3) and

H(t, x, µ, y, z) = −ry + inf
a∈A

[
β(t, x, µ, a).z + f(x, µ, a)

]
. (1.4)

We now consider a finite-dimensional approximation of the PDE (1.1)-(1.2) in the
Wasserstein space. This can be derived formally by looking at the PDE for µ to averages
of Dirac masses, and it turns out that the corresponding PDE takes the form





∂tv
N + 1

N

N∑

i=1

H
(
t, xi, µ̄(x), v

N , NDxi
vN ) +

1

2
tr(ΣN (t,x)D2

xv
N ) = 0, on [0, T ) × (Rd)N

vN (T,x) = G
(
µ̄(x)

)
, x = (xi)i∈J1,NK ∈ (Rd)N ,

(1.5)
where µ̄(.) is the empirical measure function defined by µ̄(x) = 1

N

∑N
i=1 δxi

, for any x =

(x1, . . . , xN ), N ∈ N
∗, and ΣN = (Σij

N )i,j∈J1,NK is the R
Nd×Nd-valued function with block

matrices Σij
N (t,x) = σ(t, xi, µ̄(x))σ

⊺(t, xj , µ̄(x))δij + σ0(t, xi, µ̄(x))σ
⊺

0(t, xj , µ̄(x)) ∈ R
d×d.

In the special case where H has the form (1.4), we notice that (1.5) is the Bellman equation
for the N -cooperative problem, whose convergence to the mean-field control problem has
been studied in [Lac17], [CD18b], [LT19; LT20], when σ0 ≡ 0 (no common noise), and
recently by [Dje20] in the common noise case. We point out that these works do not
consider the same master equation. In particular their master equation is stated on [0, T ]×
R
d ×P2(R

d) and is linear in ∂µu whereas we allow a non-linear dependence in this derivative.
Moreover our master equation is in expectation form. In [LT20] the master equation is
approached by a system of N coupled PDEs on [0, T ]× (Rd)N whereas we consider a single
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approximating PDE on [0, T ] × (Rd)N . For more general Hamiltonian functions H, it has
been recently proved in [GMS21] that the sequence of viscosity solutions (vN )N to (1.5)
converge locally uniformly to the viscosity solution v to (1.1) when σ = 0 and σ0 does not
depend on space and measure arguments. For a detailed comparison between this work
and ours, we refer to Remark 2.8.

In this paper, we adopt a probabilistic approach by considering a backward stochastic
differential equation (BSDE) representation for the finite-dimensional PDE (1.5) according
to the classical work [PP90]. The solution (Y N ,ZN = (Zi,N )1≤i≤N ) to this BSDE is writ-
ten with an underlying forward particle system X

N = (Xi,N )1≤i≤N of a McKean-Vlasov
SDE, and connected to the PDE (1.5) via the Feynman-Kac formula: Y N

t = vN (t,XN
t ),

Zi,N
t = Dxi

vN (t,Xi,N
t ), 0 ≤ t ≤ T . By using BSDE techniques, our main contribu-

tion is to show a rate of convergence of order 1/N of |Y N
t − v(t, µ̄(XN

t ))|, and also of
|NZi,N

t − ∂µv(t, µ̄(X
N
t ))(Xi,N

t )|2, i = 1, . . . , N , for suitable norms, and under some regu-
larity conditions on v (see Theorem 2.5 and Theorem 2.6). This rate of convergence on the
particles approximation of v and its L-derivative is new to the best of our knowledge. We
point out that classical BSDE arguments for proving the rate of convergence do not apply
directly due to the presence of the factor N in front of Dxi

vN in the generator H, and we
rather use linearization arguments and change of probability measures to overcome these
issues. Another issue is due to the fact that the BSDE dimension d×N is exploding with
the number of particles therefore we have to track down the influence of the dimension in
the estimations, whereas classical BSDE works usually consider a fixed dimension d which
is incorporated into constants.

The outline of the paper is organized as follows. In Section 2, we formulate the particle
approximation of the PDE and its BSDE representation, and state the rate of convergence
for v and its L-derivative. Section 3 is devoted to the proof of these results.

2 Particles approximation of Wasserstein PDEs

The formal derivation of the finite-dimensional approximation PDE is obtained as follows.
We look at the PDE (1.1)-(1.2) for µ = µ̄(x) = 1

N

∑N
i=1 δxi

∈ P2(R
d), when x = (xi)i∈J1,NK

runs over (Rd)N . By setting ṽN (t,x) = v(t, µ̄(x)), and assuming that v is smooth, we have
for all (i, j) ∈ J1, NK (see Proposition 5.35 and Proposition 5.91 in [CD18a]):

{
Dxi

ṽN (t,x) = 1
N
∂µv(t, µ̄(x))(xi),

D2
xixj

ṽN (t,x) = 1
N
∂x∂µv(t, µ̄(x))(xi)δij +

1
N2 ∂

2
µv(t, µ̄(x))(xi, xj).

(2.1)
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By substituting into the PDE (1.1)-(1.2) for µ = µ̄(x), and using (2.1), we then see that
ṽN satisfies the relation:

∂tṽ
N +

1

N

N∑

i=1

H
(
t, xi, µ̄(x), ṽ

N , NDxi
ṽN ) (2.2)

+
1

2

N∑

i=1

tr
[(
σσ⊺ + σ0σ

⊺

0

)
(t, xi, µ̄(x))

(
D2

xi
ṽN − 1

N2
∂2
µv(t, µ̄(x))(xi, xi)

)]

+
1

2

∑

i 6=j∈J1,NK

tr
(
σ0(t, xi, µ̄(x))σ

⊺

0(t, xj , µ̄(x))D
2
xixj

ṽN
)

+
1

2N2

N∑

i=1

tr
(
σ0σ

⊺

0(t, xi, µ̄(x))∂
2
µv(t, µ̄(x))(xi, xi)

)
= 0

for (t,x = (xi)i∈J1,NK) ∈ [0, T ) × (Rd)N , together with the terminal condition ṽN (t,x) =
G(µ̄(x)). By neglecting the terms ∂2

µv/N
2 in the above relation, we obtain the PDE (1.5)

for vN ≃ ṽN . The purpose of this section is to rigorously justify this approximation and
state a rate of convergence for vN towards v, as well as a convergence for their gradients.

2.1 Particles BSDE approximation

Let us introduce an arbitrary measurable Rd-valued function b on [0, T ]×R
d×P2(R

d), and
set BN the (Rd)N -valued function defined on [0, T ]×(Rd)N byBN (t,x) = (b(t, xi, µ̄(x))i∈J1,NK

for (t,x = (xi)i∈J1,NK) ∈ [0, T ) × (Rd)N . The finite-dimensional PDE (1.5) may then be
written as





∂tv
N +BN (t,x).Dxv

N + 1
2tr

(
ΣN (t,x)D2

xv
N
)

+ 1
N

N∑

i=1

Hb

(
t, xi, µ̄(x), v

N , NDxi
vN ) = 0, on [0, T )× (Rd)N ,

vN (T,x) = G
(
µ̄(x)

)
, x = (xi)i∈J1,NK ∈ (Rd)N ,

(2.3)

where Hb(t, x, µ, y, z) := H(t, x, µ, y, z) − b(t, x, µ).z. For error analysis purpose, the func-
tion b can be simply taken to be zero. The introduction of the function b is actually
motivated by numerical purpose. It corresponds indeed to the drift of training simulations
for approximating the function vN , notably by machine learning methods, and should be
chosen for suitable exploration of the state space, see a detailed discussion in our companion
paper [Ger+21]. In this paper, we fix an arbitrary function b (satisfying Lipschitz condition
to be precised later).

Following [PP90], it is well-known that the semi-linear PDE (2.3) admits a probabilistic
representation in terms of forward backward SDE. The forward component is defined by
the process XN = (Xi,N )i∈J1,NK valued in (Rd)N , solution to the SDE:

dXN
t = BN (t,XN

t )dt+ σN (t,XN
t )dW t + σ0(t,X

N
t )dW 0

t (2.4)

where σN is the block diagonal matrix with block diagonals σii
N (t,x) = σ(t, xi, µ̄(x)),

σ0 = (σi
0)i∈J1,NK is the (Rd×m)N -valued function with σ

i
0(t,x) = σ0(t, xi, µ̄(x)), for x =

(xi)i∈J1,NK, W = (W 1, . . . ,WN ) where W i, i = 1, . . . , N , are independent n-dimensional
Brownian motions, independent of a m-dimensional Brownian motion W 0 on a filtered
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probability space (Ω,F ,F = (Ft)0≤t≤T ,P). Notice that ΣN = σNσ⊺

N + σ0σ
⊺

0, and X
N is

the particles system of the McKean-Vlasov SDE:

dXt = b(t,Xt,PXt
)dt+ σ(t,Xt,P

0
Xt
)dWt + σ0(t,Xt,P

0
Xt
)dW 0

t , (2.5)

where W is an n-dimensional Brownian motion independent of W 0. The backward compo-
nent is defined by the pair process (Y N ,ZN = (Zi,N )i∈J1,NK) valued in R×(Rd)N , solution
to

Y N
t = G

(
µ̄(XN

T )
)
+

1

N

N∑

i=1

∫ T

t

Hb(s,X
i,N
s , µ̄(XN

s ), Y N
s , NZi,N

s )ds (2.6)

−
N∑

i=1

∫ T

t

(Zi,N
s )⊺σ

(
s,Xi,N

s , µ̄(XN
s )

)
dW i

s,

−
N∑

i=1

∫ T

t

(Zi,N
s )⊺σ0

(
s,Xi,N

s , µ̄(XN
s )

)
dW 0

s , 0 ≤ t ≤ T.

We shall assume that the measurable functions (t, x, µ) 7→ b(t, x, µ), σ(t, x, µ) satisfy a
Lipschitz condition in (x, µ) ∈ R

d×P2(R
d) uniformly w.r.t. t ∈ [0, T ], which ensures the

existence and uniqueness of a strong solution X
N ∈ S2

F
((Rd)N ) to (2.4) given an initial con-

dition. Here, S2
F
(Rq) is the set of F-adapted process (Vt)t valued in R

q s.t. E
[
sup0≤t≤T |Vt|2

]

< ∞, (|.| is the Euclidian norm on R
q, and for a matrix M , we choose the Frobenius norm

|M | =
√

tr(MM ⊺)) and the Wasserstein space P2(R
d) is endowed with the Wasserstein

distance

W2(µ, µ
′) =

(
inf

{
E|ξ − ξ′|2 : ξ ∼ µ, ξ′ ∼ µ′

}) 1
2
,

and we set ‖µ‖2 :=
( ∫

R
d |x|2 µ(dx)

) 1
2 for µ ∈ P2(R

d). Assuming also that the mea-

surable function (t, x, µ, y, z) 7→ Hb(t, x, µ, y, z) is Lipschitz in (y, z) ∈ R×R
d uniformly

with respect to (t, x, µ) ∈ [0, T ] × R
d ×P2(R

d), and the measurable function G satisfies a
quadratic growth condition on P2(R

d), we have the existence and uniqueness of a solution
(Y N ,ZN = (Zi,N )i∈J1,NK) ∈ S2

F
(R)×H

2
F
((Rd)N ) to (2.6), and the connection with the PDE

(2.3) (satisfied in general in the viscosity sense) via the (non linear) Feynman-Kac formula:

Y N
t = vN (t,XN

t ), and Zi,N
t = Dxi

vN (t,XN
t ), i = 1, . . . , N, 0 ≤ t ≤ T, (2.7)

(when vN is smooth for the last relation). Here, H2
F
(Rq) is the set of F-adapted process

(Vt)t valued in R
q s.t. E

[ ∫ T

0 |Vt|2dt
]
< ∞.

2.2 Main results

We aim to analyze the particles approximation error on the solution v to the PDE (1.1),
and its L-derivative ∂µv by considering the pathwise error on v:

Ey
N := sup

0≤t≤T

∣∣Y N
t − v(t, µ̄(XN

t ))
∣∣,

and the L2-error on its L-derivative

∥∥Ez
N

∥∥
2
:=

1

N

N∑

i=1

( ∫ T

0
E
∣∣NZi,N

t − ∂µv(t, µ̄(X
N
t ))(Xi,N

t )
∣∣2dt

) 1
2
,
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where the initial conditions of the particles system, Xi,N
0 , i = 1, . . . , N , are i.i.d. with

distribution µ0.

Here, it is assumed that we have the existence and uniqueness of a classical solution v
to the PDE (1.1)-(1.2). More precisely, we make the following assumption:

Assumption 2.1 (Smooth solution to the Master Bellman PDE). There exists a unique
solution v to to (1.1), which lies in C1,2

b ([0, T ] × P2(R
d)) that is:

• v(., µ) ∈ C1([0, T )), and continuous on [0, T ], for any µ ∈ P2(R
d),

• v(t, .) is fully C2 on P2(R
d), for any t ∈ [0, T ] in the sense that: (x, µ) ∈ R

d ×P2(R
d)

7→ ∂µv(t, µ)(x) ∈ R
d, (x, µ) ∈ R

d×P2(R
d) 7→ ∂x∂µv(t, µ)(x) ∈ M

d, and (x, x′, µ) ∈
R
d ×R

d ×P2(R
d) 7→ ∂2

µv(t, µ)(x, x
′) ∈ M

d, are well-defined and jointly continuous,

• there exists some constant L > 0 s.t. for all (t, x, µ) ∈ [0, T ] × R
d ×P2(R

d)

∣∣∂µv(t, µ)(x)
∣∣ ≤ L

(
1 + |x|+ ‖µ‖2

)
,

∣∣∂2
µv(t, µ)(x, x)

∣∣ ≤ L.

The existence of classical solutions to mean-field PDE in Wasserstein space is a cha-
llenging problem, and beyond the scope of this paper. We refer to [Buc+17], [CCD15],
[SZ19], [WZ20] for conditions ensuring regularity results of some Master PDEs. Notice
also that linear-quadratic mean-field control problems have explicit smooth solutions as in
Assumption 2.1, see e.g. [PW18].

We also make some rather standard assumptions on the coefficients of the forward
backward SDE:

Assumption 2.2 (Lipschitz condition on the coefficients of the forward backward SDE).

(i) The drift and volatility coefficients b, σ, σ0 are Lipschitz: there exist positive constants
[b], [σ], and [σ0] s.t. for all t ∈ [0, T ], x, x′ ∈ R

d, µ, µ′ ∈ P2(R
d),

|b(t, x, µ) − b(t, x′, µ′)| ≤ [b]
(
|x− x′|+W2(µ, µ

′)
)

|σ(t, x, µ) − σ(t, x′, µ′)| ≤ [σ]
(
|x− x′|+W2(µ, µ

′)
)

|σ0(t, x, µ) − σ0(t, x
′, µ′)| ≤ [σ0]

(
|x− x′|+W2(µ, µ

′)
)
.

(ii) For all (t, x, µ) ∈ [0, T ]×R
d×P2(R

d), Σ(t, x, µ) := σσ⊺(t, x, µ) is invertible, and the
function σ, and its pseudo-inverse σ+ := σ⊺Σ−1 are bounded.

(iii) µ0 ∈ P4q(R
d) for some q > 1, i.e., ‖µ0‖4q :=

( ∫
|x|4qµ0(dx))

1
4q < ∞, and

∫ T

0
|b(t, 0, δ0)|4q + |σ(t, 0, δ0)|4q + |σ0(t, 0, δ0)|4q dt < ∞.

(iv) The driver Hb satisfies the Lipschitz condition: there exist positive constants [Hb]1
and [Hb]2 s.t. for all t ∈ [0, T ], x, x′ ∈ R

d, µ, µ′ ∈ P2(R
d), y, y′ ∈ R, z, z′ ∈ R

d,

|Hb(t, x, µ, y, z) −Hb(t, x, µ, y
′, z′)| ≤ [Hb]1(|y − y′|+ |z − z′|)

|Hb(t, x, µ, y, z) −Hb(t, x
′, µ′, y, z)| ≤ [Hb]2

(
1 + |x|+ |x′|+ ‖µ‖2 + ‖µ′‖2

)
(
|x− x′|+W2(µ, µ

′)
)
.

6



(v) The terminal condition satisfies the (locally) Lipschitz condition: there exists some
positive constant [G] s.t. for all µ, µ′ ∈ P2(R

d)

|G(µ) −G(µ′)| ≤ [G]
(
‖µ‖2 + ‖µ′‖2

)
W2(µ, µ

′).

In order to have a convergence result for the first order Lions derivative we have to
make a stronger assumption.

Assumption 2.3.

(i) The function Hb is in the form:

Hb(t, x, µ, y, z) = H1(t, x, µ, y) +H2(t, µ, y).z,

where H1 : [0, T ]×R
d×P2(R

d)×R 7→ R verifies for all t ∈ [0, T ], x, x′ ∈ R
d, µ, µ′ ∈

P2(R
d), y, y′ ∈ R, z, z′ ∈ R

d,

|H1(t, x, µ, y) −H1(t, x, µ, y
′)| ≤ [H1]1 |y − y′|

|H1(t, x, µ, y) −H1(t, x
′, µ′, y)| ≤ [H1]2

(
1 + |x|+ |x′|+ ‖µ‖2 + ‖µ′‖2

)
(
|x− x′|+W2(µ, µ

′)
)
,

and H2 : [0, T ]×R
d ×P2(R

d)×R 7→ R
d is bounded and verifies for all t ∈ [0, T ], x, x′

∈ R
d, µ, µ′ ∈ P2(R

d), y, y′ ∈ R, z, z′ ∈ R
d,

|H2(t, x, µ, y) −H2(t, x, µ, y
′)| ≤ [H2]1 |y − y′|

|H2(t, x, µ, y) −H2(t, x
′, µ′, y)| ≤ [H2]2

(
1 + |x|+ |x′|+ ‖µ‖2 + ‖µ′‖2

)
(
|x− x′|+W2(µ, µ

′)
)
.

(ii) σ0 is uniformly elliptic and does not depend on x, namely there exists c0 > 0 such
that for all t ∈ [0, T ], µ ∈ P2(R

d), z ∈ R
d

z⊺σ0(t, µ)σ
⊺

0(t, µ)z ≥ c0|z|2.

(iii) There exists some constant L > 0 s.t. for all (t, x, µ) ∈ [0, T ] × R
d ×P2(R

d)

∣∣∂µv(t, µ)(x)
∣∣ ≤ L.

Remark 2.4. The Lipschitz condition on b, σ in Assumption 2.2(i) implies that the func-
tions x ∈ (Rd)N 7→ BN (t,x), resp. σN (t,x) and σ0(t,x), defined in (2.4), are Lipschitz
(with Lipschitz constant 2[b], resp. 2[σ] and 2[σ0]). Indeed, we have

|BN (t,x)−BN (t,x′)|2 =
N∑

i=1

|b(t, xi, µ̄(x))− b(t, xi, µ̄(x
′))|2

≤ 2[b]2
N∑

i=1

(|xi − x′i|2 +W2(µ̄(x), µ̄(x
′))2)

≤ 2[b]2(|x− x
′|2 +

N∑

i=1

1

N
|x− x

′|2) = 4[b]2|x− x
′|2,
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for x = (xi)i∈J1,NK, and similarly for σN and σ0. This yields the existence and unique-

ness of a solution X
N = (Xi,N )i∈J1,NK to (2.4) given initial conditions. Moreover, under

Assumption 2.2(iii), we have the standard estimate:

E
[

sup
0≤t≤T

|XN
t |4q

]
≤ C

(
1 + ‖µ0‖4q4q

)
< ∞, i = 1, . . . , N, (2.8)

for some constant C (possibly depending on N). The Lipschitz condition on Hb w.r.t.
(y, z) in Assumption 2.2(iv), and the quadratic growth condition on G from Assumption
2.2(v) gives the existence and uniqueness of a solution (Y N ,ZN = (Zi,N )i∈J1,NK) ∈ S2

F
(R)×

H
2
F
((Rd)N ) to (2.6). Moreover, by Assumption 2.2(iv)(v), we see that

∣∣ 1
N

N∑

i=1

Hb(t, xi, µ̄(x), y, zi)−
1

N

N∑

i=1

Hb(t, x
′
i, µ̄(x

′), y, zi)
∣∣

≤ [Hb]2
1

N

N∑

i=1

(
1 + |xi|+ |x′i|+

1√
N

(|x|+ |x′|)
)(
|xi − x′i|+

1√
N

|x− x
′|
)

≤ 4[Hb]2
(
1 + |x|+ |x′|

)
|x− x

′|
∣∣G(µ̄(x))−G(µ̄(x′))

∣∣ ≤ [G]

N
(|x|+ |x′|)|x− x

′|,

for all x, x′ ∈ R
d, x = (xi)i∈J1,NK, x

′= (x′i)i∈J1,NK ∈ (Rd)N , which yields by standard stability

results for BSDE (see e.g. Theorems 4.2.1 and 5.2.1 in [Zha17]) that the function vN in
(2.7) inherits the locally Lipschitz condition:

∣∣vN (t,x)− vN (t,x′)| ≤ C(1 + |x|+ |x′|)|x− x
′|, ∀x,x′ ∈ (Rd)N ,

for some constant C (possibly depending on N). This implies

|Zi,N
t | ≤ C

(
1 + |XN

t |
)
, 0 ≤ t ≤ T, i = 1, . . . , N, (2.9)

(this is clear when vN is smooth, and otherwise obtained by a mollifying argument as in
Theorem 5.2.2 in [Zha17]).

Theorem 2.5. Under Assumptions 2.1 and 2.2, we have P-almost surely

Ey
N = O

(
N−1

)
,

where the constant in the big Bachmann-Landau term O(.) depends only on the data of the
PDE-BSDE problem.

Theorem 2.6. Under Assumptions 2.1, 2.2 and 2.3, we have

∥∥Ez
N

∥∥
2
= O

(
N− 1

2
)
,

where the constant in the big Bachmann-Landau term O(.) depends only on the data of the
PDE-BSDE problem.
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Remark 2.7. Let us consider the global weak errors on v and its L-derivative ∂µv along
the limiting McKean-Vlasov SDE, and defined by

Ey
N := sup

0≤t≤T

∣∣E[Y N
t ]− E[v(t,P0

Xt
)]
∣∣

Ez
N :=

1

N

N∑

i=1

(∫ T

0

∣∣∣E
[
NZi,N

t

]
− E

[
∂µv(t,P

0

Xi
t

)(Xi
t )
]∣∣∣

2
dt
)1

2
,

where Xi has the same law than X, and with McKean-Vlasov dynamics as in (2.5) but
driven by W i, i = 1, . . . , N . Then, they can be decomposed as

Ey
N ≤ E

[
Ey
N

]
+ Ẽy

N , Ez
N ≤

∥∥Ez
N

∥∥
2
+ Ẽz

N ,

where Ẽy
N , Ẽz

N are the (weak) propagation of chaos errors defined by

Ẽy
N := sup

0≤t≤T

∣∣E[v(t, µ̄(XN
t ))]− E[v(t,P0

Xt
)]
∣∣

Ẽz
N :=

1

N

N∑

i=1

( ∫ T

0

∣∣∣E
[
∂µv(t, µ̄(X

N
t ))(Xi,N

t )
]
− E

[
∂µv(t,P

0

Xi
t

)(Xi
t)
]∣∣∣

2
dt
) 1

2
,

From the conditional propagation of chaos result, which states that for any fixed k ≥ 1,

the law of (Xi,N
t )

i∈J1,kK
t∈[0,T ] converges toward the conditional law of (Xi

t)
i∈J1,kK
t∈[0,T ] , as N goes to

infinity, we deduce that Ẽy
N , Ẽz

N → 0. Furthermore, under additional assumptions on v,
we can obtain a rate of convergence. Namely, if v(t, .) is Lipschitz uniformly in t ∈ [0, T ],
with Lipschitz constant [v], we have

Ẽy
N ≤ [v] sup

0≤t≤T

(
E[W2(µ̄(X

N
t ),P0

Xt
)2]

) 1
2

= O
(
N

− 1
max(d,4)

√
1 + ln(N)1d=4

)
,

hence Ey
N = O

(
N

− 1
max(d,4)

√
1 + ln(N)1d=4

)
, (2.10)

where we use the rate of convergence of empirical measures in Wasserstein distance stated
in [FG15] (see also Theorem 2.12 in [CD18b]), and since we have the standard estimate
E[sup0≤t≤T |Xt|4q] ≤ C(1 + ‖µ0‖4q2q ) by Assumption 2.2(iii). The rate of convergence in
(2.10) is consistent with the one found in Theorem 6.17 [CD18b] for mean-field control
problem. Furthermore, if the function ∂µv(t, .)(.) is Lipschitz in (x, µ) uniformly in t, then
by the rate of convergence in Theorem 2.12 of [CD18b], we have

Ẽz
N = O

(
N

− 1
max(d,4)

(
1 + ln(N)1d=4

))
, hence Ez

N = O
(
N

− 1
max(d,4)

(
1 + ln(N)1d=4

))
.

Remark 2.8 (Comparison with [GMS21]). In the related paper [GMS21] the authors con-
sider a pure common noise case, that is σ = 0 and restrict themselves to σ0(t, xi, µ̄(x)) =
κId for κ ∈ R. If we consider these assumptions in our smooth setting, we directly see that
∆Y N

s = 0 and ∆ZN
s = 0 P a.s. Indeed by (2.6) and (3.2) we notice that (Y N

t , ZN
t ) and

(Ỹ N
t := v(t, µ̄(XN

t )), {Z̃i,N
t :=

1

N
∂µv(t, µ̄(X

N
t ))(Xi,N

t ), i = 1, . . . , N}),

solve the same BSDE therefore by existence and pathwise uniqueness for Lipschitz BSDEs
the result follows. Moreover, [GMS21] does not allow H to depend on y. Our approach
allows to extend their findings to the case of idiosyncratic noises and in contrast to them
we are able to choose a state-dependent volatility coefficient. Moreover we provide a con-
vergence rate for the solution. However, we have to assume existence of a smooth solution
for the master equation which is a restrictive assumption.
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3 Proof of main results

3.1 Proof of Theorem 2.5

Step 1. Under the smoothness condition on v in Assumption 2.1, one can apply the standard

Itô’s formula in (Rd)N to the process ṽN (t,XN
t ) = v(t, µ̄(XN

t )), and get

ṽN (t,XN
t ) = ṽN (T,XN

T )−
∫ T

t

∂tṽ
N (s,XN

s )ds (3.1)

−
∫ T

t

BN (s,XN
s ).Dxṽ

N (s,XN
s ) +

1

2
tr
(
ΣN (s,XN

s )D2
xṽ

N (s,XN
s )

)
ds

−
N∑

i=1

∫ T

t

(
Dxi

ṽN (s,XN
s )

)
⊺

σ(s,Xi,N
s , µ̄(XN

s ))dW i
s

−
N∑

i=1

∫ T

t

(
Dxi

ṽN (s,XN
s )

)
⊺

σ0(s,X
i,N
s , µ̄(XN

s ))dW 0
s ,

Now, by setting (recall (2.1)):

Ỹ N
t := v(t, µ̄(XN

t )) = ṽN (t,XN
t ),

Z̃i,N
t :=

1

N
∂µv(t, µ̄(X

N
t ))(Xi,N

t ) = Dxi
ṽN (t,XN

t ), i = 1, . . . , N, 0 ≤ t ≤ T,

and using the relation (2.2) satisfied by ṽN into (3.1), we have for all 0 ≤ t ≤ T ,

Ỹ N
t = G

(
µ̄(XN

T )
)
+

1

N

N∑

i=1

∫ T

t

Hb(s,X
i,N
s , µ̄(XN

s ), Ỹ N
s , NZ̃i,N

s )ds (3.2)

− 1

2N2

N∑

i=1

∫ T

t

tr
(
Σ(s,Xi,N

s , µ̄(XN
s ))∂2

µv(s, µ̄(X
N
s ))(Xi,N

s ,Xi,N
s )

)
ds

−
N∑

i=1

∫ T

t

(Z̃i,N
s )⊺σ

(
s,Xi,N

s , µ̄(XN
s )

)
dW i

s −
N∑

i=1

∫ T

t

(Z̃i,N
s )⊺σ0

(
s,Xi,N

s , µ̄(XN
s )

)
dW 0

s .

Step 2: Linearization. We set

∆Y N
t := Y N

t − Ỹ N
t , ∆Zi,N

t := N(Zi,N
t − Z̃i,N

t ), i = 1, . . . , N, 0 ≤ t ≤ T,
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so that by (2.6)-(3.2),

∆Y N
t =

1

N

N∑

i=1

∫ T

t

[
Hb(s,X

i,N
s , µ̄(XN

s ), Y N
s , NZi,N

s )−Hb(s,X
i,N
s , µ̄(XN

s ), Ỹ N
s , NZ̃i,N

s )
]
ds

+
1

2N2

N∑

i=1

∫ T

t

tr
(
Σ(s,Xi,N

s , µ̄(XN
s ))∂2

µv(s, µ̄(X
N
s ))(Xi,N

s ,Xi,N
s )

)
ds

− 1

N

N∑

i=1

∫ T

t

(∆Zi,N
s )⊺σ

(
s,Xi,N

s , µ̄(XN
s )

)
dW i

s

− 1

N

N∑

i=1

∫ T

t

(∆Zi,N
s )⊺σ0

(
s,Xi,N

s , µ̄(XN
s )

)
dW 0

s , 0 ≤ t ≤ T. (3.3)

We now use the linearization method for BSDEs and rewrite the above equation as

∆Y N
t =

∫ T

t

αs∆Y N
s ds+

1

N

N∑

i=1

∫ T

t

βi
s.∆Zi,N

s ds

− 1

N

N∑

i=1

∫ T

t

(∆Zi,N
s )⊺σ

(
s,Xi,N

s , µ̄(XN
s )

)
dW i

s

− 1

N

N∑

i=1

∫ T

t

(∆Zi,N
s )⊺σ0

(
s,Xi,N

s , µ̄(XN
s )

)
dW 0

s

+
1

2N2

N∑

i=1

∫ T

t

tr
(
Σ(s,Xi,N

s , µ̄(XN
s ))∂2

µv(s, µ̄(X
N
s ))(Xi,N

s ,Xi,N
s )

)
ds, (3.4)

with




αs =
1
N

N∑

i=1

Hb(s,X
i,N
s , µ̄(XN

s ), Y N
s , NZ̃i,N

s )−Hb(s,X
i,N
s , µ̄(XN

s ), Ỹ N
s , NZ̃i,N

s )

∆Y N
s

1∆Y N
s 6=0

βi
s =

Hb(s,X
i,N
s ,µ̄(XN

s ),Y N
s ,NZ

i,N
s )−Hb(s,X

i,N
s ,µ̄(XN

s ),Y N
s ,NZ̃

i,N
s )

|∆Z
i,N
s |2

∆Zi,N
s 1

∆Z
i,N
s 6=0

(3.5)

for i = 1, . . . , N , and we notice by Assumption 2.2(iv) that the processes α and βi are
bounded by [Hb]1 . Under Assumption 2.2(ii), let us define the bounded processes λi

s =
σ+(s,Xi,N

s , µ̄(XN
s ))βi

s, s ∈ [0, T ], i = 1, . . . , N , and introduce the change of probability
measure P

λ with Radon-Nikodym density:

dPλ

dP
= Eλ

T := exp
( N∑

i=1

∫ T

0
λi
sdW

i
s −

N∑

i=1

1

2

∫ T

0
|λi

s|2ds
)
,

so that by Girsanov’s theorem: W̃ i
t = W i

t −
∫ t

0 λ
i
sds, i = 1, . . . , N , and W 0 are independant

Brownian motion under Pλ. By applying Itô’s Lemma to e
∫ s

0 αsds∆Y N
t under Pλ, we then
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obtain

∆Y N
t =

1

2N2

N∑

i=1

∫ T

t

e
∫ s

t
αudutr

(
Σ(s,Xi,N

s , µ̄(XN
s ))∂2

µv(s, µ̄(X
N
s ))(Xi,N

s ,Xi,N
s )

)
ds

− 1

N

N∑

i=1

∫ T

t

e
∫ s

t
αudu(∆Zi,N

s )⊺σ
(
s,Xi,N

s , µ̄(XN
s )

)
dW̃ i

s

− 1

N

N∑

i=1

∫ T

t

e
∫ s

t
αudu(∆Zi,N

s )⊺σ0
(
s,Xi,N

s , µ̄(XN
s )

)
dW 0

s , 0 ≤ t ≤ T. (3.6)

Step 3. Let us check that the stochastic integrals in (3.6), namely
∫
Z̃i,N
s .dW̃ i

s, and∫
Z̃0,i,N
s .dW 0

s are “true” martingales under Pλ, where Z̃i,N
s := e

∫ s

0 αuduσ⊺

(
s,Xi,N

s , µ̄(XN
s )

)
∆Zi,N

s ,

Z̃0,i,N
s := e

∫ s

0
αuduσ⊺

0

(
s,Xi,N

s , µ̄(XN
s )

)
∆Zi,N

s , i = 1, . . . , N , 0 ≤ s ≤ T .
Indeed, for fixed i ∈ J1, NK, recalling that α is bounded, and by the linear growth

condition of σ0 from Assumption 2.2(i), we have

E
Pλ
[ ∫ T

0
|Z̃0,i,N

s |2ds
]
≤ CE

Pλ
[ ∫ T

0

(
|σ0(s, 0, δ0)|2 + |Xi,N

s |2 + ‖µ̄(XN
s )‖2

2

)

(
|NZi,N

s |2 + |∂µv(s, µ̄(XN
s ))(Xi,N

s )|2
)
ds

≤ CE

[
Eλ
T

∫ T

0
N2(|σ0(s, 0, δ0)|4 + |XN

s |4)ds
]

where we use Bayes formula, the estimation (2.9), the growth condition on ∂µv(.)(.) in

Assumption 2.1, and noting that |Xi,N
s | ≤ |XN

s |, ‖µ̄(XN
s )‖2

2
= |XN

s |2/N . By Hölder
inequality with q as in Assumption 2.2(iii), and 1

p
+ 1

q
= 1, the above inequality yields

E
P
λ
[ ∫ T

0
|Z̃0,i,N

s |2ds
]
≤ CN2

(
E
[
|Eλ

T |p
]) 1

p
(
E

[ ∫ T

0
(|σ0(s, 0, δ0)|4q + |XN

s |4q)ds
]) 1

q
,

which is finite by (2.8), and since λ is bounded. This shows the square-integrable martingale
property of

∫
Z̃0,i,N
s .dW 0

s under Pλ. By the same arguments, we get the square-integrable

martingale property of
∫
Z̃i,N
s .dW̃ i

s under Pλ

Step 4: Estimation of Ey
N . By taking the P

λ conditional expectation in (3.6), we obtain

∆Y N
t =

1

2N2

N∑

i=1

E
P
λ
[ ∫ T

t

e
∫ s

t
αudutr

(
Σ(s,Xi,N

s , µ̄(XN
s ))∂2

µv(s, µ̄(X
N
s ))(Xi,N

s ,Xi,N
s )

)
ds

∣∣Ft

]
,

for all t ∈ [0, T ]. Under the boundedness condition on Σ = σσ⊺ in Assumption 2.2(ii), and
on ∂2

µv in Assumption 2.1, it follows immediately that

Ey
N = sup

0≤t≤T

|∆Y N
t | = O(N−1), a.s.
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3.2 Proof of Theorem 2.6

From (3.5), and under Assumption 2.3(i) and (iii), we see that

αs =
1

N

N∑

i=1

Hb(s,X
i,N
s , µ̄(XN

s ), Y N
s , NZ̃i,N

s )−Hb(s,X
i,N
s , µ̄(XN

s ), Ỹ N
s , NZ̃i,N

s )

∆Y N
s

1∆Y N
s 6=0

=
1

N

N∑

i=1

H1(s,X
i,N
s , µ̄(XN

s ), Y N
s )−H1(s,X

i,N
s , µ̄(XN

s ), Ỹ N
s )

∆Y N
s

1∆Y N
s 6=0

+
1

N

N∑

i=1

NZ̃i,N
s .

H2(s, µ̄(X
N
s ), Y N

s )−H2(s, µ̄(X
N
s ), Ỹ N

s )

∆Y N
s

1∆Y N
s 6=0,

is bounded by [H1]1 + [H2]1L, recalling NZ̃i,N
s = ∂µv(s, µ̄(X

N
s ))(Xi,N

s ). As a consequence,
the proof of Theorem 2.5 still applies. Then by (3.3)

∆Y N
t =

∫ T

t

αs∆Y N
s ds+

1

N

N∑

i=1

∫ T

t

H2(s, µ̄(X
N
s ), Y N

s ).∆Zi,N
s ds

− 1

N

N∑

i=1

∫ T

t

(∆Zi,N
s )⊺σ

(
s,Xi,N

s , µ̄(XN
s )

)
dW i

s

− 1

N

N∑

i=1

∫ T

t

(∆Zi,N
s )⊺σ0(s, µ̄(X

N
s ))dW 0

s

+
1

2N2

N∑

i=1

∫ T

t

tr
(
Σ(s,Xi,N

s , µ̄(XN
s ))∂2

µv(s, µ̄(X
N
s ))(Xi,N

s ,Xi,N
s )

)
ds.

By applying Itô’s formula to |∆Y N
t |2 in (3.4) under P

|∆Y N
0 |2 + 1

N2

∫ T

0

N∑

i=1

∣∣σ⊺
(
s,Xi,N

s , µ̄(XN
s )

)
∆Zi,N

s

∣∣2ds+ |σ⊺

0(s, µ̄(X
N
s ))

N∑

j=1

∆Zj,N
s |2ds

= 2

∫ T

0
αs|∆Y N

s |2ds+ 2

N

N∑

i=1

∫ T

0
∆Y N

s H2(s, µ̄(X
N
s ), Y N

s ).∆Zi,N
s ds

− 2

N

N∑

i=1

∫ T

0
∆Y N

s (∆Zi,N
s )⊺σ

(
s,Xi,N

s , µ̄(XN
s )

)
dW i

s

− 2

N

N∑

i=1

∫ T

0
∆Y N

s (∆Zi,N
s )⊺σ0(s, µ̄(X

N
s ))dW 0

s

+
1

N2

N∑

i=1

∫ T

0
∆Y N

s tr
(
Σ(s,Xi,N

s , µ̄(XN
s ))∂2

µv(s, µ̄(X
N
s ))(Xi,N

s ,Xi,N
s )

)
ds,
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so by taking expectation under P, and using the Cauchy-Schwarz inequality in R
d

1

N2

∫ T

0

N∑

i=1

E

[∣∣σ⊺
(
s,Xi,N

s , µ̄(XN
s )

)
∆Zi,N

s

∣∣2 + |σ⊺

0(s, µ̄(X
N
s ))

N∑

j=1

∆Zj,N
s |2

]
ds

≤ E

[
2

∫ T

0
|αs||∆Y N

s |2ds+ 2

∫ T

0

∣∣∣∆Y N
s H2(s, µ̄(X

N
s ), Y N

s ).
N∑

i=1

∆Zi,N
s

N

∣∣∣ds
]

+
1

N2

N∑

i=1

∫ T

0
E|∆Y N

s tr
(
Σ(s,Xi,N

s , µ̄(XN
s ))∂2

µv(s, µ̄(X
N
s ))(Xi,N

s ,Xi,N
s )

)
|ds,

≤ E

[
2

∫ T

0
|αs||∆Y N

s |2ds+ 2

∫ T

0

∣∣∣∆Y N
s H2(s, µ̄(X

N
s ), Y N

s )
∣∣∣
∣∣∣

N∑

i=1

∆Zi,N
s

N

∣∣∣ds
]

+
1

N2

N∑

i=1

∫ T

0
E|∆Y N

s tr
(
Σ(s,Xi,N

s , µ̄(XN
s ))∂2

µv(s, µ̄(X
N
s ))(Xi,N

s ,Xi,N
s )

)
|ds,

≤ E

[
ϑ

∫ T

0
|∆Y N

s H2(s, µ̄(X
N
s ), Y N

s )|2ds+ 1

ϑN2

∫ T

0

∣∣∣
N∑

i=1

∆Zi,N
s

∣∣∣
2
ds

]
+O(N−2),

by Young inequality for any ϑ > 0, boundedness of α, Σ, ∂2
µv and Theorem 2.5. Thus, by

Assumption 2.3(ii), and by choosing ϑ = 2
c0
, it follows from the boundedness of H2, and

Theorem 2.5 that

E

[ 1

N

N∑

i=1

∫ T

0
|σ⊺

(
s,Xi,N

s , µ̄(XN
s )

)
∆Zi,N

s |2 ds
]

= O(1/N),

which ends the proof by recalling that ‖σ+‖∞ < +∞, using Cauchy-Schwarz inequality in

R
N (in the form 1

N

∑N
i

√
|ai| ≤

√
1
N

∑N
i |ai|) and Jensen inequality (in the form E[

√
|X|] ≤√

E[|X|]).
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