Topologically integrable derivations and additive group actions on affine ind-schemes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Topologically integrable derivations and additive group actions on affine ind-schemes

Résumé

Affine ind-varieties are infinite dimensional generalizations of algebraic varieties which appear naturally in many different contexts, in particular in the study of automorphism groups of affine spaces. In this article we introduce and develop the basic algebraic theory of topologically integrable derivations of complete topological rings. We establish a bijective algebro-geometric correspondence between additive group actions on affine ind-varieties and topologically integrable derivations of their coordinate pro-rings which extends the classical fruitful correspondence between additive group actions on affine varieties and locally nilpotent derivations of their coordinate rings.
Fichier principal
Vignette du fichier
Ga-Ind-Scheme.pdf (392.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03081982 , version 1 (18-12-2020)

Identifiants

Citer

Roberto Diaz, Adrien Dubouloz, Alvaro Liendo. Topologically integrable derivations and additive group actions on affine ind-schemes. 2020. ⟨hal-03081982⟩
39 Consultations
72 Téléchargements

Altmetric

Partager

More