Statistical Query Complexity of Manifold Estimation
Résumé
This paper studies the statistical query (SQ) complexity of estimating $d$-dimensional submanifolds in $\mathbb{R}^n$. We propose a purely geometric algorithm called Manifold Propagation, that reduces the problem to three natural geometric routines: projection, tangent space estimation, and point detection. We then provide constructions of these geometric routines in the SQ framework. Given an adversarial $\mathrm{STAT}(\tau)$ oracle and a target Hausdorff distance precision $\varepsilon = \Omega(\tau^{2 / (d + 1)})$, the resulting SQ manifold reconstruction algorithm has query complexity $O(n \operatorname{polylog}(n) \varepsilon^{-d / 2})$, which is proved to be nearly optimal. In the process, we establish low-rank matrix completion results for SQ's and lower bounds for randomized SQ estimators in general metric spaces.
Fichier principal
Statistical Query Complexity of Manifold Estimation.pdf (1.16 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...