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TOPOLOGICALLY INTEGRABLE DERIVATIONS AND
ADDITIVE GROUP ACTIONS ON AFFINE IND-SCHEMES

ROBERTO DIiAZ, ADRIEN DUBOULOZ, AND ALVARO LIENDO

ABSTRACT. Affine ind-varieties are infinite dimensional generalizations of algebraic varieties which ap-
pear naturally in many different contexts, in particular in the study of automorphism groups of affine spaces.
In this article we introduce and develop the basic algebraic theory of topologically integrable derivations
of complete topological rings. We establish a bijective algebro-geometric correspondence between additive
group actions on affine ind-varieties and topologically integrable derivations of their coordinate pro-rings
which extends the classical fruitful correspondence between additive group actions on affine varieties and
locally nilpotent derivations of their coordinate rings.

INTRODUCTION

Motivated by the study of algebro-geometric properties of some "infinite dimensional" groups which
appear naturally in algebraic geometry, such as for instance the group of algebraic automorphisms of
the affine n-space A} over a field k£, n > 2, Shafarevich [20, 21] introduced and developed some no-
tions of infinite-dimensional affine algebraic variety and infinite-dimensional affine algebraic group. In
Shafarevich’s sense, an affine ind-variety over an algebraically closed field % is a topological space X
which is homeomorphic to the colimit li el X, of a countable inductive system of closed embeddings
Xo — X1 — X3 — --- of ordinary affine algebraic k-varieties, endowed with the final topology. One
declares that a morphism between two such ind-varieties @%N X, and hﬂneN Y,, consists of a collec-
tion of compatible morphisms of ordinary affine algebraic varieties between the corresponding inductive
systems, and a group object in the so-defined category is then called an affine ind-group. Since Shafare-
vich pioneering work, this notion has been developed further by many authors [16, 15,22, 17,9, 6] driven
mainly by its numerous applications to the study of algebraic automorphism groups of affine varieties.

A different approach to affine ind-varieties, closer to the Grothendieck theory of ind-representable
functors and formal schemes [10, 1], was proposed by Kambayashi [12, 13, 14] in the form of a category
of locally ringed spaces anti-equivalent to the category whose objects are linearly topologized complete
k-algebras A which admit fundamental systems of open neighborhoods of 0 consisting of a countable
families of ideals (a,,)nen, With the property that all the quotients A,, = A/a,, are integral finitely gen-
erated k-algebras. The underlying topological space of an affine ind-k-variety in Kambayashi’s sense is
defined as the set Spf(.A) of open prime ideals of .A, endowed with the subspace topology inherited from
the Zariski topology on the usual prime spectrum Spec(.A). Morphisms between such ind-k-varieties
are in turn simply determined by continuous homomorphisms between the corresponding topological
algebras, see Section 2.

It is known that these two notions of ind-k-varieties are not equivalent, even already at the topological
level (see [22] for an in-depth comparison). Despite its natural definition and its algebraic flavor which
allows to easily extend it to more general complete topological algebras, leading to a natural theory of
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affine ind-schemes, so far, the applications of Kambayashi’s notion of affine ind-varieties have not been
researched as much as those of Shafarevich’s version.

The main goal of this paper is to develop the basic tools to extend the existing rich algebro-geometric
theory of additive group actions on affine varieties and schemes to Kambayashi’s affine ind-varieties and
ind-schemes. To explain our results and put them into context, we restrict ourselves in this introduction to
affine schemes and ind-schemes defined over an algebraically closed field k of characteristic zero. Every
algebraic action of the additive group G, ; = Spec(k[T’]) on an affine k-scheme is uniquely determined
by its comorphism p: A — A ®y, k[T] = A[T]. The fact that y is the comorphism of a G, j-action
implies that the map which associates to every f € A the element %(u( f)|r=0 is a k-derivation O
of A, which corresponds geometrically to the velocity vector field along the orbits of the action on X.
Conversely, an algebraic vector field 0 on X determines an algebraic action of G, ;, on X if and only if
its formal flow is algebraic, that is, if and only if the formal exponential homomorphism

exp(TO): A— AT, [ WT(!"C)TVL

factors through the polynomial ring A[T] C A[[T]]. Clearly, a k-derivation O of A satisfies this poly-
nomial integrability property if and only if for every f € A, there exists n € N such that 9"(f) = 0.
Derivations with this property are called locally nilpotent, and we obtain the well-known correspondence
between G, ;-actions on an affine k-variety X = Spec(A) and locally nilpotent k-derivations of A.

Let now A be linearly topologized complete k-algebra which admits a fundamental system of open
neighborhoods of 0 consisting of a countable family (a,,),en of ideals of A. We call a continuous
k-derivation O of A ropologically integrable if the sequence of k-linear endomorphisms (0");cy of A
converges continuously to the zero homomorphism, that is, if for every f € A and every i € N, there
exist an indices ng,j € N such that 0" (f + a;) C a; for every integer n > ng (see Definition 1.8).
Note that in the case where the topology on A is the discrete one, a k-derivation of 4 is topologically
integrable precisely when it is locally nilpotent. Our main result is the following extension of the classical
correspondence for affine k-varieties to the case of affine ind-%-schemes (see Theorem 3.6 for the general
version which applies to arbitrary relative affine ind-schemes over a base affine ind-scheme).

Theorem. Ler X = Spf(A) be the affine ind-k-scheme associated to a linearly topologized complete
k-algebra A which admits a fundamental system of open neighborhoods of 0 consisting of a countable
family of ideals. Then there exists a one-to-one correspondence between G, i.-actions on X and topolog-
ically integrable k-derivations of A.

This correspondence is made explicit as follows. The topological integrability of a continuous k-
derivation 0 of A is equivalent to the property that its associated formal exponential homomomorphism
exp(T'0) factors through a continuous homomorphism with values in the subring A{T'} C A[[T]] of
restricted power series, consisting of formal power series ) .y a;T" whose coefficients a; tend to 0 for
the topology on .A when n tends to infinity. The topological ring .A{7'} is isomorphic to the completed
tensor product A®y,k[T] with respect to the given topology on A and the discrete topology on k[T]. The
resulting continuous homomorphism

exp(Td): A — A{T} = ARLE[T)
determines through Kambayashi’s definition a morphism of affine ind-%-schemes
Gak Xk Spf(A) = Spf(A{T}) — Spf(A)

which satisfies the axioms of an action of the additive group G, on the affine ind-k-scheme Spf(.A).
We show conversely that every continuous homomorphism e: A — A{T'} which satisfies the axioms
of a comorphism of a G, j-action on an affine ind-k-scheme Spf(.A) is the restricted exponential homo-
morphism exp(7'0) associated to a topologically integrable k-derivation 0 of A (see Theorem 2.26.)

One of the cornerstones of the algebraic theory of locally nilpotent derivations is the existence for
every nonzero such derivation 0 of a k-algebra A of a so-called local slice, that is, an element s € A
such that 9(s) € ker(9) \ {0}. Not every nonzero topologically integrable derivation k-derivation 0 of a
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linearly topologized complete k-algebra .4 admits a local slice (see Example 2.13 for a counterexample).
On the other hand, we establish that the theory of topologically integrable derivations with local slices
closely resembles the usual finite-dimensional case: after an appropriate localization, these derivations
admit a Dixmier-Reynolds operator (see Definition 2.15) which provides a retraction of 4 onto their
kernels. In particular, we have the following result (see Proposition 2.16 and Corollary 2.18 for the
general case).

Theorem. Let A be linearly topologized complete k-algebra and let 0: A — A be a topologically
integrable derivation admitting a slice s such that O(s) = 1. Then A = (ker 0){s} and exp(T0)
coincides with the homomorphism of topological (ker 0)-algebras

(ker 0){s} — (ker O){s}{T'} = (ker 0){s, T}, s~ s+T.

The paper is organized as follows. In Section 1 we collect and review essential definitions and results
on the classes of topological groups, rings and modules which are relevant in the context of Kambayashi’s
definition of affine ind-schemes. In Section 2, we develop the basic algebraic theory of restricted expo-
nential homomorphisms and their correspondence with topologically integrable iterated higher deriva-
tions. Section 3 is devoted to the geometric side of the picture: there, for the convenience of the reader,
we first review the main steps of the construction of the affine ind-scheme associated to a linearly topolo-
gized complete ring, and then, we illustrate the resulting anti-equivalence between restricted exponential
homomorphisms and additive group actions on affine ind-schemes.
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1. PRELIMINARIES ON TOPOLOGICAL GROUPS AND RINGS

In this section we recall and gather general results on topological groups, rings and modules. Standard
references for theses topics are for instance Bourbaki [3, Chapter I1I], [4, Chapter III] and Northcott [19].
Recall that a topological abelian group is an abelian group G endowed with a topology for which
the map G x G — G, (z,y) — x — y is continuous. The topology on G is called linear if G has a
fundamental system of open neighborhoods of its neutral element 0 consisting of open subgroups. In
what follows, we only consider topological abelian groups GG endowed with a linear topology which
satisfy the following additional condition:
(x) There exists a fundamental system of open neighborhoods of the neutral element 0 consisting
of a countable family of open subgroups.
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A topological group satisfying this property is in particular a first-countable topological space. For
simplicity, we refer them simply to as topological groups and we refer those fundamental systems of open
neighborhoods of the neutral element simply to as fundamental systems of open subgroups of G. Given
such a fundamental system (H,,),en parametrized by the set N of non-negative integers, we henceforth
also always assume in addition that Hy = G and that H,,, C H,, whenever m > n.

A continuous homomorphism f: G — G’ between topological groups is refered to as a homomor-
phism of topological groups. Note that such a homomorphism is automatically uniformly continuous in
the sense of [3, I1.2.1].

1.1. Separated completions of topological groups. A topological group G is separated as a topological
space if and only if the intersection of all open subgroups of GG consists of the neutral element O only,
hence, since every open subgroup of a topological group is also closed [3, I1I.2.1 Corollary to Proposition
4], if and only if {0} is a closed subset of G.

Given a topological group G, the collection of topological groups G/ H, where H ranges through the
set I' of open subgroups of G, together with the canonical surjective homomorphisms py ;r: G/H' —
G/H whenever H' C H form an inverse system of topological groups when each G/H is endowed
with the quotient topology, which is the discrete one as H is open. Note that with respect to these
topologies, the canonical homomorphisms pr: G — G/H, H € T', are homomorphisms of topological
groups. The limit G= gn Her G/ H of this system endowed with the inverse limit topology is a linearly

topologized abelian group. We denote by py : GG /H, H € T, the associated canonical continuous

homomorphisms and by ¢: G — G the continuous homomorphism induced by the homomorphisms
pu:G—G/H,HeT.

Proposition 1.1. Let G be a topological group and let (H,,)ncn be a fundamental system open subgroups
of G. Then the following hold:

1) The group Gisa separated topological group canonically isomorphic to the group I'&HneN G/H,
endowed with the inverse limit topology,

2) The canonical projections pyy : G- G /H are surjective homomorphisms of topological groups,

3) The canonical map c¢: G — Gisa homomorphism of topological groups whose image is a dense
subgroup of G and whose kernel is equal to the closure of {0} in G. Furthermore, the induced morphism
of topological groups c: G — ¢(Q) is open.

Proof. Since all the G/H are endowed with the discrete topology, {0} is closed in G/H and so, {0} is
closed in G by definition of the inverse limit topology. This yields that G is separated. Since (H,,)nen
is a cofinal subset of I', the canonical homomorphism G — hmne G/H,, is an isomorphism of topo-

logical groups. A countable fundamental system of open subgroups of G is given by the kernels of
the projections py,, n € N. This shows that Gisa topological group in our sense. Since each
pog: G/H — G/H, H /H' € T, is surjective and (H,,)nen is a countable cofinal subset of T,
by Mittag-Leffler theorem [3, I1.3.5 Corollary I], the canonical homomorphisms Dy : GG /H are all
surjective. Assertion 3) is [3, I11.7.3 Proposition 2]. ]

Definition 1.2. The topological group G is called the separated completion of the topological group
GG. We say that a topological group is complete if the canonical homomorphism ¢: G — G is an
isomorphism of topological groups.

The separated separated completion c: G — G is characterized by the following universal property
[3, 1I1.3.4 Proposotion 8]: For every homomorphism of topological groups f: G — G" where G" i
complete, there exists a unique homomorphism of topological groups f G — G" such that f= f oc.
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Remark 1.3. A separated topological group G is metrizable. Indeed, given a countable fundamental
system of open subgroups (H,,),en, @ metric d inducing the topology on G is for instance defined by

d(z,1) 0 ifx=y
,Y) = .
o ifx—y e Hy\ Hyp1.

For such a group, the notion of completeness of Definition 1.2 is equivalent to the fact that the metric
space (G, d) is a complete in the usual sense, see also Remark 1.7 below.

Proposition 1.4. Let G and G’ be topological groups with respective separated completions c: G — G
and c: G' — G'. Then for every homomorphism of topological groups h: G — G’ there exists a unique
homomorphism of topological groups h: G — G suchthatd oh =hoec.

Conversely, every homomorphism of topological groups h:G — Gis uniquely determined by its
restriction ho c: G — G’ to G.

Proof. The first assertion is an immediate consequence of the universal property of separated completion.
The second assertion follows from the fact that the image of the separated completion homomorphism
c¢: G — G is dense. O

Lemma 1.5. Let (G,,)nen be an inverse system of complete topological groups with surjective transition
homomorphisms py, n,: G, — Gy, for every m > n > 0. Then the limit G = @nEN G, endowed with
the inverse limit topology is a complete topological group and each canonical projection p,: G — G,
is a surjective homomorphism of topological groups.

Proof. The fact that G endowed with the inverse limit topology is a linearly topologized abelian group
and the fact that the canonical projections p,,: G — G, are continous homomorphisms are clear. The
surjectivity of p,, follows again from Mittag-Leffler theorem [3, I1.3.5 Corollary I]. A countable fun-
damental system of open subgroups of G is given for instance by the collection of inverse images of
such fundamental systems of each G,, by the homomorphisms p,,. Finally, since each G, is complete, it
follows from [3, I1.3.5 Corollary to Proposition 10] that G is complete. U

1.2. Convergence and summability in topological groups.

Definition 1.6. Let GG be a topological group and let (z;);cr be a family of elements of G parametrized
by a countable infinite index set /. For every finite subset J C I, set s; = s,;((2i)icr) = > ;e5 2 € G.

a) The family (z;);es is said to be Cauchy if for every open subgroup H of G there exists a finite
subset J(H ) of I such that x; — z; € H foralli,j € I\ J(H).

b) The family (x;);cs is said to converge to an element = € G if for every open subgroup H of G
there exists a finite subset J(H ) such that x; —x € H foralli € I\ J(n).

¢) The family (x;);er is said to be summable of sum s € G if for every open subgroup H of G there
exists a finite subset J(H) C I such that s; — s € H for every every finite subset J O J(H) of I.

If G is separated then an element x € G to which a family (z;);c; converges is unique if it exists,
we call it the limit of the family (z;);c;. We say that a family (z;);c is convergent if it converges to an
element x € G. Similarly, an element s € G such that (z;);c; is summable of sum s € G is unique if it
exists. We call it the sum of the family (z;);ec; and we write s = >,/ ;.

Proposition 1.7. ([4, I11.2.6 Proposition 5] For a separated topological group G, the following conditions
are equivalent:

a) G is a complete topological group,

b) Every Cauchy family (x;);c1 of elements of G is convergent in G,

¢) Every family (z;);c1 of element of G which converges to 0 is summable in G.

Definition 1.8. Let G and G’ be topological groups, let f,,: G — G’, n € N, be a sequence of homo-
momorphisms of groups and let f: G — G’ be a homomorphism of groups.
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a) The sequence ( f,,)nen is said to converge pointwise to f if for every g € G and every open subgroup
H' of 7, there exists an index ng such that f,,(g) — f(g) € H' for every integer n > ny,

b) The sequence (fy,)nen is said to converge continuously to f if every f,, n € N, is continuous and
for every g € G and every open subgroup H' of G, there exists an open subgroup H of G and an index
ng such that f,, (g + z) — f(g + ) € H' for every element x € H and every integer n > ny.

Clearly, a sequence (f,,)nen Which converges continuously to a homomorphism f converges point-
wise to this homomorphism.

Lemma 1.9. Let G be a topological group, let G' be separated topological group and let f,: G — G,
n € N, be a sequence of homomorphisms of topological groups. Then the following properties are
equivalent:

a) The sequence (fy)nen converges continuously to a homomorphism f: G — G,

b) There exists a homomorphism of topological groups f: G — G’ such that the sequence f, — f
converges continuously to the zero homomorphism,

¢) The sequence ( fp,)nen is pointwise convergent to a homomorphism of topological groups f: G —
G’, and for every open subgroup H' of G', there exists an open subgroup H of G and an integer ng > 0
such that (f, — f)(H) C H' for every n > ny.

In particular, if a sequence ( fr,)nen of homomorphisms of topological groups converges continuously
to a homomorphism f: G — G, then f is continuous.

Proof. Denote by (hy,)nen the sequence of group homomorphisms defined by h,, = f,, — f for every
n € N. The implication b) = a) is clear. Conversely, assume that the sequence (f,,)nen converges
continuously to a homomorphism f: G — G’. Applying the definition of continuous convergence to the
point 0 of G, it follows that for every open subgroup H' of G’, there exists an open subgroup Hy of G
such that (f,, — f)(Hy) C H' for all sufficiently large n. On the other hand, since f;, is continuous for
every n, there exists an open subgroup Hs(n) of G such that f,,(H2(n)) C H'. Choosing n sufficiently
large, we have — f (z) = (fn(x)—f(2))— fn(x) € H forevery x € H = HiNHs(n). Thus f(H) C H’
which shows that f is continuous at 0, hence continuous since it is a homomorphism of groups. Then
(hn)nen is a sequence of homomorphisms of topological groups which converges continuously to the
zero homomorphism. Thus, a) implies b).

Now assume that for some homomorphism of topological groups f the sequence h,, = f, — f,n € N,
converges continuously to the zero homomorphism. Applying the definition of continuous convergence
to the element 0 € G, we conclude that there exist an open subgroup H of GG and an integer ng such that
hn(H) C H' for every n > ng. So b) implies ¢). Conversely, assume that ¢) holds, let H' be an open
subgroup of G’ and let ¢ be an element of GG. Since by hypothesis the sequence (f,,(g))nen converges to
an element ¢’ of G, there exists an integer nq > 0 such that f,,(g) — ¢’ € H' for every n > n;. It follows
that f(g) — ¢ = f(g9) — fu(g9) + fn(g) — ¢’ belongs to H’, hence that ¢ = f(g) since G’ is separated.
This implies in turn that the sequence (h,,(g))nen converges to 0 in G’, so that there exists an integer
ns > 0 such that h,(g) € H' for every n > ns. Since on the other hand there exists by hypothesis an
open subgroup H of G and an integer n3 > 0 such that h,,(H) C H' for every n > ns, we conclude
that h,, (g9 + H) C H' for every n > max(nsg, n3). So the sequence (hy,)nen converges continuously to
0, which shows that c) implies b). ]

Lemma 1.10. Let G be a topological group and let G be a separated topological group with respective
separated completions ¢: G — Gand d: G — G. Let fn G — G, n e N be a sequence of
homomorphisms of topological groups, let fn =cdof,:G— G, n €N, and let fn GG ne N,
be the sequence of homomorphisms of topological groups deduced from the sequence ( fn)neN by the
universal property of the separated completion.

Ifthe sequence (fn)nen converges continuously to a homomorphism f: G — G' then the sequences
( fn)neN and ( fn)neN converges continuously respectively to the homomorphlsm of topologlcal groups
f = ¢ o f and to the homomorphism of topological groups f G — G’ deduced from f by the universal
property of the separated completion.
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Proof. Note that fn and fn are homomorphisms of topological groups for every n € N. By Lemma
1.9, f is a homomorphism of topological groups so that fvand fare homomorphisms of topological
groups as well. Let g € (G and let H' be an open subgroup of G'. Then H' = ¢ 71(1/1?’ ) is an open
subgroup of G’. Since (f,,)nen converges continuously to f, there exists an open subgroup H of G and
an index ng such that f,, (g + z) — f(g + =) € H' for every element x € H and every integer n > ny.
Since ¢/(H') C H', this implies that falg+z)— flg+2) € H', which shows that (fn)nen converges
continuously to f Replacing G’ by @ the sequence f,, by the sequence fn and the homomorphism f by
f we can now assume that G’ is complete By Lemma 1.9, it remains to show that the sequence of group
homomorphlsms (hn)neN defined by h fn f converges continuously to the zero homomorphism on
G. By definition of (hn)neN, continuous convergence holds in restriction to the subgroup Gy = ¢(G) of
G. Since h is uniformly continuous and G| is dense in G it follows that (hn)neN converges pointwise
to the zero homomorphism on G. Let H be an open subgroup of G’. Then there exist an integer ny and
open subgroup H of G such that ?Ln(z) € H' forevery z € Hy = Gy N H and every n > ng. Since
Hy is dense in H and H is a first-countable topological space, for every x € H, there exists a sequence
(Zn)nen of elements of Hy which converges to x. Setting y,, = = — x,, the sequence (ﬁi(yj))(z;j)elw

converges to 0 in G'. This implies in particular that there exists a strictly increasing map ¢: N — N and
an integer ny > 0 such that hy, (y,(n)) € H' forevery n > ny. It follows that for every n > max(ng, n1),

T (2) = /f;n(l'w(n) ) +?Ln(y¢(n)) belong to H', which shows, by Lemma 1.9 ¢), that the sequence (%, )nen
converges continuously to the zero homomorphism on G. O

Corollary 1.11. Let G be a topological group and let G' be separated topological group with separated
completion ' : G' — G'. Let hn: G — G', n €N, be a sequence of homomorphisms of topological
groups which converges continuously to the zero homomorphism. Then the sequence of homomorphisms
SN = ZnNzo c o hy, N €N, converges continuously to the homomorphism

S:Zc’ohn:G%é\’, g'—)ZC/h

neN neN

Proof. Let hy, = ¢ o hp: G — G. First note that since for every g € G the sequence (hy,(g))nen
converges to 0 in G, it follows from Proposition 1.7 that the family (7Ln (9))nen of elements of G is
summable, so that the map s is indeed well defined. Since every Iy isa homomorphism of groups, for
every gi,¢g2 € G and every integer N € N, we have sy (g1 + 92) = sn(g1) + sn(g2). Since G’ is
separated, this implies that s(g1 + g2) = s(g1) + s(g2), showing that s: G — Gis a homomorphism.
Let H' be an open subgroup of G'. Since the sequence (ﬁn)neN converges continuously to the zero
homomorphism, Lemma 1.9 implies that there exists an integer ng > 0 and an open subgroup H; of G
such that h (Hy) CH H' for every n > ng. Since for every n € N, h is contlnuous hence in particular
continuous at 0, there exists an open subgroup Hs of G such that hn(Hg) c H' for everyn =0,...,ng.
Putting H = Hy N Hy, we have h,(H) C H' for every n € N, which implies in turn that sy(H) C 7L
for every N € N. Since H H'is an open subgroup of G, it also closed. It follows that for every g € H, the

limit s(g) of the sequence (s,,(g))nen belong to H H', so that s(H)yC H H'. This shows that s is continuous
at 0, hence continuous since it is a homomorphism. U

1.3. Recollection on topological rings and modules. Recall that a commutative topological ring A is
a topological abelian group endowed with a ring structure for which the multiplication 4 x A — A
is continuous. A module M over a topological ring A is a called a topological A-module if it is a
topological abelian group and the scalar multiplication A x M — M is continuous, where A x M is
endowed with product topology. In the sequel, unless otherwise specified, the term topological ring (resp.
topological module) will refer to a commutative topological ring A (resp. topological module M over
some topological ring .A) endowed with a linear topology for which there exists a fundamental system of
neighbourhoods of 0 consisting of a countable family (a,,),cn of ideals of A (resp. endowed with a linear
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topology with a fundamental system of neighbourhoods of 0 consisting of a countable family of open
submodules (M, )nen). We also always assume that ay = A and that a,,, C a,, whenever m > m and
similarly that My = M and M,, C M, for whenever m > n. A continuous homomorphism f: A —
A’ between topological rings is refered to as a homomorphism of topological rings. We denote by
CHom(.A, B) the subgroup of the abelian group Hom(.A, B3) consisting of continuous homomorphisms.
Similarly, a continuous homomorphism of topological modules f: M — N over a topological ring
A is refered to as a homomorphism of topological A-modules and we denote by CHom 4 (M, N) the
A-module of such continuous homomorphisms.

Given a topological ring A (resp. a topological module M over a topological ring .A) the separated
completion Aof A (resp. M of M ) as a topological group carries the structure of a topological ring
(resp.of a topological .4-module) and the canonical homomorphism of topological groups c¢: A — A
(resp. c: M — M ) is a homomorphism of topological rings (resp. of topological A-modules). We say
that A (resp. M) is a complete topological ring (resp. a complete topological A-module) if ¢: A — A
(resp. c: M — ]\/4\) is an isomorphism.

For every complete topological ring B the composition with ¢: A4 — A induces an isomorphism

¢*: CHom(A, B) — CHom(A,B), f+ foc.

Let A be a topological ring and let B be a complete topological ring, with fundamental systems (a,,)nen
and (b, )nen of open neighborhoods of 0, respectively. Set A, = A/a,, and B,, = B/b,, so that we
have A = m _ Apand B = lim o By,. Every homomorphism of topological rings f: A = Bis
equivalently described by an inverse system of continuous homomorphisms f, : A= B,,. The kernel
of each such f,,, being an open ideal of A, it contains some open ideal a,, and so, f,, factors through a
homomorphism f, ,,: A, — Bp,. Summing up, we have:

CHom(A, B) = CHom(lim _ Ay, lim _ By,) lim _ (CHom(lim _ Ay, By))

@mGN(MnGN Hom(A"’ Bm))
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1.3.1. Completed tensor product. We recall basic properties of completed tensor products of topological
modules, see [4, III] and [10, 0.7.7].

Definition 1.12. ([4, III Exercise 28]) Let M and N be topological modules over a topological ring A.

The completed tensor product M& 4N of M and N over A is the separated completion M/®7N of the
tensor product M ® 4 IN with respect to the linear topology generated by open neighborhoods of 0 of the
form U @ N + M ® V, where U and V run respectively through the set of open .4-submodules of M
and N.

We denote by 7: M x N — M®& 4N the composition of the canonical homomorphism of topological
A-modules M x N = M ® 4 N, where M x N is endowed with the product topology, with the separated
completion homomorphism ¢: M @4 N — M@ 4N

It follows from the universal properties of the tensor product and of the separated completion that
the canonical homomorphism of topological A-modules 7: M x N — M® 4N satisfies the following
universal property: For every continuous A-bilinear homomorphism ®: M x N — FE into a complete
topological A-module E, there exists a unique homomorphism of topological A-modules p: M AN —
E such that ® = ¢ o 7. As for the usual tensor product, this universal property implies the following
associativity result whose proof is a direct adaptati