Adversarial Manifold Estimation - Archive ouverte HAL
Article Dans Une Revue Foundations of Computational Mathematics Année : 2022

Adversarial Manifold Estimation

Résumé

This paper studies the statistical query (SQ) complexity of estimating $d$-dimensional submanifolds in $\mathbb{R}^n$. We propose a purely geometric algorithm called Manifold Propagation, that reduces the problem to three natural geometric routines: projection, tangent space estimation, and point detection. We then provide constructions of these geometric routines in the SQ framework. Given an adversarial $\mathrm{STAT}(\tau)$ oracle and a target Hausdorff distance precision $\varepsilon = \Omega(\tau^{2 / (d + 1)})$, the resulting SQ manifold reconstruction algorithm has query complexity $O(n \operatorname{polylog}(n) \varepsilon^{-d / 2})$, which is proved to be nearly optimal. In the process, we establish low-rank matrix completion results for SQ's and lower bounds for randomized SQ estimators in general metric spaces.
Fichier principal
Vignette du fichier
Adversarial Manifold Estimation.pdf (1014.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02995288 , version 1 (09-11-2020)
hal-02995288 , version 2 (12-10-2022)

Identifiants

  • HAL Id : hal-02995288 , version 2

Citer

Eddie Aamari, Alexander Knop. Adversarial Manifold Estimation. Foundations of Computational Mathematics, 2022. ⟨hal-02995288v2⟩
80 Consultations
150 Téléchargements

Partager

More