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Abstract

This paper studies the statistical query (SQ) complexity of estimating d-dimensional sub-
manifolds in Rn. We propose a purely geometric algorithm called Manifold Propagation, that
reduces the problem to three natural geometric routines: projection, tangent space estima-
tion, and point detection. We then provide constructions of these geometric routines in the
SQ framework. Given an adversarial STAT(τ) oracle and a target Hausdorff distance preci-
sion ε = Ω(τ2/(d+1)), the resulting SQ manifold reconstruction algorithm has query complexity
O(n polylog(n)ε−d/2), which is proved to be nearly optimal. In the process, we establish low-
rank matrix completion results for SQ’s and lower bounds for randomized SQ estimators in
general metric spaces.

1 Introduction

In the realm of massive data acquisition, the curse of dimensionality phenomena led to major
developments of computationally efficient statistical and machine learning techniques. Among
them, topological data analysis, which refers to a collection of statistical methods that find intrinsic
structure in data, has recently garnered a lot of attention and proved fruitful in both theoretical and
applied areas [Was18]. This field is based upon the idea that data described with a huge number
of features n may be subject to redundancies and correlations, so that they include only d � n
intrinsic and informative degrees of freedom. This low-dimensional paradigm naturally leads to
the problem of recovering this intrinsic structure, for data visualization or to mitigate the curse of
dimensionality. This problem is usually referred to as support estimation [CF97] or dimensionality
reduction [LV07].

Linear dimensionality reduction techniques, such as Principal Component Analysis and LASSO-
types methods [HTF09], assume that the data of interest lie on a low-dimensional linear subspace.
This assumption appears to be often too strong in practice, so that one may use problem-specific
featurization techniques, or other non-linear methods. On the other hand, non-linear dimension-
ality reduction techniques such as Isomap [Ten97], Local Linear Embedding [RS00] and Maximum
Variance Unfolding [ACP13], work under the relaxed assumption that the data of interest lie on an
embedded d-dimensional manifold of Rn with d� n, hence allowing natively for non-linearities.

1.1 Context

Geometric Inference from Samples. The classical general statistical framework, based on
data points, is usually referred to as PAC-learning [Val84] or sample framework. In this setting,
the learner is given a set {x1, . . . , xs} of s samples drawn, most commonly independently, from an
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unknown distribution D. From these samples, the learner then aims at estimating a parameter of
interest θ(D), which in our context will naturally be taken as the support θ(D) = Supp(D) ⊆ Rn.
As described above, for this problem to make sense, D shall be assumed to be concentrated on
a low-dimensional structure, i.e a d-dimensional submanifold with d � n. Here, the precision is
usually measured with the Hausdorff distance, a L∞-type distance between compact subsets of Rn.

The Hausdorff estimation of manifolds in the noiseless sample framework is now well understood.
The first minimax manifold estimation results in the sample framework are due to [GPPVW12b,
GPPVW12a]. At the core of their work is the reach, a scale parameter that quantitatively encodes
C2 regularity of the unknown manifold M = Supp(D) ⊆ Rn, and that allows measuring the
typical scale at which M looks like Rd [AKC+19] (see Definition 6). Under reach assumptions, the
estimator of [GPPVW12a] achieves a worst-case average precision at most O((log s/s)2/d), but with
a computationally intractable method. This rate was later shown to be log-tight optimal by [KZ15].
Given a target precision ε > 0, these results hence reformulate to yield sample complexity of order
s = O(ε−d/2/ log(1/ε)). Later, [AL18] gave a constructive estimator combining local PCA and
the computational geometry algorithm from [BG14], which outputs a triangulation of the sample
points in polynomial time, and linear time in the ambient dimension n. More recently, [Div20]
proposed a computationally tractable minimax adaptive method that automatically selects the
intrinsic dimension and reach. Let us also mention that by using local polynomials, faster sample
rates can also be achieved when the manifolds are smoother than C2 [AL19].

Manifold estimation in the presence of noise is by far less understood. The only known sta-
tistical method able to handle samples corrupted with additive noise is intractable [GPPVW12b].
Currently, the best algorithmically tractable estimator in this context requires the noise level to
vanish fast enough as the sample size grows [PS19]. To date, the only computationally tractable
sample method that truly is robust to some type of noise is due to [AL18], in which the authors
consider the so-called clutter noise model introduced by [GPPVW12a]. In this model, the samples
are generated by a mixture of a distribution D on M and a uniform distribution in the ambient
space, with respective coefficients β ∈ (0, 1] and (1 − β). That is, the s-sample consists of unla-
belled points in Rn, with approximately βs informative points on M and (1− β)s non-informative
ambient clutter points. In [GPPVW12a, KZ15], the optimal sample complexity was shown to be
s = O(β−1ε−d/2/ log(1/ε)), but this rate was obtained with an intractable method. On the other
hand, [AL18] proposed to label the non-informative data points, which allows to apply a clutter-
free estimation procedure to the remaining decluttered points. This results in a computationally
tractable minimax optimal method, with an additional computational cost due to the decluttering.
However, the success of this extra step relies heavily on the assumption that the ambient clutter is
uniform.

Overall, the existing reasonable manifold estimation methods are heavily attached to the indi-
vidual data points and do not tolerate much noise, as the change of a single point may have the
method fail completely. Let us mention from now that in sharp contrast, the statistical query frame-
work considered in this work is inherently robust to clutter noise without an artificial decluttering,
no matter the clutter noise distribution (see Remark 4).

Private Learning. Beyond the classical sample complexity, the modern practice of statistics
raised concerns that naturally bring up to consider quantitative and qualitative estimation con-
straints [Wai14]. For instance, in many applications of learning methods, the studied data is
contributed by individuals, and features represent their (possibly) private characteristics such as
gender, race, or health history. Hence, it is essential not to reveal too much information about any
particular individual. The seminal paper [KLN+11] on this topic introduces the notion of private
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learning, a learning framework inspired by differentially private algorithms [DMNS06]. Given sam-
ples {x1, . . . , xs}, this framework imposes privacy to a learner by requiring it not to be significantly
affected if a particular sample xi is replaced with an arbitrary x′i.

In contrast to precision, which is analyzed with respect to a model, the level of differential
privacy is a worst-case notion. Hence, when analyzing the privacy guarantees of a learner, no
assumption should be made on the underlying generative model, since such an assumption could
fall apart in the presence of background knowledge that the adversary might have: conditioned on
this background knowledge, the model may change drastically.

There are two main types of differentially private algorithms. Global differential privacy as-
sumes that there is a trusted entity (i.e. a central data aggregator) that can give private an-
swers to database queries [KLN+11]. This approach was used by LinkedIn to share advertisements
data [RSP+20], by Uber’s system for internal analytics [JNS18], and is about to be implemented
by the U.S. Census Bureau for publishing data [Jar19].

In contrast, local differential privacy, as defined by [EGS03, KLN+11], even further restricts
the learners. It requires that even if an adversary has access to the personal revealed data of
individuals, this adversary will still be unable to learn too much about the user’s actual personal
data. The simplest example of a locally private learning protocol was originally introduced to
encourage truthfulness in surveys [War65]. In local differential privacy, a trusted entity is not
necessarily present, and each individual protects their own privacy, for instance, by adding noise
to their data separately. On the applied side, Google’s RAPPOR used this approach on their
Chrome browser [EPK14], Apple for iOS and MacOS diagnostics [Tea17], and Microsoft for update
telemetry data in Windows 10 [DKY17].

Statistical Queries. Instead of sample complexity, this paper considers the notion of statistical
query complexity, which was proved to be equivalent to the locally private learning complexity
up to a polynomial factor [KLN+11], and that naturally enforces robustness to clutter noise (see
Remark 4).

First introduced by Kearns [Kea98], the statistical query (SQ) framework is a restriction of
PAC-learning, where the learner is only allowed to obtain approximate averages of the unknown
distribution D via an adversarial oracle, but cannot see any sample. That is, given a tolerance
parameter τ > 0, a STAT(τ) oracle for the distribution D accepts functions r : Rn → [−1, 1]
as queries from the learner, and can answer any value a ∈ R such that |Ex∼D[r(x)] − a| ≤ τ .
Informally, the fact that the oracle is adversarial is the counterpart to the fact that differential
privacy is a worst-case notion. We emphasize that in the statistical query framework, estimators
(or learners) are only given access to such an oracle, and not to the data themselves. Limiting the
learner’s accessible information to adversarially perturbed averages both restricts the range of the
usable algorithms, and effectively forces them to be robust and efficient.

Kearns showed that any statistical query learner can be transformed into a classical PAC-
learning algorithm with robustness to random classification noise [Kea98]. Conversely, many com-
monly used PAC-learning algorithms appeared to have statistical query implementations [Kea98,
Byl94, DV08]. Though, Kearns also showed that there are information-theoretic obstacles that are
specific to the statistical query framework; e.g. parity functions require an exponential number of
queries [Kea98]. In other words, PAC-learning is strictly stronger than SQ-learning.

We have already mentioned the connection between statistical queries and private learning. On
top of this, the simplicity of the SQ framework allowed its application in several other fields, such
as (theoretical and practical) learning algorithms for distributed data systems. Indeed, a problem
has an efficient SQ algorithm if and only if it has an efficient distributed learner [BD98, SVW16].
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Another incentive to study statistical queries arises from quantum computations: general quantum
PAC learners can perform complex entangling measurements which do not seem realizable for
near-term quantum computers. To overcome this issue, Arunachalam, Grilo, and Yuen [AGY20]
introduced the notion of quantum statistical query learning, for which practical implementations
would only require to measure a single quantum state at a time.

Overall, certainly the most interesting property of statistical query algorithms is the possibility
of proving unconditional lower bounds on the complexity of statistical problems. Considering
the number of learning algorithms that are implementable in the statistical query framework,
these lower bounds provide strong evidence of hardness of these problems. Moreover, for many
learning problems, the known unconditional lower bounds for the statistical query framework closely
match the known computational complexity upper bounds. For instance, [BFJ+94] proved that
SQ algorithms require a quasi-polynomial number of queries to learn DNF’s, which matches the
running time upper bound by Verbeurgt [Ver90]. Similar results were proved by [FGR+17] for the
planted clique problem, and by [DKS17] for high-dimensional Gaussian mixtures learning. Finally,
some problem-specific statistical query lower bounds directly imply lower bounds against general
convex relaxations of Boolean constraint satisfaction problems [FPV18, FGV17], lower bounds on
approximation of Boolean functions by polynomials [DFT+15], and lower bounds on dimension
complexity of Boolean function classes [She08, FGV17].

1.2 Contribution

This paper establishes nearly matching upper and lower bounds on the statistical query complexity
of manifold learning. As a corollary, it provides an efficient and natural noise-tolerant sample man-
ifold estimation technique; as another side-product, it also provides, to the best of our knowledge,
the first private manifold estimation method. In some regimes of the parameters, it also exhibits
another example of a natural statistical problem with different sample and statistical query com-
plexities.

1.2.1 Main Results

Upper bounds. The main contribution of this paper is the construction of a low-complexity
deterministic SQ algorithm that estimates the compact connected d-dimensional C2-manifolds M ⊆
Rn with reach rchM ≥ rchmin > 0 (i.e. curvature roughly bounded by 1/rchmin), from distributions
D with support Supp(D) = M that have a Lipschitz density function bounded below by fmin > 0
on M (see Definition 10). The estimation error is measured with the Hausdorff distance, which
plays the role of a sup-norm between compact subsets of Rn.

In Proposition 11, we prove that without any prior information about the location of the
manifolds, SQ algorithms cannot estimate them, even with an unlimited number of queries. It
is worth noting that this phenomenon is specific to the SQ framework and does not occur in the
sample framework. We consider two ways to “localize” the model. Namely, we either assume: that
the manifold contains the origin (fixed point model), or that the manifold lies within the ball of
radius R > 0 centered at the origin (bounding ball model).

[Fixed point model] Theorem 22 presents a deterministic algorithm which, given the information
that 0 ∈M , achieves precision ε using

q = O

(
n polylog(n)

fmin

(
1

rchminε

)d/2)
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queries to a STAT(τ) oracle, provided that ε = Ω
(

rchmin

(
τ

fminrchdmin

)2/(d+1)
)
, and τ =

O(fminrchdmin).

[Bounding ball model] Theorem 25 shows that the same estimation problem can still be solved
using O(n log(R/ε)) extra queries to STAT(τ) if M is only assumed to be contained in the
ball B(0, R). That is, it shows that manifold estimation with precision ε in the bounding ball
model can be done deterministically with

q = O

(
n log

(
R

ε

)
+
n polylog(n)

fmin

(
1

rchminε

)d/2)
queries to a STAT(τ) oracle, under similar conditions as above.

Notice the limited quasi-linear dependency in the ambient dimension n. Actually, in the fixed
point model, the given query complexity corresponds to the sample complexity up the n polylog(n)
factor [KZ15, Div20]. This apparent discrepancy can be explained by the fact that a single sample
of M ⊆ Rn corresponds to n coordinates, while statistical queries are forced to be real-valued. More
interestingly, the extra cost O(n log(R/ε)) in the bounding ball model is specific to the statistical
query framework and does not appear in the sample framework [KZ15], although this term would
dominate only in the regime where R is exponentially bigger than rchmin.

The insights underlying these upper bounds are described in Sections 1.2.2 and 1.2.3, and the
formal statements in Sections 3 to 5.

Differentially private manifold estimation. As a direct corollary, from [KLN+11, Theo-
rem 5.7], these SQ upper bounds transform into private learning upper bounds. They yield, to
the best of our knowledge, the first private learning algorithms for manifold estimation. More
precisely, we proved that for any ε, there is a local δ-differentially1 private algorithm estimating
the d-dimensional C2-manifolds M with precision ε that requires no more than

sδ-private(ε) = Õ

(
n

(fminrchdmin)3δ2

(
rchmin

ε

) 3d+2
2

)

samples in the fixed point model, where Õ hides the logarithmic terms of the complexity.

Lower bounds. Complementing these upper bounds on the statistical query complexity of man-
ifold estimation, we prove nearly matching lower bounds. To examine whether or not randomness
may facilitate manifold learning, the below lower bounds apply to randomized SQ algorithms, which
are allowed to use randomness and to fail with probability at most α ∈ [0, 1). Recall that the above
upper bounds stand for deterministic (α = 0) SQ algorithms.

[Fixed point model] Theorem 24 asserts that any randomized SQ algorithm estimating M with
precision ε and probability of error at most α in the fixed point model requires at least

q = Ω

 n
fmin

(
1

rchminε

)d/2
+ log(1− α)

log
(
1 + 1

τ

)


queries to a STAT(τ) oracle.

1As the present paper uses ε for precision, we use δ as the privacy parameter, contrary to the standard notation.
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[Bounding ball model] Theorem 27 states that any randomized SQ algorithm estimating M
with precision ε and probability of error at most α in the bounding ball model requires at
least

q = Ω

n log
(
R
ε

)
+ n

fmin

(
1

rchminε

)d/2
+ log(1− α)

log
(
1 + 1

τ

)


queries to a STAT(τ) oracle.

In words, this proves that for any fixed probability of error α < 1, the above manifold estimators
are optimal up to a polylog(n, 1/τ) factor. Hence, randomized algorithms are not significantly more
powerful than deterministic ones in these models.

Finally, we establish informational lower bounds (Theorems 23 and 26) that advocate for the
necessity of the requirements on ε and τ made in the upper bounds. More precisely, they assert

that if either ε = o

(
rchmin

(
τ

fminrchdmin

)2/d
)

, or τ = Ω(fminrchdmin) and ε = o(rchmin) , then no SQ

algorithm (even randomized) can estimate manifolds in these models with precision ε, regardless
of its number of queries.

The high level exposition of these lower bounds stands in Section 1.2.4, and all the necessary
details and formal statements in Section 5.

1.2.2 Manifold Propagation Algorithm

The core component of the upper bounds (Theorems 22 and 25) is a purely geometric algorithm,
which we call Manifold Propagation, parametrized by an initialization method x̂0 and two rou-
tines T̂ (·) and π̂(·) related to the manifold M :

(Seed point) This initialization method finds a point x̂0 that is η-close to M , for some η ≥ 0.

(Tangent space) Given a point x0 that is η-close to M , this routine finds a linear subspace T̂ (x0)
that is (sin θ)-close to the tangent space TπM (x0)M at its projection πM (x0) (i.e. the closest
point on M), for some θ ≥ 0.

(Projection) Given a point x0 that is Λ-close to M , this routine finds a point π̂(x0) that is η-close
to its projection πM (x0), where Λ ≥ η.

Then, given a tuning scale parameter ∆ > 0, Manifold Propagation iteratively explores the
connected manifold M starting from the seed point, and constructs a Ω(∆)-sparse and O(∆)-dense
point cloud O of points close to M (see Theorem 15). This algorithm is reminiscent of breadth-first
search and can be roughly described as follows:

1. Start with the seed point x̂0 in the vicinity of the manifold and initialize a queue of points to
Q = {x̂0}, and the final output point cloud to O = ∅.

2. Pick a point x0 ∈ Q, remove x0 from Q and add it to O. Compute the approximate tangent
space T̂ (x0) of M at x0.

3. Consider a covering y1, . . . , yk of a sphere of radius ∆ in T̂ (x0). To avoid backtracking,
remove all of these points that are too close to (the already-visited) points from Q ∪ O.
To account for the linear approximation made and the past estimation errors, “project” the
remaining points yi’s on M with π̂(·) and add them to Q.
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4. If Q is empty, terminate and output O. Otherwise go to Step 2.

Note the importance of the proximity check of Step 3, without which the algorithm would not
terminate, even with infinitely precise routines.

Then, given such a point cloud O that forms a O(∆)-dense sample of M , existing algo-
rithms from computational geometry (Theorem 14) allow to reconstruct a manifold with precision
O(∆2/rchmin). This quadratic gain is made possible by the C2-smoothness of M [BG14, AL18].
Hence, running Manifold Propagation with step size ∆ = O(

√
rchMε) and applying Theorem 14

yields a dynamic method to estimate a manifold M with reach rchmin > 0. Namely, to estimate
M with precision ε in Hausdorff distance, it shows that it is sufficient to design routines for M
that have precision η = O(ε) for the seed point, sin θ = O(

√
ε/rchmin) for the tangent spaces, and

η = O(ε) for the projection.
To our knowledge, this provides the first computational geometric result involving the three

routines above only. It also does a single call to x̂0 for initialization, and provably no more than
O(Hd(M)/∆d) = O(Hd(M)/(rchminε)

d/2) calls to the routines π̂(·) and T̂ (·), where Hd(M) stands
for the surface area of M . In particular, this number of calls is blind to the ambient dimension.
Overall, Manifold Propagation manages to have this possible ambient dependency supported by
x̂0, T̂ (·) and π̂(·) only. See Section 3 for the formal statements and further discussion.

1.2.3 Statistical Query Algorithms for the Routines

In order to plug Manifold Propagation in the SQ framework, we then provide SQ implementations
of its geometric routines.

Projection Routine. As mentioned above, the projection routine should allow to find a point
π̂(x0) that is η-close to πM (x0), provided that x0 is Λ-close to M . To implement this using a
STAT(τ) oracle, we first note that the conditional expectation of D in the neighborhood of x0 has
small bias for estimating πM (x0). That is, ‖πM (x0) − Ex∼D [x |B(x0, h) ] ‖ is small for a properly
tuned bandwidth h (see Lemma 37). Hence, it is enough to estimate

mD(x0, h) = E
x∼D

[x |B(x0, h) ] = x0 + h
Ex∼D

[
(x−x0)
h · 1‖x−x0‖≤h

]
D(B(x0, h))

.

Written as a ratio of two means, one easily sees how to estimate mD(x0, h) in STAT(τ). The
denominator only requires one query r = 1B(x0,h) to the oracle. As about the numerator, which is
a n-dimensional mean vector, the naive approach that would query each coordinate of its integrand
separately would end up with the dimension-dependent precision

√
nτ in Euclidean distance. In-

stead, by using tight frames, an algorithm of Feldman, Guzmán, and Vempala [FGV17] allows to
get precision O(τ) in only 2n queries.
At the end of the day, we achieve precision η = O

(
Λ2/rchmin

)
with O(n) queries to STAT(τ),

provided that Λ = Ω

(
rchmin

(
τ

fminrchdmin

)1/(d+1)
)

(see Theorem 19).

Tangent Space Routine. Here, the tangent space routine should allow to estimate the tangent
space TπM (x0)M of M at πM (x0), provided that x0 is η-close to M . Inspired by the local Principal
Component Analysis that proved fruitful in the sample framework [AL18], we notice that the local
covariance matrix of D at x0

ΣD(x0, h) = E
x∼D

[
(x− x0)(x− x0)>

h2
1‖x−x0‖≤h

]
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allows to approximate TπM (x0)M . That is, ΣD(x0, h) is almost rank-d and its first d principal
components span a d-plane close to TπM (x0)M , for a properly tuned bandwidth h (see Lemma 38).
Next, aiming at estimating ΣD(x0, h) ∈ Rn×n in STAT(τ), we note that seeing it as a mean vector
of Rn2

and using tight frames [FGV17] directly would cost O(n2) queries for precision O(τ), but
would not exploit the low-rank (hence redundant) structure of ΣD(x0, h). Instead, we use matrix
compression arguments [FCP08] to present a new general SQ algorithm estimating low-rank mean
matrices (Lemma 43). This allows to mitigate the query complexity from O(n2) to O(dn log6(n))
while keeping precision O(τ) in Frobenius norm.
At the end of the day, coming back to our initial problem of tangent space estimation in STAT(τ),

we achieve precision sin θ = O
(√

η/rchmin

)
with O(dnpolylog(n)) queries to STAT(τ), provided

that η = Ω

(
rchmin

(
τ

fminrchdmin

)2/(d+1)
)

(see Theorem 20).

Seed Point Detection. Finally, the seed point x̂0 should be η-close to M . In the fixed point
model, this method is trivial since 0 ∈ M by assumption. In the bounding ball model, where it is
only assumed that M ⊆ B(0, R), we proceed in two stages:

� First, we use a divide and conquer strategy over B(0, R) (Theorem 44). The algorithm (SQ
Ambient Binary Search) recurses down over a discretization of B(0, R) with unions of small
balls, maintained to intersect M = Supp(D) by querying their indicator functions, i.e. by
checking that they have non-zero mass for D. It stops when there is only one ball left and
outputs its center x̂raw0 . Unfortunately, the output point x̂raw0 of this simple strategy might only

be O(rchmin

(
τ/(fminrchdmin)

)1/d
)-close to M , since this procedure does not use the C2-smoothness

of M .

� Starting from x̂raw0 , the algorithm applies iteratively the projection routine π̂(·) described above.
Since x̂raw0 is already close to M , the procedure is guaranteed to improve precision quadratically
at each step, and to output a point x̂0 that is η-close toM after a logarithmic number of iterations.

At the end of the day, we achieve precision η with O(n log(R/η)) queries to STAT(τ), provided

that η = Ω

(
rchmin

(
τ

fminrchdmin

)2/(d+1)
)

(see Theorem 21).

1.2.4 Lower Bound Techniques

The standard SQ lower bound techniques naturally involve distribution discrepancies such as
Kullback-Leibler or chi-squared [Fel17, DKS17]. However, these discrepancies appear to be poorly
suited to non-dominated statistical models such as manifolds ones. Indeed, two low-dimensional
submanifolds M0,M1 ⊆ Rn that are not equal would differ in a non-trivial area, yielding distribu-
tions are not absolutely continuous with respect to one another. This results in infinite Kullback-
Leibler and chi-squared divergences, and hence non-informative lower bounds.

To overcome this issue, we present a two-step technique — involving a computational and an
informational lower bound — that does not involve these quantities. The method applies in general
metric spaces (see Appendix G), although we shall limit its exposition and application to the case
of manifolds with Hausdorff distance in this introduction.

Computational Lower Bounds. Aiming at lower bounding the number q(ε) of queries neces-
sary to achieve precision ε, we observe that since a SQ algorithm should cope with any adversarial
oracle, it has to cope with the oracle that answers roundings of the true queried mean to the nearest
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integer multiple of τ in [−1, 1], which roughly writes as a = τ bEx∼D[r(x)]/τc. As this oracle only
generates (1 + 1/τ) different answers, any SQ manifold estimation algorithm that makes only q
queries to this discrete oracle produces at most N ≤ (1 + 1/τ)q possible outputs M̂ . Hence, if
this estimator has precision ε, these outputs should form an ε-covering of the manifold class of
interest M. Hence, deriving a lower bound on q = q(ε) ≥ logN (ε)/ log(1 + 1/τ) boils down to
deriving a lower bound on the ε-covering number ofM for the Hausdorff distance, or equivalently,
by duality, on its ε-packing number. This argument also extends to randomized SQ algorithms (see
Appendix G.2).

We then explicitly build ε-packings of the manifold classes associated to the models, with a
general combinatorial scheme (see Proposition 63) based on a single initial manifold M0. The
construction bumps M0 at many different locations, with bumps of height Ω(ε) scattered in all the
available (n − d) codimensions of space, as shown in Figure 1. Note that the C2-like assumption

Ω(ε)

M0 Ω(
√

rchminε)

M ′
0

Figure 1: Construction of an ε-packing of the manifold class by local bumping. Here, in dimension
n = 1 and codimension n − d = 1, each bump has the two options “upwards” and “downwards”
within each of the N � 1 locations, yielding 2N ε-separated manifolds.

rchM ≥ rchmin forces to spread each of these bumps on a ball of radius Ω(
√

rchminε). Intuitively,
in this construction, the larger the surface area Hd(M0) of the base manifold M0, the more room
to include many bumps on it, and hence the stronger the lower bound. Hence, in the bounding
ball model, we exhibit manifolds that can have large volume, while remaining in B(0, R) and with
reach rchM ≥ rchmin. This is done by gluing next to each other linkable widgets along a long path
in the cubic grid in B(0, R) (see Appendix H.2). Overall, this construction allows to get the correct
dependency in 1/fmin — which plays the role of a maximal volume, see Section 2.2.3 — in the
bounds.

[Fixed point model] If 0 ∈ M0, the above construction is possible while preserving the point
0 ∈ Rn within all the bumped manifolds, yielding the lower bound (Theorem 24).

[Bounding ball model] As in this model, no point is fixed, we build another type of ε-packing by
translating a base manifold M0 ⊆ B(0, R/2) in the ambient space by all the possible vectors
of an ε-packing of the ambient ball B(0, R/2), which has size Ω((R/ε)n). This yields the
first term of the lower bound, while the second term follows as described above, by locally
bumping a manifold M0 ⊆ B(0, R) (Theorem 27).

Informational Lower Bounds. In addition, forgetting about the number of queries SQ algo-
rithms may do, they have a limited precision ε given tolerance τ . Hence, aiming at lower bounding
this best precision ε(τ) achievable in STAT(τ), we notice that two distributions that are closer
than τ/2 in total variation distance allow an adversarial oracle to swap their respective answers,
and hence make them — and their supports — indistinguishable using SQ’s. This idea is at the
core of standard lower bounds in the sample framework [Yu97], and is formalized in the so-called
Le Cam’s lemma for SQ’s (Theorem 46).

To build such indistinguishable manifolds, we locally bump a base manifold M0 at a single
location. As M0 supports a d-dimensional measure with density lower bounded by fmin, the largest
possible width of such a bump is of order δ = Ω((τ/fmin)1/d), since the d-volume of this area

9



M0 O
(
(τ/fmin)1/d

)M1 O(ε)

Figure 2: Indistinguishable manifolds for the informational lower bound. The measure on which
they differ being of order O(τ), an adversarial STAT(τ)-oracle may fool the learner and force them
to make an error proportional to the Hausdorff distance between them.

multiplied by fmin (i.e. total variation) gets of order Ω(τ). Similarly as above, given the width

δ of this bump, its largest possible height is ε = Ω
(
δ2/rchmin

)
= Ω

(
rchmin

(
τ

fminrchdmin

)2/d
)

,

which provides the ε-separated manifolds indistinguishable in STAT(τ). This yields the announced
informational lower bounds (Theorems 23 and 26), after picking manifolds M0 in the fixed point
and bounding model respectively that have volume of order 1/fmin, and the uniform distributions
on them.

1.3 Further Directions

As mentioned above, a byproduct of these results is that manifold estimation is possible in a
locally private way. However, the transformation used to pass from statistical query learning to
locally private learning has a polynomial blowup [KLN+11]. Hence, the derived locally private
upper bound may not be optimal, so that a close study of the private framework directly is still
necessary. Coming back to SQ’s, the derived bounds on the best achievable precision ε in STAT(τ)

do not match, as they are respectively ε = O

(
rchmin

(
τ

fminrchdmin

)2/(d+1)
)

for the upper bounds,

and ε = Ω

(
rchmin

(
τ

fminrchdmin

)2/d
)

for the lower bounds, so that this gap remains to be breached.

Finally, the case of smoother Ck manifolds (k > 2) would be of fundamental interest, as their
estimation is at the basis of plugin methods of higher order [BHHS20]. In this case, local linear
approximations are not optimal [AL19], and local polynomials of higher order — that were shown
to be optimal in the sample framework — might adapt to statistical queries.
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2 Preliminaries

2.1 Statistical Query Framework

To begin with the formal presentation of this work, let us define the statistical query (SQ) framework
used throughout the paper. In the SQ framework, the algorithm (or learner) is allowed to access to
the unknown underlying distribution D over Rn via an adversarial oracle O who knows it perfectly.
The learner also has access to some prior information on D via the knowledge of a model D,
i.e. a set of probability distributions over Rn assumed to contain D. For a measurable function
r : Rn → [−1, 1], called query, the oracle answers the mean value Ex∼D[r(x)] of r with respect to
D, up to some adversarial error τ known to both parties.

More formally, let F denote the set of Borel-measurable functions from Rn to [−1, 1]. Roughly
speaking, an oracle provides answers a : F → R. Given a query r ∈ F and a tolerance parameter
τ ≥ 0, we say that O is a valid STAT(τ) oracle for the distribution D over Rn if its answers are
such that |a(r)− Ex∼D[r(x)]| ≤ τ . Let us insist on the fact that the oracle is adversarial, meaning
that it can answer any such values. Its adversarial strategy can also adapt to the previous queries
made by the learner (see precise Definition 2).

We now describe the estimation framework using SQ’s. Given a metric space (Θ, ρ), a target
precision ε > 0 and a parameter of interest θ : D → Θ, the learner aims at estimating θ(D) with
precision ε for the metric ρ with a minimum number of queries r : Rn → [−1, 1], uniformly over the
model D. The present framework is a particular case of the search problems considered in [Fel17],
where a metric on Θ is not necessarily available.

Remark 1. Manifold estimation will naturally bring us to consider the support θ(D) = Supp(D) ⊆
Rn as the parameter of interest, and the Hausdorff distance ρ = dH. However, we present the
broader setting of a general metric space (Θ, ρ) of estimation, to also cover the intermediate results
required by the SQ versions of the routines of Manifold Propagation (see Section 4). Namely, it
will involve the Euclidean space (Rn, ‖·‖) for point estimation, and the matrix spaces (Rn×n, ‖·‖F)
and (Rn×n, ‖·‖op).

This paper considers interactive SQ algorithms, meaning that the learner is allowed to interact
with the oracle dynamically and does not have to send all their queries at once before any answer.
That is, query functions are allowed to depend arbitrarily on the previous answers given by the
oracle. More formally, we give the following Definition 2.
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Definition 2 (Deterministic Statistical Query Estimation Framework).

� A statistical query (SQ) algorithm making q queries is a tuple A = (r1, . . . , rq, θ̂), where

r1 ∈ F, r2 : R→ F, · · · , rq : Rq−1 → F, and θ̂ : Rq → Θ.

� Let a1 : F → R, a2 : F2 → R, . . . , aq : Fq → R. We say that O = (a1, . . . , aq) is a STAT(τ)
oracle for SQ algorithms making q queries on the distribution D, if for all r1 ∈ F, r2 : R → F,
. . . , rq : Rq−1 → F, ∣∣a1(r1)− E

x∼D

[
r1(x)

]∣∣ ≤ τ,∣∣a2(r1, r2)− E
x∼D

[
r2(a1(r1))(x)

]∣∣ ≤ τ,
...∣∣aq(r1, . . . , rq)− E

x∼D

[
rq(a1(r1), . . . , aq−1(r1))(x)

]∣∣ ≤ τ.
� The output of A = (r1, . . . , rq, θ̂) when it interacts with the oracle O = (a1, . . . , aq) is defined by

θ̂(r1, . . . , rq;O) = θ̂(a1(r1), . . . , aq(r1, . . . , rq)).

� Given a model D over Rn (i.e. a set of probability distributions), we say that a SQ algorithm A

is a STAT(τ) estimator with precision ε for the statistical estimation problem θ : D → Θ if for
all D ∈ D and all valid STAT(τ) oracle O for D,

ρ
(
θ(D), θ̂(r1, . . . , rq;O)

)
≤ ε.

Beyond deterministic algorithms, one may allow the learner to access randomness, and to fail
at estimating the parameter of interest with some controlled probability α < 1 [Kea98, Fel17]. This
gives rise to the following Definition 3.

Definition 3 (Randomized Statistical Query Estimation Framework).

� A randomized SQ algorithm A is a distribution over SQ algorithms.

� Given a model D over Rn, we say that a randomized SQ algorithm A is a STAT(τ) algorithm
with precision ε and probability of failure (or error) α over D, if for all distribution D ∈ D and
all valid STAT(τ) oracle O for D,

Pr
A=(r1,...,rq ,θ̂)∼A

[
ρ
(
θ(D), θ̂(r1, . . . , rq;O)

)
≤ ε
]
≥ 1− α.

A priori, randomized algorithms may require significantly less queries than deterministic ones
to achieve an estimation task [Fel17]. However, we will show that this phenomenon does not occur
for manifold estimation, as soon as the probability of error α is not considerably close to 1. For
this, we will exhibit upper bounds using deterministic algorithms, and matching lower bounds on
randomized algorithms. See Section 5 for the precise statements.
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Remark 4 (About Noise). The statistical models considered in this work (Definition 10) are
noise-free, in the sense that the STAT(τ) oracle — although adversarial — has access to the exact
underlying distribution D. Beyond such an exact model, a noise model that is particularly popular
in the manifold estimation literature is the so-called clutter noise model [AL18, GPPVW12a].
Given a nuisance parameter β ∈ (0, 1] and a fixed noise distribution Q0 over Rn — usually the
ambient uniform distribution over a compact set of Rn —, the associated clutter noise model is the
set of mixtures

D(clutter)
β,Q0

= {βD + (1− β)Q0, D ∈ D} .

In particular, D(clutter)
β=1,Q0

coincides with D. For β < 1, in the i.i.d. sampling framework, it yields
samples with a proportion of approximately β informative points and (1 − β) of non-informative
clutter points.

As mentioned in the introduction, this type of noise model gave rise to subtle iterative declutter-
ing procedures that rely heavily on the properties of Q0 (i.e. being ambient uniform) [AL18]. This
noise-specificity is also a limitation of the (intractable) estimator of [GPPVW12a], which would
also fail with clutter distributions Q0 other than uniform. In contrast, in the statistical query
framework, if β and Q0 are known, then estimation techniques need not be much more elaborate
for the case β < 1 than for β = 1. Indeed, the statistical query complexity of an estimation problem

in STAT(τ) over D(clutter)
β,Q0

coincides with its counterpart in STAT(τ/β) over D.
The correspondence is explicit: algorithms designed for β = 1 naturally generalize for β < 1 and

vice-versa. To see this, let r : Rn → [−1, 1] be a query to a STAT(τ) oracle with true distribution
D(clutter) = βD + (1 − β)Q0. Say that the learner gets answer a ∈ R, then the function returning
a′ = (a − (1 − β)EQ0 [r])/β, which can be computed by the learner who knows Q0 and β, clearly
simulates a valid STAT(τ/β) oracle to the query for the distribution D. For the same reason,

conversely, any STAT(τ/β)-algorithm over D yields a STAT(τ)-algorithm in D(clutter)
β,Q0

.
This shows that the statistical query complexity in STAT(τ) over D coincides with its counter-

part in STAT(βτ) over D(clutter)
β,Q0

for any fixed 0 < β ≤ 1 and clutter distribution Q0. Conversely,
any SQ algorithm in the clutter-free model can easily be made robust to clutter noise, as soon as
the clutter distribution Q0 and noise level 0 < β ≤ 1 are known to the learner.

As a first illustration of a non-trivial SQ estimation problem, let us describe that of the mean

Ex∼D[F (x)] of a bounded vector-valued function F : Rn → Rk, where ‖F (x)‖ ≤ 1 [FGV17]. Here
and below, ‖·‖ stands for the Euclidean norm. This example will be central in the construction of
our SQ geometric routines (Theorems 19 to 21), and hence for the final SQ manifold estimation
algorithms (Theorems 22 and 25).

One query to a STAT(τ) oracle allows to compute the mean value of a function ranging in [−1, 1]
with precision τ . Hence, the k coordinate functions ri(x) = 〈ei, F (x)〉 ∈ [−1, 1] are valid queries,
and allow to estimate each coordinate of Ex∼D[F (x)] with precision τ . This naive strategy results
in a deterministic SQ algorithm making k queries to STAT(τ) and precision τ for the sup-norm,
but only

√
kτ for the Euclidean norm. The following Lemma 5 shows that the learner may ask 2k

queries to a STAT(τ) oracle, while still preserving a precision of order τ for the Euclidean norm. The
strategy consists in querying F in a suitable frame of Rk [FGV17, Section 1.3], i.e. a redundant
family of vectors of Rk which avoids the extra

√
k factor of the non-redundant coordinate-wise

queries.

Lemma 5. Let D be a Borel probability distribution over Rn, and F : Rn → Rk be such that
‖F (x)‖ ≤ 1 for all x ∈ Rn.
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There exists a deterministic statistical query algorithm making 2k queries to a STAT(τ) oracle,
and that estimates Ex∼D [F (x)] with precision Cτ for the Euclidean norm, where C > 0 is a
universal constant.

Proof of Lemma 5. Let us denote by D′ the pushforward distribution of D by F . As for all mea-
surable function r : Rk → [−1, 1],

E
x′∼D′

[r(x′)] = E
x∼D

[r(F (x))],

any valid STAT(τ) oracle for D simulates a valid STAT(τ) oracle for D′. Hence, applying [FGV17,
Section 1.3 (Theorem 3.9 in full version)] to D′, we get the desired result.

2.2 Manifold Regularity and Distributional Assumptions

2.2.1 General Notation and Differential Geometry

In this article, n ≥ 2 is referred to as the ambient dimension and Rn is endowed with the Euclidean
inner product 〈·, ·〉 and the associated norm ‖·‖. The closed Euclidean ball of center x and radius
r is denoted by B(x, r). The volume of the d-dimensional unit ball Bd(0, 1) is denoted by ωd, and
that of the d-dimensional unit sphere Sd(0, 1) ⊆ Rd+1 by σd.

We will consider compact connected submanifolds M of Rn, without boundary, and with di-
mension d < n [dC92]. Given a point p ∈M , the tangent space of M at p, denoted by TpM , is the
d-dimensional linear subspace of Rn spanned by the velocity vectors at p of C1 curves of M . The
Grassmannian Gn,d is the set of all the d-dimensional linear subspaces of Rn, so that TpM ∈ Gn,d

for all p ∈M . In addition to the Euclidean structure induced by Rn on M ⊆ Rn, we also endow M
with its intrinsic geodesic distance dM , with BM (p, s) denoting the closed geodesic ball of center
p ∈ M and of radius s. More precisely, given a C1 curve c : [a, b] → M , the length of c is defined

as Length(c) =
∫ b
a ‖c

′(t)‖ dt. Given p, q ∈ M , there always exists a path γp→q of minimal length
joining p and q [dC92]. Such a curve γp→q is called geodesic, and the geodesic distance between
p and q is given by dM (p, q) = Length(γp→q) [BBI01, Chapter 2]. In particular, (M,dM ) is a
length space [BBI01, Remark 5.1.7]. A geodesic γ such that ‖γ′(t)‖ = 1 for all t is called arc-
length parametrized. Unless stated otherwise, we always assume that geodesics are parametrized
by arc-length. For all p ∈M and all unit vectors v ∈ TpM , we denote by γp,v the unique arc-length
parametrized geodesic of M such that γp,v(0) = p and γ′p,v(0) = v [dC92]; the exponential map is

defined as expMp (vt) = γp,v(t). Note that from the compactness of M , expMp : TpM →M is defined
globally on TpM [BBI01, Theorem 2.5.28].

2.2.2 Geometric and Statistical Models

Let us detail the geometric assumptions we will make throughout. Besides the differential structure
given by low-dimensional submanifolds, the core regularity assumption of this work will be encoded
by the reach, a central quantity in the statistical analysis of geometric structures (see [AKC+19]
and references therein), and that we now describe.

To this aim, let us define the medial axis Med(K) of a closed subset K ⊆ Rn as the set ambient
points that have at least two nearest neighbors on K. Namely, if we let d(z,K) = infp∈K ‖p− z‖
denote the distance function to K,

Med(K) = {z ∈ Rn | ∃p 6= q ∈ K, ‖p− z‖ = ‖q − z‖ = d(z,K)} .
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By definition of the medial axis, the metric projection onto K, given by

πK(z) = argmin
p∈K

‖p− z‖

is well defined exactly on Rn \Med(K). The reach of K is then defined as the minimal distance
from K to Med(K).

Definition 6 ([Fed59, Theorem 4.18]). The reach of a closed subset K ⊆ Rn is defined by

rchK = inf
z∈Med(K)

d(z,K).

Furthermore, if K = M ⊆ Rn is a C2-submanifold, then its reach can be written as

rchM = inf
p 6=q∈M

‖q − p‖2

d(q − p, TpM)
.

The second formulation of Definition 6 assesses how a large positive reach testifies of a quan-
titative uniform regularity of M ⊆ Rn. Indeed, the submanifold M being C2-smooth essentially
means that locally, M deviates a most quadratically from its tangent spaces. Adding the condi-
tion rchM ≥ rchmin > 0 yields the quantitative bound d(q − p, TpM) ≤ ‖q − p‖2 /(2rchmin) for
all p, q ∈ M . In particular, this condition bounds curvature and intrinsic metric properties (see
Lemma 8). The interested reader shall refer to [AKC+19] for further discussions on the reach.

Definition 7. We letMn,d
rchmin

denote the set of compact connected d-dimensional C2-submanifolds
M of Rn, without boundary, that have reach bounded below by rchM ≥ rchmin.

Among the key properties shared by submanifolds M with reach bounded below rchM ≥ rchmin

are a quantitative equivalence between the Euclidean and geodesic distances, and the fact that
their curvature is uniformly bounded by 1/rchmin.

Lemma 8. Let M ∈Mn,d
rchmin

and p, q ∈M . If ‖q − p‖ < 2rchmin, then

‖q − p‖ ≤ dM (p, q) ≤ 2rchmin arcsin

(
‖q − p‖
2rchmin

)
.

In particular, for all r < 2rchmin,

B
(
p, r

(
1− (r/rchmin)2 /24

))
∩M ⊆ BM (p, r) ⊆ B(p, r) ∩M ⊆ BM

(
p, r

(
1 + (r/rchmin)2 /4

))
.

Furthermore, if γ : [a, b] → M is an arc-length parametrized geodesic, then for all t ∈ [a, b],
‖γ′′(t)‖ ≤ 1/rchmin.

Proof of Lemma 8. We clearly have ‖q − p‖ ≤ dM (p, q), and the upper bound comes from [BLW19,
Lemma 3]. The ball inclusions then follow from the elementary bounds sin s ≥ s(1−s2/6) for s ≥ 0,
and arcsinu ≤ u(1 + u2) for 0 ≤ u ≤ 1. The last claim is a rephrasing of [NSW08, Proposition
6.1].

These estimates will be used to compare, in a quantitative way, the (curved) geometry of M
with that of the (flat) Euclidean d-dimensional space. Finally, we present the following uniform

estimate on the massivity of submanifolds M ∈ Mn,d
rchmin

, which we will use below to show that
Manifold Propagation terminates. For δ > 0, the δ-packing number pkM (δ) of M ⊆ Rn is the
maximal cardinal k of a set of points {pi}1≤i≤k ⊆ M such that B(pi, δ) ∩ B(pj , δ) = ∅ for all i 6= j
(i.e. ‖pi − pi‖ > 2δ) (see Appendix B.2 for more details).
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Lemma 9. Let M ∈Mn,d
rchmin

. Then for all δ ≤ rchmin/8,

pkM (δ) ≤ H
d(M)

ωd(δ/4)d
,

where Hd(M) denotes the surface area of M .

Proof of Lemma 9. Follows from Proposition 32 and Proposition 33.

Based on the geometric model above (Definition 7), we now describe the statistical model

(i.e. set of probability distributions) of this work. Every M ∈ Mn,d
rchmin

inherits a non-trivial finite

measure induced by the d-dimensional Hausdorff measureHd on Rn ⊇M , defined by volM = 1MHd,
and called the volume measure of M . Note that with this normalization, volM (M) = Hd(M)
corresponds to the d-dimensional surface area of M , so that volM/Hd(M) corresponds to the
uniform measure on M .

Definition 10. We let Dn,drchmin
(fmin, fmax, L) denote the set of Borel probability distributions on

Rn such that M = Supp(D) ∈Mn,d
rchmin

, and such that D has a density f with respect to volM such
that

� f is bounded away from zero and infinity: 0 < fmin ≤ f(x) ≤ fmax <∞ for all x ∈M .

� f is L-Lipschitz over M : |f(x)− f(y)| ≤ L ‖x− y‖ for all x, y ∈M .

As Dn,drchmin
(fmin, fmax, L) is invariant by translations in Rn, this model actually provides insuffi-

cient prior information to derive any uniform SQ complexity bound over it. This contrasts sharply
with the sample framework [AL18, GPPVW12a], where the sample points provide automatic loca-

tion information and yields finite sample complexity over Dn,drchmin
(fmin, fmax, L).

Proposition 11. Assume that σdfminrchdmin ≤ 1. Then for all ε > 0, manifold estimation over
Dn,drchmin

(fmin, fmax, L) with precision ε has infinite randomized statistical query complexity.

The assumption that σdfminrchdmin ≤ 1 is made to preclude degeneracy of the model. It can be
shown to be necessary (see Section 2.2.3 below for a more detailed discussion). The proof of Propo-

sition 11 relies on the fact that the supports Supp(D) of distributions D ∈ Dn,drchmin
(fmin, fmax, L)

form an unbounded class for the Hausdorff distance. It is therefore natural to add an extra location
constraint to the model. We study two different such constraints. The first one fixes membership
of a distinguished point to M , which we take to be the origin 0 ∈ Rn without loss of generality. The
second one bounds the problem in an ambient ball of radius R > 0, which we take to be centered
at the origin B(0, R) without loss of generality.

Definition 12. Completing the framework of Definition 10, we consider the two following models.

� Fixed point model:

– {0} tMn,d
rchmin

denotes the set of manifolds M ∈Mn,d
rchmin

such that 0 ∈M ;

– {0}tDn,drchmin
(fmin, fmax, L) stands for the set of distributions D ∈ Dn,drchmin

(fmin, fmax, L) with
support such that 0 ∈M = Supp(D).

� Bounding ball model: given R > 0,
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– B(0, R) uMn,d
rchmin

denotes the set of manifolds M ∈Mn,d
rchmin

such that M ⊆ B(0, R);

– B(0, R)uDn,drchmin
(fmin, fmax, L) stands for the set of distributions D ∈ Dn,drchmin

(fmin, fmax, L)
with support such that Supp(D) = M ⊆ B(0, R).

Let us now discuss some features imposed by the above models.

2.2.3 On Some Implicit Bounds on the Parameters

Although not explicit in Definition 12, parameters of the models are not arbitrary. That is,
Dn,drchmin

(fmin, fmax, L) might be degenerate or even empty in some regimes of parameters, making
the manifold estimation problem vacuous. The reason for this resides in implicit volume bounds
imposed by the reach. Indeed, if D ∈ Dn,drchmin

(fmin, fmax, L) has support M , then since D is a
probability distribution,

fminHd(M) ≤ 1 =

∫
M
fdHd ≤ fmaxHd(M).

As a result, the volume estimates of Proposition 35 yield

fmin ≤
1

Hd(M)
≤ 1

σdrch
d
min

≤ 1

ωdrch
d
min

.

If furthermore, D ∈ B(0, R) u Dn,drchmin
(fmin, fmax, L) (i.e. M ⊆ B(0, R)), then

fmax ≥
1

Hd(M)
≥ 1(

18R
rchmin

)n
ωd

(
rchmin

2

)d .
Note that Proposition 35 also yields that R ≥ rchmin/

√
2. Consequently, to ensure non-vacuity

of the models, and without loss of generality, it is natural to take the following setup. Here, C�
stands for a constant depending only on �.

� When working over {0} t Dn,drchmin
(fmin, fmax, L), assume that fmin ≤ fmax, R ≥ Crchmin, and

ωdfminrchdmin ≤ C−1
d ,

for some large enough constant Cd > 0.

� When working over B(0, R) u Dn,drchmin
(fmin, fmax, L), assume that fmin ≤ fmax, R ≥ Crchmin,

ωdfminrchdmin ≤ C−1
d and ωdfmaxrchdmin ≥ Cn,d

(
rchmin

R

)n
,

for some large enough constants C,Cd, Cn,d > 0.

See Appendix B for a more thorough exposition of the technical properties of the models {0} t
Dn,drchmin

(fmin, fmax, L) and B(0, R) u Dn,drchmin
(fmin, fmax, L).

18



2.3 Manifold Reconstruction from Point Clouds

Following the recent line of research on manifold estimation [GPPVW12b, GPPVW12a, AL18,
AL19, Div20], we will measure the accuracy of estimators M̂ of manifolds M via the so-called
Hausdorff distance, which plays the role of an L∞-distance between compact subsets of Rn. To this
aim, we will need the following piece of notation. For K ⊆ Rn and r ≥ 0, we let Kr denote the
r-offset of K:

Kr = {z ∈ Rn,d(z,K) ≤ r} ,

where we recall that d(z,K) = infp∈K ‖p− z‖ is the function distance to K.

Definition 13 (Hausdorff Distance [BBI01, Section 7.3.1]). Given two compact subsets K,K ′ ⊆
Rn, the Hausdorff distance between them is

dH(K,K ′) = sup
x∈Rn

|d(x,K)− d(x,K ′)|

= inf
{
r > 0,K ⊆ (K ′)r and K ′ ⊆ Kr

}
.

Manifold reconstruction from point clouds has been extensively studied in the area of compu-
tational geometry [Dey07, BG14]. In this field, the learner is given a sample of M , usually seen
as deterministic, and the goal is to build efficiently a reliable triangulation M̂ of M , either topo-
logically, geometrically, or both. Such a construction actually is always possible, provided that the
point cloud is sufficiently close and dense in M , and that the learner is provided with tangent space
estimates at these points. This is formalized in the following Theorem 14, where ‖·‖op stands for
the operator norm over the set of matrices.

Theorem 14 (Adapted from [AL18, Theorem 4.4]). There exists λd > 0 such that for all ε ≤
λdrchmin and all M ∈Mn,d

rchmin
, the following holds.

Let X ⊆ Rn be a finite point cloud and TX =
{
Tx
}
x∈X ⊆ Gn,d be a family of d-dimensional

linear subspaces of Rn such that

� max
x∈X

d(x,M) ≤ η,

� max
p∈M

d(p,X ) ≤ ∆,

� max
x∈X

∥∥∥πTπM (x)M − πTx
∥∥∥

op
≤ sin θ.

If θ ≤ ∆/(1140rchmin) and η ≤ ∆2/(1140rchmin), then one can build a triangulation M̂ = M̂(X ,TX )
with vertices in X such that

� dH

(
M,M̂

)
≤ Cd∆2/rchmin, � M and M̂ are ambient isotopic.

Proof of Theorem 14. We apply [AL18, Theorem 4.4] on a sparsified subset X ′ of X , which is a
pruned version of X that is ε-sparse but still dense enough in M . This subsample X ′ can be built
explicitly by using the so-called farthest point sampling algorithm to X [AL18, Section 3.3]. For this,
initialize X ′ with X ′ = {x0}, where x0 ∈ X is chosen arbitrarily. Then, while maxx∈X d(x,X ′) > ∆,
find the farthest point to X ′ in X , and add it to X ′. That is, X ′ ← X ′ ∪ {argmaxx∈X d(x,X ′)}
(and if the argmax is not a singleton, pick an arbitrary element of it). The output X ′ ⊆ X of this
algorithm clearly satisfies minx′ 6=y′∈X ′ ‖y′ − x′‖ ≥ ∆, and furthermore,

max
p∈M

d(p,X ′) ≤ max
p∈M

d(p,X ) + max
x∈X

d(x,X ′) ≤ 2∆.

Therefore, [AL18, Theorem 4.4] applies to X ′ and TX ′ , and M̂(X ′,TX ′) provides the announced
triangulation.
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Although we will not emphasize on exact topology recovery in the present work, let us mention
that the triangulation M̂ actually exhibits the extra feature of sharing the same topology as M ,
i.e. M and M̂ are isotopy equivalent. Let us also mention that the triangulation can be built in
linear time in n, with an explicit polynomial time and space complexity [BG14, Section 4.6].

Said otherwise, Theorem 14 asserts that manifold reconstruction with precision ε can be achieved
if a sample that is (

√
rchminε)-dense and ε-close to M , together with associated estimated tangent

spaces with precision
√
ε/rchmin, are available to the learner. As opposed to the sample framework,

the statistical framework does not provide the learner with such data directly. In STAT(τ), our
strategy will therefore be to build such a point cloud and tangent spaces iteratively from queries,
using the following purely geometric Manifold Propagation algorithm.

3 Manifold Propagation Algorithm

We now present the Manifold Propagation algorithm and its properties, which works in a setting
where only geometric routines are available to the learner. Although we will eventually apply this
algorithm in the context of statistical queries (see Section 5), let us insist on the fact that the
framework detailed in this Section 3 is purely geometric, and does not rely specifically on statistical
queries.

As mentioned in the introduction, the idea is to explore the unknown manifold M via the
access to only three complementary geometric routines. Roughly speaking, Manifold Propagation

explores M in a greedy way, while building a point cloud with associated tangent spaces, by using:

� A seed point x̂0 ∈ Rn, known to be close to M , and that allows to initialize the process.

� A tangent space routine T̂ : Rn → Gn,d, that allows to make linear approximations of M nearby
points, and hence to provide local candidate directions to explore next.

� A projection routine π̂ : Rn → Rn, that compensates for the errors made by the previous steps,
by approximately projecting points back to M .

To avoid redundancy, all this is done while checking that the new candidate points are not too
close to some already-visited region of the space. More formally, the algorithm runs as described
on page 21.

In spirit, Manifold Propagation is similar to the marching cube algorithm of [LC87] and the
tracing algorithm of [BKW19], which use calls to an intersection oracle answering whether a candi-
date element of a partition of the ambient space intersects the manifold. However, the approaches
of [LC87] and [BKW19] use static partitions of Rn (cubes and a Coxeter triangulation respec-
tively), which translates into an exploration complexity of M — measured in the number of calls
made to the oracles/routines — that strongly depends on the ambient dimension [BKW19, Theo-
rem 24]. In contrast, Manifold Propagation builds a point cloud nearby M dynamically, which
allows to adapt to its intrinsic low-dimensional geometry. This results in an exploration complexity
that is completely oblivious to the ambient space. That is, the overall dependency in the am-
bient dimension is fully supported by the geometric routines themselves. This can be explained
by the intermediate tangent space estimation routine, that allows the algorithm to only explore
the d local (approximate) tangent directions of M only, while being oblivious to the (n − d) � d
non-informative codimensions. As a counterpart, Manifold Propagation needs to compensate for
these local linear approximations which, although possibly negligible at each iteration, may cumu-
late into substantial deviations from the manifold after several steps. This possible global drift is
taken care of via the projection routine, which somehow reboots the precision of the process when
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Algorithm 1 Manifold Propagation

Require:
Seed point x̂0 ∈ Rn
Tangent space routine T̂ : Rn → Gn,d

Projection routine π̂ : Rn → Rn
Tuning parameters ∆, δ > 0 (scales) and 0 < α < π/2 (angle)

1: Initialize Q ← {x̂0}, O ← ∅ and TO ← ∅
2: while Q 6= ∅ do
3: Pick x ∈ Q
4: Set T ← T̂ (x) and TO ← TO ∪ {T}
5: Consider a maximal (sinα)-packing v1, . . . , vk of the sphere Sd−1

T (0, 1) ⊆ T
6: for i ∈ {1, . . . , k} do
7: if d

(
x+ ∆vi,Q∪O

)
≥ δ then

8: Q ← Q∪
{
π̂(x+ ∆vi)

}
9: end if

10: end for
11: Q ← Q \ {x} and O ← O ∪ {x}
12: end while
13: return O and TO

a point is added. To the best of our knowledge, Manifold Propagation is the first instance of an
algorithm working only with the three geometric routines described above. We now state the main
result presenting its properties.

Theorem 15 (Properties of Manifold Propagation). Let M ∈ Mn,d
rchmin

, and assume that there
exist 0 ≤ η ≤ Λ < rchmin and 0 ≤ θ < π/2 such that:

(i) d(x̂0,M) ≤ η;

(ii) For all x ∈ Rn such that d(x,M) ≤ η,
∥∥∥πTπM (x)M − πT̂ (x)

∥∥∥
op
≤ sin θ.

(iii) For all x ∈ Rn such that d(x,M) ≤ Λ, ‖πM (x)− π̂(x)‖ ≤ η;

Assume furthermore that ∆ ≤ rchmin/24, η ≤ ∆/64, max {sinα, sin θ} ≤ 1/64, 5∆2/(8rchmin) +
η + ∆ sin θ ≤ Λ, and 3∆/10 ≤ δ ≤ 7∆/10.

Then, Manifold Propagation terminates, and the number Nloop of iterations performed in the
while loop (Lines 2–12) satisfies

1. Nloop ≤
Hd(M)

ωd(δ/32)d
, where Hd(M) denotes the surface area of M .

Furthermore, it outputs a finite point cloud O ⊆ Rn that:

2. Is η-close to M : maxx∈O d(x,M) ≤ η;

3. Is a (∆ + η)-covering of M : maxp∈M d(p,O) ≤ ∆ + η;

together with a family TO =
{
T̂ (x)

}
x∈O ⊆ Gn,d of linear spaces that:

4. θ-approximate tangent spaces: maxx∈O

∥∥∥πTπM (x)M − πT̂ (x)

∥∥∥
op
≤ sin θ.
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To get to Theorem 15, we will need the following series of lemmas, which are proved in Ap-
pendix A. The first statement asserts that the point clouds Q and O that the algorithm builds
remain η-close to M at all times. The reason for this resides in the fact that this property holds
for the seed point x̂0 by assumption, and that the projection routine π̂ maintains this η-closeness
when points are added to Q, and hence to Q∪O.

Lemma 16. Let M ∈ Mn,d
rchmin

, and assume that η < rchmin, ∆ ≤ rchmin/4 and 5
8

∆2

rchmin
+ η +

∆ sin θ ≤ Λ. Then when running Manifold Propagation, the following inequality is maintained:

max
x∈Q∪O

d(x,M) ≤ η.

The second statement ensures that points in Q ∪ O remain far away from each other, so that
they always form a packing with fixed radius. This property, maintained by the proximity test at
Line 7 of Manifold Propagation, is the key ingredient for the termination of the algorithm and
its complexity.

Lemma 17. Let M ∈ Mn,d
rchmin

, and assume that η < rchmin, ∆ ≤ rchmin/4 and 5
8

∆2

rchmin
+ η +

∆ sin θ ≤ Λ. Then when running Manifold Propagation, the following inequality is maintained:

min
x,y∈Q∪O
x 6=y

‖x− y‖ ≥ δ − 5

8

∆2

rchmin
− 2η −∆ sin θ.

The third and last statement roughly asserts that if Manifold Propagation terminates, then
all the ∆-neighborhoods of M have been visited by the output O, i.e. that the greedy tangential
exploration strategy is somehow exhaustive at scale ∆.

Lemma 18. Let M ∈Mn,d
rchmin

, and assume that ∆ ≤ rchmin/24, η < ∆/64, and max {sinα, sin θ} ≤
1/64. Assume furthermore that, 5

8
∆2

rchmin
+η+∆ sin θ ≤ Λ and δ ≤ 7∆/10. If Manifold Propagation

terminates, then its output O satisfies

max
p∈M

min
x∈O

dM (p, πM (x)
)
≤ ∆,

where dM (·, ·) is the geodesic distance of M .

We are now in position to prove Theorem 15.

Proof of Theorem 15. 1. By construction of Manifold Propagation, any visit of the while loop
(Lines 2–12) finishes with the addition of a point to O. Since O = ∅ at initialization, the
number of already performed loops is maintained to satisfy Nloop = |O| when the algorithm
runs. Furthermore, by Lemma 16 and Lemma 17, we have at all times

min
x,y∈O
x 6=y

‖πM (x)− πM (y)‖

≥ min
x,y∈Q∪O
x 6=y

‖πM (x)− πM (y)‖

≥ min
x,y∈Q∪O
x 6=y

(
‖x− y‖ − ‖x− πM (x)‖ − ‖y − πM (y)‖

)
≥
(
δ − 5

8

∆2

rchmin
− 2η −∆ sin θ

)
− 2η

≥ 173

960
∆ ≥ 173

960

10

7
δ >

δ

4
> 0.
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This shows that πM : O → πM (O) is one-to-one, and that the set πM (O) ⊆M is a (δ/8)-packing
of M . As a consequence, we have at all times

Nloop = |O| = |πM (O)| ≤ pkM (δ/8) ≤ Hd(M)

ωd(δ/32)d
,

where the last inequality follows from Lemma 9.
As Nloop <∞, this first item also shows that Manifold Propagation terminates.

2. This statement follows directly from Lemma 16.

3. We have already shown that Manifold Propagation terminates. Therefore, Lemma 18 applies,
and combining it with Item 2, we get

max
p∈M

d(p,O) = max
p∈M

min
x∈O
‖p− x‖

≤ max
p∈M

min
x∈O
‖p− πM (x)‖+ max

x∈O
‖x− πM (x)‖

≤ max
p∈M

min
x∈O

dM (p, πM (x)) + η

≤ ∆ + η.

4. Follows straightforwardly from Item 2 above, and the assumption that
∥∥∥πTπM (x)M − πT̂ (x)

∥∥∥
op
≤

sin θ for all x ∈ Rn such that d(x,M) ≤ η.

4 Geometric Routines with Statistical Queries

Coming back to manifold estimation with SQ’s, we notice that combined together, a) the point
cloud-based reconstruction method of Theorem 14 and b) the greedy point cloud construction
of Theorem 15 using geometric routines only, reduce the problem to constructing SQ algorithms
emulating these routines with a STAT(τ) oracle. We now present constructions of SQ algorithms
for the projection routine π̂(·) (Section 4.1), the tangent space estimation routine T̂ (·) (Section 4.2),
and the seed point detection x̂0 (Section 4.3).

4.1 Projection

Given a point x0 ∈ Rn nearby M = Supp(D), we aim at estimating its metric projection πM (x0)
onto M with statistical queries to STAT(τ). As mentioned earlier, the reasoning we adopt is as
follows:

� For a properly chosen bandwidth h > 0, the local conditional mean

mD(x0, h) = E
x∼D

[x |B(x0, h) ] = x0 + h
Ex∼D

[
(x−x0)
h 1‖x−x0‖≤h

]
D(B(x0, h))

of D around x0 has small bias for estimating πM (x0) (Lemma 37).

� As mD(x0, h) ∈ Rn writes as a ratio of the two means Ex∼D
[

(x−x0)
h 1‖x−x0‖≤h

]
∈ Rn and

D(B(x0, h)) = Ex∼D[1‖x−x0‖≤h] ∈ Rn, it can be estimated using 2n+ 1 queries (Lemma 5).
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The proof of these results are to be found in Appendix C. Combined together, we then prove the
correctness of the SQ projection estimation procedure (Theorem 19) in Appendix C.2.

Theorem 19 (SQ Projection Estimation). Let D ∈ Dn,drchmin
(fmin, fmax, L) have support M =

Supp(D). Assume that
τ

ωdfminrchdmin

≤ cd(d+1)Γd and Λ ≤ rchmin

8
,

for some small enough absolute constant c > 0, where Γ = Γfmin,fmax,L = fmin
fmax+Lrchmin

.
Then for all x0 ∈ Rn such that d(x0,M) ≤ Λ, there exists a SQ algorithm making 2n+1 queries

to STAT(τ), that outputs a point π̂(x0) ∈ Rn estimating πM (x0) with precision

‖π̂(x0)− πM (x0)‖ ≤ η ≤ Cd

Γ
max

{
Λ2

rchmin
,Γ

2
d+1 rchmin

(
τ

ωdfminrchdmin

) 2
d+1

}
,

where C > 0 is an absolute constant.

4.2 Tangent Space

Given a point x0 ∈ Rn nearby M = Supp(D), we aim at estimating the tangent space TπM (x0)M
with statistical queries to STAT(τ). The strategy we propose is based on local Principal Compo-
nents Analysis, combined with low-rank matrix recovery with SQ’s. This local PCA approach is
similar to that of [ACLZ17, AL18]. As described above, the reasoning is as follows:

� For a properly chosen bandwidth h > 0, the local (rescaled) covariance matrix

ΣD(x0, h) = E
x∼D

[
(x− x0)(x− x0)>

h2
1‖x−x0‖≤h

]
∈ Rn×n

of D around x0 is nearly rank-d, and its first d components span a d-plane close to TπM (x0)M ∈
Gn,d (Lemma 38).

� Principal components being stable to perturbations (Lemma 39), estimating ΣD(x0, h) ∈ Rn×n
is sufficient to estimate TπM (x0)M ∈ Gn,d.

� Estimating ΣD(x0, h) ∈ Rn×n = Rn2
using O(n2) queries (Lemma 5) is too costly and would be

redundant since ΣD(x0, h) is nearly rank d� n. Instead, we use matrix compression arguments
(Theorem 41) and an explicit construction of a matrix sensing operator (Lemma 42) to derive
a general mean low-rank matrix SQ algorithm (Lemma 43). This result roughly asserts that a
mean matrix Σ = Ex∼D[F (x)] ∈ Rn×n of a bounded function F : Rn → Rn×n that has nearly
rank d can be estimated with precision Cτ using ndpolylog(n) queries to STAT(τ).

The proof of these results are to be found in Appendix D. All combined together, we then prove
the correctness of the SQ tangent space estimation procedure (Theorem 20) in Appendix D.4.

Theorem 20 (SQ Tangent Space Estimation). Let D ∈ Dn,drchmin
(fmin, fmax, L) have support M =

Supp(D). Assume that

τ

ωdfmaxrchdmin

≤
(

1

8
√
d

)d+1

and η ≤ rchmin

64d
.
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Then for all x0 ∈ Rn such that d(x0,M) ≤ η, there exists a deterministic SQ algorithm making
at most Cdn log6(n) queries to STAT(τ), and that outputs a d-plane T̂ (x0) ∈ Gn,d estimating
TπM (x0)M with precision∥∥∥πT̂ (x0) − πTπM (x0)M

∥∥∥
op
≤ sin θ ≤ C̃d fmax

fmin
max

{√
η

rchmin
,

(
τ

ωdfmaxrchdmin

) 1
d+1

}
,

where C̃ > 0 is an absolute constant.

4.3 Seed Point

Given a ball of radius R > 0 guaranteed to encompass M = Supp(D) ⊆ B(0, R), and a target
precision η > 0, we aim at finding a point that is η-close to M with statistical queries to STAT(τ).
The strategy we propose is as follows:

� Starting from B(0, R), we use a divide and conquer strategy (Theorem 44). The algorithm (SQ
Ambient Binary Search) queries indicator functions of an interactively chosen union of balls,
stops when there is only one ball left and outputs its center x̂raw0 . This method only uses estimates
on the local mass of balls for D (Lemma 30), and forgets about the differential structure and
C2-smoothness of M . Hence, although efficient, it only obtains a precision O(max

{
η, τ1/d

}
),

that can be much larger than the prescribed one O(max
{
η, τ2/(d+1)

}
).

� Starting from x̂raw0 , we then refine this detected point by iterating the SQ projection routine π̂(·)
(Theorem 19), which does use extensively the C2-smoothness of M . As x̂raw0 is close to M , this
procedure is guaranteed to enhance precision quadratically at each step, and is hence satisfactory
(i.e. has precision η) after a logarithmic number of iterations.

The proof of these results are to be found in Appendix E.

Theorem 21 (SQ Point Detection). Let D ∈ B(0, R) u Dn,drchmin
(fmin, fmax, L) have support M =

Supp(D) ⊆ B(0, R). Assume that

τ

ωdfminrchdmin

≤ cΓd min
{
cd, (n log (R/(Γrchmin))−1/2

}d
, and η ≤ rchmin

8

for some small enough c > 0, where Γ = Γfmin,fmax,L = fmin
fmax+Lrchmin

,
Then there exists a deterministic SQ algorithm making at most 3n log(6R/η) queries to STAT(τ),

and that outputs a point x̂0 ∈ B(0, R) such that

d(x̂0,M) ≤ max

{
η, CdΓ

2
d+1
−1rchmin

(
τ

ωdfminrchdmin

) 2
d+1

}
,

where C > 0 is the absolute constant of Theorem 19.

5 Manifold Estimation with Statistical Queries

We are now in position to state the main results of this work, namely bounds on the statistical
query complexity of manifold estimation in STAT(τ). We split the results into the two studied

models {0}tDn,drchmin
(fmin, fmax, L) and B(0, R)uDn,drchmin

(fmin, fmax, L). For each model, we get an
upper bound by combining the results of Sections 3 and 4. It is followed by an informational and a
computational lower bound, coming from the general lower bound techniques of Appendix G and
the constructions of Appendix H.
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5.1 Fixed Point Model

In {0} t Dn,drchmin
(fmin, fmax, L), the origin 0 ∈ Rn is known to belong to M . The SQ algorithm we

propose consists in running Manifold Propagation with seed point x̂0 = 0 and the SQ projection
and tangent space routines of Theorems 19 and 20. This leads to the following upper bound. Let
us mention that one could easily extend this result and relax the assumption that 0 ∈M to d(0,M)
being small enough.

Theorem 22. Let D ∈ {0} t Dn,drchmin
(fmin, fmax, L) have support M = Supp(D). Writing Γ =

Γfmin,fmax,L = fmin
fmax+Lrchmin

, let us assume that

τ

fminrchdmin

≤ cdΓ7(d+1)/2 and ε ≤ c̃dΓ3rchmin,

for some small enough absolute constants c, c̃ > 0. Then there exists a deterministic SQ algorithm
making at most

q ≤ n log6 n
Cd

fminrchdmin

(
rchmin

ε

)d/2
queries to STAT(τ), and that outputs a finite triangulation M̂ ⊆ Rn that has the same topology as
M , and such that

dH(M,M̂) ≤ max

{
ε,
C̃d

Γ3
rchmin

(
τ

fminrchdmin

)2/(d+1)
}
,

where Cd > 0 depends on d and C̃ > 0 is an absolute constant.

The algorithm of Theorem 22 has a statistical query complexity comparable to the optimal
sample complexity s = O(ε−2/d/ log(1/ε)) over Dn,drchmin

(fmin, fmax, L) [GPPVW12a, KZ15, AL18],

and can provably achieve precision O(τ2/(d+1)). Furthermore, the assumptions made as well as
the final precision are completely insensitive to n. The ambient dimension n only appears as a
quasi-linear factor in the query complexity. This contrasts with the sample complexity which does
not depends on n. However, notice that a single sample nearby M ⊆ Rn consists of n coordinates,
while statistical queries are forced to be real-valued (one dimensional) pieces of information, which
explains this apparent discrepancy.

Discussing its optimality, one may first wonder if the assumption made on τ is necessary,
and whether the precision barrier of order O(τ2/(d+1)) is improvable in STAT(τ). The following
statement answers to these questions, regardless the statistical query complexity.

Theorem 23. Let α < 1/2 be a probability of error. Assume that fmin ≤ fmax/4 and

2d+1σdfminrchdmin ≤ 1.

Then no randomized SQ algorithm can estimate M = Supp(D) over {0} t Dn,drchmin
(fmin, fmax, L)

with precision

ε <
rchmin

221
min

{
1

222d2
,

(
τ

ωdfminrchdmin

)2/d
}

and probability 1− α, no matter its number of queries.
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This result justifies why the quantity τ/(ωdfminrchdmin) is required to be small enough in The-
orem 22: this actually is necessary so as to reach a precision of order at least O(rchmin). Second,
this informational lower bound shows that the learner cannot hope to achieve precision better than

Ω
(
rchmin

(
τ/(ωdfminrchdmin)

)2/d)
, even with the most costly randomized SQ algorithms. In turn, the

precision O(τ2/(d+1)) of Theorem 22 is nearly optimal. Here, the assumptions made on fmin, fmax
and rchmin are also necessary to ensure non-degeneracy of the model {0} t Dn,drchmin

(fmin, fmax, L),
as mentioned in Section 2.2.3. Beyond the above informational considerations, we turn to the
computational one, i.e. to the minimal number of queries to STAT(τ) that a learner must make to
achieve precision ε.

Theorem 24. Let α < 1 be a probability of error, and ε ≤ rchmin/(2
34d2). Assume that fmin ≤

fmax/4 and
2d+1σdfminrchdmin ≤ 1.

Then any randomized SQ algorithm estimating M = Supp(D) over {0}tDn,drchmin
(fmin, fmax, L) with

precision ε and with probability of success at least 1− α must make at least

q ≥

(
n

1

ωdfminrchdmin

(
rchmin

221ε

)d/2
+ log(1− α)

)/
log(1 + 1/τ)

queries to STAT(τ).

For deterministic SQ algorithms (α = 0), the statistical query complexity of the algorithm of
Theorem 22 is therefore optimal up to polylog(n, 1/τ) factors. It even performs nearly optimally
within all the possible randomized algorithms, provided that their probability of error α is not
too close to 1, which would allow for a naive random pick among an ε-covering of the space(
{0} tMn,d

rchmin
, dH

)
(with zero query to STAT(τ)) to be a valid algorithm.

5.2 Bounding Ball Model

In B(0, R) u Dn,drchmin
(fmin, fmax, L), no distinguished point of Rn is known to belong to M , but a

location area B(0, R) containing M is available to the learner. Hence, the strategy of the previous
section cannot initialize directly. However, Theorem 21 allows to find a seed point x̂0 close to M
using a limited number of queries to STAT(τ). Starting from x̂0 and, as above, running Manifold

Propagation with the SQ projection and tangent space routines of Theorems 19 and 20 leads to
the following upper bound.

Theorem 25. Let D ∈ B(0, R) u Dn,drchmin
(fmin, fmax, L) have support M = Supp(D). Writing

Γ = Γfmin,fmax,L = fmin
fmax+Lrchmin

, let us assume that

τ

fminrchdmin

≤ min
{
cdΓ7(d+1)/2,Γd (n log (R/(Γrchmin))−d/2

}
and ε ≤ c̃dΓ3rchmin,

for some small enough absolute constants c, c̃ > 0. Then there exists a deterministic SQ algorithm
making at most

q ≤ Cn log

(
R

ε

)
+ n log6 n

Cd

fminrchdmin

(
rchmin

ε

)d/2
queries to STAT(τ), and that outputs a finite triangulation M̂ ⊆ Rn that has the same topology as
M , and such that

dH(M,M̂) ≤ max

{
ε,
C̃d

Γ3
rchmin

(
τ

fminrchdmin

)2/(d+1)
}
,
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where Cd > 0 depends on d and C̃ > 0 is an absolute constant.

Compared to Theorem 22, observe the extra O(n log(R/ε)) queries made in Theorem 25, which
come from the seed point search performed at initialization. Passed this difference, the two results
are tightly similar. In the same fashion as above, we first discuss the necessity of the assumptions
made on τ and the precision threshold O(τ2/(d+1)).

Theorem 26. Let α < 1/2 be a probability of error. Assume that rchmin ≤ R/48 and fmin ≤
fmax/24, and

min
1≤k≤n

(
96rchmin

√
k

R

)k
≤ 18× 4dfminrchdmin ≤ 1.

Then no randomized SQ algorithm can estimate M = Supp(D) over B(0, R)uDn,drchmin
(fmin, fmax, L)

with precision

ε <
rchmin

227
min

{
1

222d2
,

(
τ

ωdfminrchdmin

)2/d
}

and probability 1− α, no matter its number of queries.

As above, we emphasize the fact that the assumptions made on fmin, fmax, rchmin and R are
necessary to guarantee the non-degeneracy of the model B(0, R)uDn,drchmin

(fmin, fmax, L), and hence
a non-trivial estimation problem (see Section 2.2.3). As for the fixed point model, we hence see that
the assumptions made on τ and the precision ε cannot be omitted. Let us though notice the slightly
more stringent assumption made on τ that depends on n in the upper bound (Theorem 25) but
not in the lower bound (Theorem 26). This dependency originates from the seed point detection
method that we developed (Theorem 21) and we do not claim it to be optimal. As about the
computational lower bound for this model, we state the following result.

Theorem 27. Let α < 1 be a probability of error, and ε ≤ rchmin/(2
34d2). Assume that rchmin ≤

R/48, fmin ≤ fmax/24, and

min
1≤k≤n

(
96rchmin

√
k

R

)k
≤ 18× 4dfminrchdmin ≤ 1.

Then any randomized SQ algorithm estimating M = Supp(D) over B(0, R)uDn,drchmin
(fmin, fmax, L)

with precision ε and with probability of success at least 1− α must make at least

q ≥

(
nmax

{
log

(
R

4ε

)
,

1

ωdfminrchdmin

(
rchmin

227ε

)d/2}
+ log(1− α)

)/
log(1 + 1/τ)

queries to STAT(τ).

As a result, the extra O(n log(R/ε)) queries of Theorem 25 are necessary in the SQ framework.
This contrasts sharply with the sample model, where no prior location information is necessary
appears in the sample complexity [GPPVW12a, KZ15, AL18]. Roughly speaking, this is explained
by the fact that a single sample (the first, say) does provide location information for free, while
in the SQ framework, the learner is left with the whole ball B(0, R) to explore at initialization.
However, as mentioned above, note that the term Ω(n log(R/ε) attributable to this initialization
step would only dominate in the regime where R is exponentially bigger than rchmin.
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A Proofs of the Properties of Manifold Propagation

When running Manifold Propagation, linear approximations of the manifold are done via its
(approximate) tangent spaces. A key point in the proof of its correctness is the (quantitative)
validity of this approximation, which is ensured by the reach assumption rchM ≥ rchmin, which
bounds curvature.

Lemma 28. Let M ∈ Mn,d
rchmin

, and x ∈ Mη with η < rchmin. Take T ∈ Gn,d such that∥∥∥πTπM (x)M − πT
∥∥∥

op
≤ sin θ. Then for all ∆ ≤ rchmin/4, and all unit vector v ∈ T ,

d
(
x+ ∆v,M

)
≤ 5

8

∆2

rchmin
+ η + ∆ sin θ.

Proof of Lemma 28. By assumption on T , there exists a unit vector v′ ∈ TπM (x)M such that
‖v − v′‖ ≤ sin θ. Hence, since d(·,M) is 1-Lipschitz, we have

d
(
x+ ∆v,M

)
≤ d

(
x+ ∆v′,M

)
+ ∆ sin θ

≤ d
(
πM (x) + ∆v′,M

)
+ η + ∆ sin θ

≤
∥∥∥πM (x) + ∆v′ − expMπM (x)(∆v

′)
∥∥∥+ η + ∆ sin θ

≤ 5

8

∆2

rchmin
+ η + ∆ sin θ,

where the last inequality follows from [AL19, Lemma 1].

We are now in position to prove Lemma 16, that guarantees that Manifold Propagation builds
point clouds that do not deviate from M .

Proof of Lemma 16. The points added to O are all first added to Q: therefore, it is sufficient to
check that all the points x added to Q satisfy d(x,M) ≤ η. To see this, proceed by induction:

� As Q is initialized to {x̂0} with d(x̂0,M) ≤ η, the inequality holds true at Line 1, before the first
loop.

� If x̄ 6= x̂0 was added to Q, it can be written as x̄ = π̂(x0 +∆vi), for some point x0 ∈ Q and a unit

vector vi ∈ T̂ (x0). By induction, we have d(x0,M) ≤ η, and therefore
∥∥∥πTπM (x0)M − πT̂ (x0)

∥∥∥
op
≤

sin θ because T̂ (·) is assumed to have precision sin θ over Mη. Hence, from Lemma 28,

d(x0 + ∆vi,M) ≤ 5

8

∆2

rchmin
+ η + ∆ sin θ ≤ Λ,

and therefore

d(x̄,M) ≤ ‖x̄− πM (x0 + ∆vi)‖ = ‖π̂(x0 + ∆vi)− πM (x0 + ∆vi)‖ ≤ η

since π̂(·) is assumed to have precision η over MΛ.
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This concludes the induction and hence the proof.

Next we show Lemma 17, asserting that the radius of sparsity of the point clouds built by
Manifold Propagation is maintained at all times.

Proof of Lemma 17. At initialization, Q ∪O = {x̂0}, so that the inequality trivially holds at Line
1. Then, if a point x̄ is added to Q at Line 8, it means that it can be written as x̄ = π̂(x0 + ∆vi0),
with d(x0 + ∆vi0 ,Q∪O) ≥ δ. Consequently, by induction, we have

min
x,y∈Q∪O∪{x̄}

x 6=y

‖x− y‖ = min
{

min
x,y∈Q∪O
x 6=y

‖x− y‖ , d (x̄,Q∪O)
}

≥ min
{
δ − 5

8

∆2

rchmin
− 2η −∆ sin θ,

d(x0 + ∆vi0 ,Q∪O)− ‖(x0 + ∆vi0)− x̄‖
}

≥ min

{
δ − 5

8

∆2

rchmin
− 2η −∆ sin θ, δ − ‖(x0 + ∆vi0)− x̄‖

}
.

In addition, Lemma 28 and Lemma 16 combined yield

‖(x0 + ∆vi0)− x̄‖ = ‖(x0 + ∆vi0)− π̂(x0 + ∆vi0)‖
≤ ‖π̂(x0 + ∆vi0)− πM (x0 + ∆vi0)‖

+ ‖πM (x0 + ∆vi0)− (x0 + ∆vi0)‖

≤ η +

(
5

8

∆2

rchmin
+ η + ∆ sin θ

)
.

As a result, after the update Q ← Q∪{x̄}, the announced inequality still holds. Finally, we notice
that Line 11, which swaps a point from Q to O, leaves Q ∪ O unchanged. By induction, this
concludes the proof.

Finally we prove Lemma 18, that states that if Manifold Propagation terminates, it outputs
a point cloud dense enough nearby M .

Proof of Lemma 18. Assume for contradiction that there exists p0 ∈ M such that for all x ∈ O,
dM
(
p0, πM (x)

)
> ∆. Let x0 ∈ O (which is not empty since x̂0 ∈ O) be such that

dM
(
p0, πM (x0)

)
= min

x∈O
dM (p0, πM (x)

)
:= r0 > ∆,

and write y0 := πM (x0). Let γ := γy0→p0 : [0, r0]→M denote an arc-length parametrized geodesic
joining y0 and p0. Finally, set q0 := γ(∆) ∈M and v0 := γ′(0) ∈ Ty0M .

Consider the sets Q and O of Manifold Propagation right after x0 was removed from Q and
added to O (Line 11). By construction, all the elements v1, . . . , vk of a maximal (sinα)-packing of
Sd−1

T̂ (x0)
were tested to enter Q (Loop from Line 6 to Line 10). Because the packing is maximal, it is

also a (2 sinα)-covering of Sd−1

T̂ (x0)
(see the proof of Proposition 32). As a result, by assumption on

the precision of T̂ (x0), there exists vi0 in this packing such that ‖v0 − vi0‖ ≤ 2 sinα+ sin θ.
As γ is a distance-minimizing path on M from y0 to q0, so it is along its two sub-paths with end-

point q0, as otherwise, one could build a strictly shorter path between y0 and q0. In particular, since
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∆ < r0 = dM (y0, p0), we have dM (y0, q0) = dM (y0, γ(∆)) = ∆ and dM (p0, q0) = dM (p0, γ(∆)) =
r0 −∆. As a result,

dM (p0, πM (π̂ (x0 + ∆vi0))) ≤ dM (p0, q0) + dM (q0, πM (π̂ (x0 + ∆vi0)))

= r0 −∆ + dM (q0, πM (π̂ (x0 + ∆vi0))) . (1)

But from Lemma 8, we get

dM (q0, πM (π̂ (x0 + ∆vi0))) ≤ 2rchmin arcsin

(
‖q0 − πM (π̂ (x0 + ∆vi0))‖

2rchmin

)
≤ ‖q0 − πM (π̂ (x0 + ∆vi0))‖√

1−
(
‖q0−πM(π̂(x0+∆vi0))‖

2rchmin

)2
, (2)

and furthermore,

‖q0 − πM (π̂ (x0 + ∆vi0))‖ ≤ ‖q0 − (y0 + ∆v0)‖+ ‖(y0 + ∆v0)− (x0 + ∆vi0)‖
+ ‖(x0 + ∆vi0)− π̂ (x0 + ∆vi0)‖
+ ‖π̂ (x0 + ∆vi0)− πM (π̂ (x0 + ∆vi0))‖ . (3)

We now bound the right hand side of Equation (3) term by term. The first term is bounded by

‖q0 − (y0 + ∆v0)‖ =
∥∥γ(∆)− (γ(0) + ∆γ′(0))

∥∥ ≤ ∆2

2rchmin
,

where the inequality follows from a Taylor expansion and Lemma 8. For the second term, write

‖(y0 + ∆v0)− (x0 + ∆vi0)‖ ≤ ‖y0 − x0‖+ ∆ ‖v0 − vi0‖ ≤ η + ∆(2 sinα+ sin θ).

For the third term, we combine Lemma 28 and Lemma 16 to get

‖(x0 + ∆vi0)− π̂ (x0 + ∆vi0)‖ ≤ d (x0 + ∆vi0 ,M)

+ ‖πM (x0 + ∆vi0)− π̂ (x0 + ∆vi0)‖

≤ 5

8

∆2

rchmin
+ 2η + ∆ sin θ,

and for the fourth term, applying again Lemma 28 and Lemma 16 yields

‖π̂ (x0 + ∆vi0)− πM (π̂ (x0 + ∆vi0))‖ = d
(
π̂ (x0 + ∆vi0) ,M

)
≤ η.

Plugging these four bounds in Equation (3), we have shown that

‖q0 − πM (π̂ (x0 + ∆vi0))‖ ≤ 9∆2

8rchmin
+ 4η + 2∆(sinα+ sin θ). (4)

Combining Equation (4), Equation (2), and the assumptions on the parameters ∆, η, θ, α hence
yields

dM (y0, πM (π̂ (x0 + ∆vi0))) ≤ 2 ‖q0 − πM (π̂ (x0 + ∆vi0))‖ ≤ ∆/2,
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so that Equation (1) gives

dM (y0, πM (π̂ (x0 + ∆vi0))) ≤ r0 −∆ + ∆/2

< r0

= dM (p0, πM (x0)) = min
x∈O

dM (p0, πM (x)
)
.

In particular, π̂ (x0 + ∆vi0) was not added to Q in the Loop of Lines 6 to 10 investigating the
neighbors of x0 (i.e. when x0 was picked Line 3). Since Q ∪O is an increasing sequence of sets as
Manifold Propagation runs and that at Q = ∅ when it terminates, this means that there exists
x1 in the final output O such that ‖x0 + ∆vi0 − x1‖ ≤ δ.

The existence of this particular point x1 in O which is δ-close to x0 + ∆vi0 will lead us to a
contradiction: we will show that πM (x1) will be closer to p0 than πM (x0) is in geodesic distance.
To get there, we first notice that any such x1 ∈ O would satisfy d(x1,M) ≤ η from Lemma 16, so
that

‖πM (x0 + ∆vi0)− πM (x1)‖ ≤ ‖πM (x0 + ∆vi0)− (x0 + ∆vi0)‖
+ ‖(x0 + ∆vi0)− x1‖+ ‖x1 − πM (x1)‖

≤ δ +
5

8

∆2

rchmin
+ 2η + ∆ sin θ

≤ δ +
17

192
∆ ≤ 25

192
rchmin,

where the last-but-one line follows from Lemma 28, and the last one from the assumptions on the
parameters ∆, η, θ and δ. As a result, from Lemma 8,

dM (πM (x0 + ∆vi0) , πM (x1)) ≤ ‖πM (x0 + ∆vi0)− πM (x1)‖√
1−

(
25

2×192

)2

≤
(

1 +
3

10000

)(
δ +

17

192
∆

)
. (5)

Furthermore, using a similar decomposition as for Equation (4), we have

‖q0 − πM (x0 + ∆vi0)‖ ≤ ‖q0 − (y0 + ∆vi0)‖+ ‖(y0 + ∆v0)− (x0 + ∆vi0)‖
+ ‖(x0 + ∆vi0)− πM (x0 + ∆vi0)‖

≤ ∆2

2rchmin
+ (η + ∆ (2 sinα+ sin θ))

+

(
5

8

∆2

rchmin
+ η + ∆ sin θ

)
≤ 11

64
∆ ≤ 11

1536
rchmin,

from which we finally get

dM (q0, πM (x0 + ∆vi0)) ≤ ‖q0 − πM (x0 + ∆vi0)‖√
1−

(
11

2×1536

)2

≤ 3

16
∆. (6)

This takes us to the desired contradiction, since:
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� on one hand, x1 ∈ O forces to have

dM (p0, πM (x1)) ≥ r0 = min
x∈O

dM (p0, πM (x)
)

= dM (p0, πM (x0));

� on the other hand, Equation (5) and Equation (6) combined yield

dM (p0, πM (x1)) ≤ dM (p0, q0) + dM (q0, πM (x0 + ∆vi0))

+ dM (πM (x0 + ∆vi0) , πM (x1))

≤ r0 −∆ +
3

16
∆ +

(
1 +

3

10000

)(
δ +

17

192
∆

)
< r0,

where we used that δ ≤ 7∆/10.

As a result, we have proved that

max
p∈M

min
x∈O

dM (p, πM (x)
)
≤ ∆,

which is the announced result.

B Preliminary Geometric Results

B.1 Local Mass of Balls Estimates

To prove the properties of the statistical query routines, we will need the following two geometric
results about manifolds with bounded reach.

Proposition 29 ([AL18, Proposition 8.2]). Let M ∈ Mn,d
rchmin

, x ∈ Rn such that d(x,M) ≤
rchmin/8, and h ≤ rchmin/8. Then,

B
(
πM (x), r−h

)
∩M ⊆ B(x, h) ∩M ⊆ B

(
πM (x), r+

h

)
∩M,

where rh = (h2 − d(x,M)2)
1/2
+ , (r−h )2 =

(
1− d(x,M)

rchmin

)
r2
h, and (r+

h )2 =
(

1 + 2d(x,M)
rchmin

)
r2
h.

As a result, one may show that any ball has large mass with respect to a measure D ∈
Dn,drchmin

(fmin, fmax, L).

Lemma 30. Let D ∈ Dn,drchmin
(fmin, fmax, L) have support M = Supp(D).

� For all p ∈M and h ≤ rchmin/4,

adfminh
d ≤ D

(
B(p, h)

)
≤ Adfmaxh

d,

where ad = 2−dωd and Ad = 2dωd.

� For all x0 ∈ Rn and h ≤ rchmin/8,

a′dfmin(h2 − d(x0,M)2)
d/2
+ ≤ D

(
B(x0, h)

)
≤ A′dfmax(h2 − d(x0,M)2)

d/2
+ ,

where a′d = (7/8)d/2ad and A′d = (5/4)d/2Ad.

Proof of Lemma 30. The first statement is a direct consequence of [AL18, Propositions 8.6 & 8.7].
The second one follows by combining the previous point with Proposition 29.
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B.2 Euclidean Packing and Covering Estimates

For sake of completeness, we include in this section some standard packing and covering bounds
that are used in our analysis. We recall the following definitions.

A r-covering of K ⊆ Rn is a subset X = {x1, . . . , xk} ⊆ K such that for all x ∈ K, d(x,X ) ≤ r.
A r-packing of K is a subset Y = {y1, . . . , yk} ⊆ K such that for all y, y′ ∈ Y, B(y, r)∩B(y′, r) = ∅
(or equivalently ‖y′ − y‖ > 2r).

Definition 31 (Covering and Packing numbers). For K ⊆ Rn and r > 0, the covering number
cvK(r) of K is the minimum number of balls of radius r that are necessary to cover K:

cvK(r) = min {k > 0 | there exists a r-covering of cardinality k} .

The packing number pkK(r) of K is the maximum number of disjoint balls of radius r that can be
packed in K:

pkK(r) = max {k > 0 | there exists a r-packing of cardinality k} .

Packing an covering number are tightly related, as shown by the following statement.

Proposition 32. For all subset K ⊆ Rn and r > 0,

pkK(2r) ≤ cvK(2r) ≤ pkK(r).

Proof of Proposition 32. For the left-hand side inequality, notice that if K is covered by a family
of balls of radius 2r, each of these balls contains at most one point of a maximal 2r-packing.
Conversely, the right-hand side inequality follows from the fact that a maximal r-packing is always
a 2r-covering. Indeed, if it was not the case one could add a point x0 ∈ K that is 2r-away from all
of the r-packing elements, which would contradict the maximality of this packing.

We then bound the packing and covering numbers of the submanifolds with reach bounded
below. Note that these bounds depend only on the intrinsic dimension and volumes, but not on
the ambient dimension.

Proposition 33. For all M ∈Mn,d
rchmin

and r ≤ rchmin/8,

pkM (r) ≥ H
d(M)

ωd(4r)d
,

and

cvM (r) ≤ H
d(M)

ωd(r/4)d
.

Proof of Proposition 33. First, we have pkM (r) ≥ cvM (2r) from Proposition 32. In addition, if
{pi}1≤i≤N ⊆ M is a minimal (2r)-covering of M , then by considering the uniform distribution

DM = 1MHd/Hd(M) over M , using a union bound and applying Lemma 30, we get

1 = DM

(
∪Ni=1B(pi, 2r)

)
≤

N∑
i=1

DM (B(pi, 2r)) ≤ N2dωd(2r)
d/Hd(M).

As a result, pkM (r) ≥ cvM (2r) = N ≥ Hd(M)
ωd(4r)d

.
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For the second bound, use again Proposition 32 to get cvM (r) ≤ pkM (r/2). Now, by definition,
a maximal (r/2)-packing {qj}1≤j≤N ′ ⊆M of M provides us with a family of disjoint balls of radii
r/2. Hence, from Lemma 30, we get

1 ≥ DM

(
∪N ′i=jB(qj , r/2)

)
=

N ′∑
j=1

DM (B(qj , r/2)) ≥ N ′2−dωd(r/2)d/Hd(M),

so that cvM (r) ≤ pkM (r/2) = N ′ ≤ Hd(M)
ωd(r/4)d

.

Bounds on the same discretization-related quantities computed on the Euclidean n-balls and
k-spheres will also be useful.

Proposition 34. � For all r > 0,

pkB(0,R)(r) ≥
(
R

2r

)n
and cvB(0,R)(r) ≤

(
1 +

2R

r

)n
.

� For all integer 1 ≤ k < n and r ≤ 1/8,

pkSk(0,1)(r) ≥ 2

(
1

4r

)k
.

Proof of Proposition 34. � From Proposition 32, we have pkB(0,R)(r) ≥ cvB(0,R)(2r). Furthermore,

if ∪Ni=1B(xi, 2r) ⊇ B(0, R) is a minimal 2r-covering of B(0, R), then by a union bound, ωnR
n =

Hn(B(0, R)) ≤ Nωn(2r)n, so that pkB(0,R)(r) ≥ cvB(0,R)(2r) = N ≥ (R/(2r))n.

For the second bound, we use again Proposition 32 to get cvB(0,R)(r) ≤ pkB(0,R)(r/2), and
we notice that any maximal (r/2)-packing of B(0, R) with cardinality N ′ provides us with a
family of disjoint balls of radii r/2, all contained in B(0, R)r/2 = B(0, R + r/2). A union bound
hence yields ωn(R + r/2)n = Hn(B(0, R + r/2)) ≥ N ′Hn(B(0, r/2)) = N ′ωn(r/2)n, yielding
cvB(0,R)(r) ≤ pkB(0,R)(r/2) = N ′ ≤ (1 + 2R/r)n.

� Notice that Sk(0, 1) ⊆ Rn is a compact k-dimensional submanifold without boundary, reach
rchSk(0,1) = 1, and volume Hk(Sk(0, 1)) = σk. Applying Proposition 33 together with elementary
calculations hence yield

pkSk(0,1)(r) ≥
σk
ωk

(
1

4r

)k
=

(
2π(k+1)/2

Γ
(
k+1

2

) )( πk/2

Γ
(
k
2 + 1

))−1(
1

4r

)k
= 2
√
π

Γ
(
k
2 + 1

)
Γ
(
k+1

2

) ( 1

4r

)k
≥ 2

(
1

4r

)k
.
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B.3 Global Volume Estimates

The following bounds on the volume and diameter of low-dimensional submanifolds of Rn with
positive reach are at the core of Section 2.2.3. They exhibit some implicit constraints on the
parameters for the statistical models not to be degenerate.

Proposition 35. For all M ∈Mn,d
rchmin

,

Hd(M) ≥ σdrchdmin,

with equality if and only if M is a d-dimensional sphere of radius rchmin. Furthermore, if M ⊆
B(0, R) then rchmin ≤

√
2R and

Hd(M) ≤
(

18R

rchmin

)n
ωd

(
rchmin

2

)d
.

Proof of Proposition 35. For the first bound, note that the operator norm of the second fundamen-
tal form of M is everywhere bounded above by 1/rchmin [NSW08, Proposition 6.1], so that [Alm86,
(3)] applies and yields the result.

For the next statement, note that [Hat02, Theorem 3.26] ensures that M is not homotopy
equivalent to a point. As a result, [AKC+19, Lemma A.3] applies and yields

rchmin ≤ rchM

≤ diam(M)/
√

2

≤ diam(B(0, R))/
√

2

=
√

2R.

For the last bound, consider a (rchmin/8)-covering {zi}1≤i≤N of B(0, R), which can be chosen so that

N ≤
(

1 + 2R
rchmin/8

)n
≤
(

18R
rchmin

)n
from Proposition 34. Applying Lemma 30 with h = rchmin/8, we

obtain

Hd(M ∩ B(zi, rchmin/8)) ≤ (5/4)d/2 × 2dωd((rchmin/8)2 − d(zi,M)2)
d/2
+

≤ ωd
(

rchmin

2

)d
,

for all i ∈ {1, . . . , N}. A union bound then yields

Hd(M) = Hd
(
∪Ni=1M ∩ B(zi, rchmin/8)

)
≤ Nωd

(
rchmin

2

)d
≤
(

18R

rchmin

)n
ωd

(
rchmin

2

)d
,

which concludes the proof.

C Projection Routine

We now build the SQ projection routine π̂ : Rn → Rn (Theorem 19), which is used repeatedly
in the SQ emulation of Manifold Propagation (Theorems 22 and 25). Recall that given a point
x0 ∈ Rn nearby M = Supp(D), we aim at estimating its metric projection πM (x0) onto M with
statistical queries to STAT(τ). We follow the strategy of proof described in Section 4.1.
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C.1 Bias of the Local Conditional Mean for Projection

In what follows, we will write

mD(x0, h) = E
x∼D

[x |B(x0, h) ] =
Ex∼D

[
x1‖x−x0‖≤h

]
D(B(x0, h))

(7)

for the local conditional mean of D given B(x0, h). In order to study the bias of mD(x0, h) with
respect to πM (x0), it will be convenient to express it (up to approximation) with intrinsic geodesic
balls BM (·, ·) instead of the extrinsic Euclidean balls B(·, ·) that appears in its definition (Equa-
tion (7)). This change of metric is stated in the following result.

Lemma 36. Let D ∈ Dn,drchmin
(fmin, fmax, L) have support M = Supp(D), and p ∈ M . Recall

that ωd = Hd (Bd(0, 1)) denotes the volume of the d-dimensional unit Euclidean ball. Then for all
r ≤ rchmin/4, ∥∥∥∥ E

x∼D

[
x1BM (p,r)(x)

]
−D (BM (p, r)) p

∥∥∥∥ ≤ Cdωd( fmax

rchmin
+ L

)
rd+2,

and for r ≤ r̄ ≤ rchmin/4,

D (BM (p, r̄) \ BM (p, r)) ≤ (C ′)dωdfmaxr̄
d−1(r̄ − r),

where C,C ′ > 0 are absolute constants.

Proof of Lemma 36. First apply the area formula [Fed69, Section 3.2.5] to write the mean of any
measurable function G defined on M as

E
x∼D

[
G(x)1BM (p,r)(x)

]
=

∫ r

0

∫
Sd−1

J(t, v)f
(
expMp (tv)

)
G
(
expMp (tv)

)
dvdt,

where J(t, v) is the Jacobian of the volume form of M expressed in polar coordinates around p

for 0 ≤ t ≤ r ≤ rchmin/4 and unit v ∈ TpM . That is, J(t, v) = td−1
√

det
(
A>t,vAt,v

)
where

At,v = dtv expMp . But from [AKC+19, Proposition A.1 (iv)], for all w ∈ TpM , we have(
1− t2

6rch2
min

)
‖w‖ ≤ ‖At,vw‖ ≤

(
1 +

t2

rch2
min

)
‖w‖ .

As a consequence, (
1− t2

6rch2
min

)d
≤
√

det
(
A>t,vAt,v

)
≤
(

1 +
t2

rch2
min

)d
and in particular,

RJ(t, v) :=
∣∣∣J(t, v)− td−1

∣∣∣ ≤ Cdtd−1

(
t

rchmin

)2

,

where C > 0 is an absolute constant. Also, by assumption on the model, f is L-Lipschitz, so

|Rf (t, v)| :=
∣∣f (expMp (tv)

)
− f(p)

∣∣ =
∣∣f (expMp (tv)

)
− f(expMp (0))

∣∣
≤ L

∥∥expMp (tv)− expMp (0)
∥∥

≤ LdM (expMp (0), expMp (tv))

= Lt.
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Finally, from [AL19, Lemma 1], we have

‖Rexp(t, v)‖ :=
∥∥expMp (tv)− (p+ tv)

∥∥ ≤ 5t2/(8rchmin).

Putting everything together, we can now prove the first bound by writing∥∥∥∥ E
x∼D

[
x1BM (p,r)(x)

]
−D (BM (p, r)) p

∥∥∥∥
=

∥∥∥∥∫ r

0

∫
Sd−1

J(t, v)f
(
expMp (tv)

) (
expMp (tv)− p

)
dvdt

∥∥∥∥
=

∥∥∥∥∫ r

0

∫
Sd−1

(
td−1 +RJ(t, v)

)
(f(p) +Rf (t, v)) (tv +Rexp(t, v)) dvdt

∥∥∥∥
≤ C̃dωd

(
fmax

rchmin
+ L

)
rd+2,

where the last inequality used the fact that
∫ r

0

∫
Sd−1 t

df(p)vdvdt = 0. Similarly, to derive the
second bound, we write

D (BM (p, r̄) \ BM (p, r)) =

∫ r̄

r

∫
Sd−1

J(t, v)f
(
expMp (tv)

)
dvdt

≤ (C ′)dσd−1fmax

∫ r̄

r
td−1dt

≤ (C ′′)dωdfmaxr̄
d−1(r̄ − r).

We are now in position to bound the bias of mD(x0, h).

Lemma 37. Let D ∈ Dn,drchmin
(fmin, fmax, L) have support M = Supp(D), and x0 ∈ Rn be such that

d(x0,M) < h ≤ rchmin/8. Then,

‖πM (x0)−mD(x0, h)‖ ≤ Cd
(
fmax + Lrchmin

fmin

)
hrh

rchmin
,

where rh = (h2 − d(x0,M)2)1/2 and C > 0 is an absolute constant.

Proof of Lemma 37. For short, let us write p0 = πM (x0). All the expected values E are taken with
respect to x ∼ D. Before any calculation, we combine Proposition 29 and Lemma 8 to assert that

BM

(
p0, r

−
h

)
⊆ B(x0, h) ∩M ⊆ BM

(
p0, R

+
h

)
, (8)

where we wrote (r−h )2 = (1− d(x0,M)/rchmin) r2
h and R+

h = r+
h

(
1 +

(
r+
h /rchmin

)2)
, with (r+

h )2 =

(1 + 2d(x0,M)/rchmin) r2
h. We note by now from the definition 0 < r−h ≤ R+

h ≤ rchmin/4 since
d(x0,M) < h ≤ rchmin/8, and that

R+
h − r

−
h ≤

Crh
rchmin

(
d(x0,M) + r2

h/rchmin

)
≤ 2Chrh

rchmin
,

for some absolute constant C > 0.
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We can now proceed and derive the asserted bound. From triangle inequality,

‖mD(x0, h)− πM (x0)‖

=

∥∥Ex∼D [(x− p0)1B(x0,h)(x)
]∥∥

D(B(x0, h))

≤

∥∥∥∥∥∥E
[
(x− p0)1B(x0,h)(x)

]
D(B(x0, h))

−
E
[
(x− p0)1BM (p0,R

+
h )(x)

]
D(BM (p0, R

+
h ))

∥∥∥∥∥∥
+

∥∥∥E [(x− p0)1BM (p0,R
+
h )(x)

]∥∥∥
D(BM (p0, R

+
h ))

.

Combining Equation (8), Lemma 36 and Lemma 30, the first term of the right hand side can be
further upper bounded by∥∥∥∥∥∥E

[
(x− p0)1B(x0,h)(x)

]
D(B(x0, h))

−
E
[
(x− p0)1BM (p0,R

+
h )(x)

]
D(BM (p0, R

+
h ))

∥∥∥∥∥∥
≤

∥∥E [(x− p0)1B(x0,h)(x)
]∥∥

D(B(x0, h))D(BM (p0, R
+
h ))

∣∣D(BM (p0, R
+
h ))−D(B(x0, h))

∣∣
+

∥∥∥E [(x− p0)
(
1BM (p0,R

+
h )(x)− 1B(x0,h)(x)

)]∥∥∥
D(BM (p0, R

+
h ))

≤
2R+

hD
(
BM (p0, R

+
h ) \ BM (p0, r

−
h )
)

D(BM (p0, R
+
h ))

≤
Cdωdfmax(R+

h )d(R+
h − r

−
h )

cdωdfmin(R+
h )d

≤ (C ′)d
fmax

fmin

hrh
rchmin

,

where the last bound uses R+
h ≤ 4rh. For the second term, we use Lemma 36 and Lemma 30 to

derive ∥∥∥E [(x− p0)1BM (p0,R
+
h )(x)

]∥∥∥
D(BM (p0, R

+
h ))

≤
(C ′′)dωd

(
fmax

rchmin
+ L

)
(R+

h )d+2

cdωdfmin(R+
h )d

≤ C̃d
(
fmax + Lrchmin

fmin

)
r2
h

rchmin
,

which concludes the proof.

C.2 Metric Projection with Statistical Queries

We finally prove the main announced statement of Appendix C.

Proof of Theorem 19. First note that under the assumptions of the theorem, d(x0,M) ≤ Λ ≤
rchmin/8. We hence let h > 0 be a bandwidth to be specified later, but taken such that d(x0,M) <√

2Λ ≤ h ≤ rchmin/4.
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Consider the map F (x) = (x−x0)
h 1‖x−x0‖≤h for x ∈ Rn. As ‖F (x)‖ ≤ 1 for all x ∈ Rn, Lemma 5

asserts that there exists a deterministic statistical query algorithm making 2n queries to STAT(τ)

and that outputs a vector Ŵ = V̂ /h ∈ Rn such that
∥∥∥Ex∼D [F (x)]− V̂ /h

∥∥∥ ≤ Cτ . Furthermore,

with the single query r = 1B(x0,h) to STAT(τ), we obtain â ∈ R such that |D(B(x0, h)− â| ≤ τ .

Let us set π̂(x0) := x0 + V̂ /â and prove that it satisfies the claimed bound. For this, write

‖mD(x0, h)− π̂(x0)‖

=

∥∥∥∥∥Ex∼D
[
(x− x0)1‖x−x0‖≤h

]
D(B(x0, h))

− V̂

â

∥∥∥∥∥
≤
|D(B(x0, h))− â|

∥∥Ex∼D [(x− x0)1‖x−x0‖≤h
]∥∥

D(B(x0, h))â
+

∥∥∥Ex∼D [(x− x0)1‖x−x0‖≤h
]
− V̂

∥∥∥
â

≤
|D(B(x0, h))− â|h+

∥∥∥Ex∼D [(x− x0)1‖x−x0‖≤h
]
− V̂

∥∥∥
D(B(x0, h))− |D(B(x0, h)− â|

≤ (C + 1)τh

D(B(x0, h))− τ

≤ (C + 1)τh

c̃dωdfmin(h/
√

2)d − τ
,

where the last inequality comes from Lemma 30, and rh = (h2 − d(x0,M)2)d/2 ≥ h/
√

2 since
h ≥

√
2Λ. If in addition, one assumes that c̃dωdfmin(h/

√
2)d ≥ 2τ , the previous bound further

simplifies to

‖mD(x0, h)− π̂(x0)‖ ≤ (C ′)d

ωdfmin
τh1−d.

On the other hand, Lemma 37 yields that the bias term not bigger than

‖πM (x0)−mD(x0, h)‖ ≤ C̃d
(
fmax + Lrchmin

fmin

)
hrh

rchmin
,

with rh ≤ h. As a result,

‖πM (x0)− π̂(x0)‖ ≤ ‖πM (x0)−mD(x0, h)‖+ ‖mD(x0, h)− π̂(x0)‖

≤ (C ′ ∨ C̃)d

fmin

(
(fmax + Lrchmin)

h

rchmin
+

τ

ωdhd

)
h.

Taking bandwidth

h = max

{
2Λ,

(
rchmin

fmax + Lrchmin

) 1
d+1
(
τ

ωd

) 1
d+1

}

= max

{
2Λ, rchmin

(
fmin

fmax + Lrchmin

) 1
d+1
(

τ

ωdfminrchdmin

) 1
d+1

}
,

we have by assumption on the parameters of the model that rchmin/4 ≥ h ≥ 2Λ ≥
√

2Λ, and that
c̃dωdfmin(h/

√
2)d ≥ 2τ as soon as c > 0 is small enough. Finally, plugging the value of h in the
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above bound and recalling that Γ = fmin
fmax+Lrchmin

yields

‖πM (x0)− π̂(x0)‖ ≤ C̃d

Γ
max

{
Λ2

rchmin
,Γ

2
d+1 rchmin

(
τ

ωdfminrchdmin

) 2
d+1

}
,

which concludes the proof.

D Tangent Space Estimation Routine

We now build the SQ tangent space routine T̂ : Rn → Gn,d (Theorem 20), which is used repeatedly
in the SQ emulation of Manifold Propagation (Theorems 22 and 25). Recall that given a point
x0 ∈ Rn nearby M = Supp(D), we aim at estimating the tangent space TπM (x0)M with statistical
queries to STAT(τ). We follow the strategy of proof described in Section 4.2.

To fix notation from now on, we let 〈A,B〉 = tr(A∗B) stand for the Euclidean inner prod-
uct between A,B ∈ Rk×k. We also write ‖Σ‖F =

√
〈Σ,Σ〉 for the Frobenius norm, ‖Σ‖op =

max‖v‖≤1 ‖Σv‖ for the operator norm, and ‖Σ‖∗ = max‖X‖op≤1 〈Σ, X〉 for the nuclear norm.

D.1 Bias of Local Principal Component Analysis

In what follows, we will write

ΣD(x0, h) = E
x∼D

[
(x− x0)(x− x0)>

h2
1‖x−x0‖≤h

]
(9)

for the re-scaled local covariance-like matrix of D at x0 ∈ Rn with bandwidth h > 0. Notice that
for simplicity, this local covariance-like matrix is computed with centering at the current point x0,
and not at the local conditional mean Ex∼D [x| ‖x− x0‖ ≤ h]. This choice simplifies our analysis
and will not impact the subsequent estimation rates. Let us first decompose this matrix and exhibit
its link with the target tangent space TπM (x0)M ∈ Gn,d.

Lemma 38. Let D ∈ Dn,drchmin
(fmin, fmax, L) have support M = Supp(D), x0 ∈ Rn and h > 0. If

d(x0,M) ≤ η ≤ h/
√

2 and h ≤ rchmin/(8
√
d), then there exists a symmetric matrix Σ0 ∈ Rn×n

with Im (Σ0) = TπM (x0)M such that

ΣD(x0, h) = Σ0 +R,

with µd(Σ0) ≥ ωdfmin(ch)d and ‖R‖∗ ≤ ωdfmax(Ch)d
(
η
h + h

rchmin

)
, where c, C > 0 are absolute

constants.

Proof of Lemma 38. This proof roughly follows the ideas of [AL18, Section E.1], with a different
centering point in the covariance matrix and finer (nuclear norm) estimates on residual terms. For
short, we let p0 = πM (x0). We first note that the integrand defining h2ΣD(x0, h) decomposes as

(x− x0)(x− x0)> = (x− p0)(x− p0)> + (x0 − p0)(x0 − p0)> (10)

+ (x− p0)(x0 − p0)> + (x0 − p0)(x− p0)>,
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for all x ∈ B(x0, h) ∩M . After integrating them with respect to x ∼ D, we bound the last two
terms, by writing∥∥∥∥ E

x∼D

[
(x− p0)(x0 − p0)>1‖x−x0‖≤h

]∥∥∥∥
∗

=

∥∥∥∥ E
x∼D

[
(x0 − p0)(x− p0)>1‖x−x0‖≤h

]∥∥∥∥
∗

≤ E
x∼D

[∥∥∥(x0 − p0)(x− p0)>
∥∥∥
∗
1‖x−x0‖≤h

]
= E

x∼D

[
‖x0 − p0‖ ‖x− p0‖1‖x−x0‖≤h

]
≤ ηhD(B(x0, h))

≤ Cdωdfmaxηh
d+1,

where the last inequality uses Lemma 30. Similarly, for the second term of Equation (10), we have∥∥∥∥ E
x∼D

[
(x0 − p0)(x0 − p0)>1‖x−x0‖≤h

]∥∥∥∥
∗

= ‖x0 − p0‖2D(B(x0, h))

≤ Cdωdfmaxη
2hd.

Given v ∈ Rn, write v� = πTp0M (v) and v⊥ = v− v� = πTp0M⊥(v). We now focus on the first term

of Equation (10), which we further decompose as

(x− p0)(x− p0)> = (x− p0)�(x− p0)�
> + (x− p0)⊥(x− p0)⊥

> (11)

+ (x− p0)⊥(x− p0)�
> + (x− p0)�(x− p0)⊥

>,

for all x ∈ B(x0, h) ∩M . Note that for those points x ∈ B(x0, h) ∩M , we have
∥∥(x− p0)�

∥∥ ≤
‖x− p0‖ ≤ 2h, and from [Fed59, Theorem 4.18], ‖(x− p0)⊥‖ ≤ ‖x− p0‖2 /(2rchmin) ≤ h2/(2rchmin).
Hence, for the last two terms of Equation (11),∥∥∥∥ E

x∼D

[
(x− p0)⊥(x− p0)�

>
1‖x−x0‖≤h

]∥∥∥∥
∗

=

∥∥∥∥ E
x∼D

[
(x− p0)�(x− p0)⊥

>
1‖x−x0‖≤h

]∥∥∥∥
∗

≤ E
x∼D

[∥∥(x− p0)�
∥∥ ‖(x− p0)⊥‖1‖x−x0‖≤h

]
≤ Cdωdfmaxh

d+3/rchmin,

where we used Lemma 30 again. Dealing now with the second term of Equation (11),∥∥∥∥ E
x∼D

[
(x− p0)⊥(x− p0)⊥

>
1‖x−x0‖≤h

]∥∥∥∥
∗
≤ E

x∼D

[
‖(x− p0)⊥‖ ‖(x− p0)⊥‖1‖x−x0‖≤h

]
≤ Cdωdfmaxh

d+4/(4rch2
min).

Finally, let us write

Σ0 = E
x∼D

[
(x− p0)�(x− p0)�

>

h2
1‖x−x0‖≤h

]
.

The matrix Σ0 is symmetric and clearly has image Im Σ0 ⊆ Tp0M . Furthermore, since d(x0,M) ≤
η ≤ h/

√
2 and h ≤ rchmin/8, Proposition 29 and Lemma 8 yield that M ∩ B(x0, h) ⊇ M ∩
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B
(
p0,
√

7h/4
)
⊇ BM (p0, h/2). Hence, for all u ∈ Tp0M ,

h2 〈Σ0u, u〉 = E
x∼D

[〈
(x− p0)�, u

〉2
1‖x−x0‖≤h

]
= E

x∼D

[
〈x− p0, u〉2 1‖x−x0‖≤h

]
≥ fmin

∫
BM (p0,h/2)

〈x− p0, u〉2 dHd(x)

= fmin

∫
Bd(0,h/2)

〈
expMp0

(v)− p0, u
〉2 ∣∣det

(
dv expMp0

)∣∣dv,
where Hd is the d-dimensional Hausdorff measure on Rn, and expMp0

: Tp0M → M is the ex-
ponential map of M at p0. But [AL18, Proposition 8.7] states that there exists c > 0 such
that for all v ∈ Bd(0, rchmin/4),

∣∣det
(
dv expMp0

)∣∣ ≥ cd, and [AL19, Lemma 1] yields the bound∥∥expMp0
(v)− (p0 + v)

∥∥ ≤ 5 ‖v‖2 /(8rchmin). As a result, using the fact that (a− b)2 ≥ a2/2− 3b2 for
all a, b ∈ R, we have

h2 〈Σ0u, u〉 ≥ cdfmin

∫
Bd(0,h/2)

(
〈v, u〉 −

〈
expMp0

(v)− (p0 + v), u
〉)2

dv

≥ cdfmin

∫
Bd(0,h/2)

〈v, u〉2 /2− 3
〈
expMp0

(v)− (p0 + v), u
〉2

dv

≥ cdfmin

∫
Bd(0,h/2)

〈v, u〉2 /2− 3 ‖u‖2
(

5 ‖v‖2 /(8rchmin)
)2

dv

= cdfminσd−1

(
1

2d(d+ 2)
− 3(5/8)2

d+ 4

(
h

2rchmin

)2
)(

h

2

)d+2

‖u‖2

≥ (c′)dωdfminh
d+2 ‖u‖2 ,

as soon as h ≤ rchmin/
√
d. In particular, the last bound shows that the image of Σ0 is exactly

Tp0M , and that µd(Σ0) ≥ ωdfmin(c′h)d. Summing up the above, we have shown that

ΣD(x0, h) = Σ0 +R,

where Σ0 is symmetric, Im (Σ0) = TπM (x0)M , µd(Σ0) ≥ ωdfmin(c′h)d, and

‖R‖∗ ≤ ωdfmax(C ′h)d
(
η

h
+
η2

h2
+

h

rchmin
+

h2

rch2
min

)
≤ ωdfmax(C ′′h)d

(
η

h
+

h

rchmin

)
,

which is the announced result.

D.2 Matrix Decomposition and Principal Angles

The following lemma ensures that the principal components of a matrix A are stable to perturba-
tions, provided that A has a large-enough spectral gap. For a symmetric matrix A ∈ Rn×n, we let
µi(A) denote its i-th largest singular value.
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Lemma 39 (Davis-Kahan). Let Â, A ∈ Rn×n be symmetric matrices such that rank(A) = d. If
T̂ ∈ Gn,d denotes the linear space spanned by the first d eigenvectors of Â, and T = ImA ∈ Gn,d,
then

∠
(
T, T̂

)
:=
∥∥πT̂ − πT∥∥op

≤
2
∥∥∥Â−A∥∥∥

F

µd(A)
.

Proof of Lemma 39. It is a direct application of [YWS15, Theorem 2] with r = 1 and s = d.

D.3 Low-rank Matrix Recovery

Proceeding further in the strategy described in Section 4.2, we now explain how to estimate the
local covariance matrix ΣD(x0, h) ∈ Rn×n (Equation (9)) in STAT(τ).

Because ΣD(x0, h) ∈ Rn×n = Rn2
can be seen as is a mean vector with respect to the un-

known distribution D, (2n)2 queries to STAT(τ) would yield error O(τ) from Lemma 5. However,
this would not use the low-rank structure of ΣD(x0, h), i.e. some redundancy of its entries. To
mitigate the query complexity of this estimation problem, we will use compressed sensing tech-
niques [FCP08]. Mimicking the vector case (Lemma 5), we put our problem in the broader context
of the estimation of Σ = Ex∼D[F (x)] ∈ Rk×k in STAT(τ), where F : Rn → Rk×k and Σ are
approximately low rank (see Lemma 43).

D.3.1 Restricted Isometry Property and Low-Rank Matrix Recovery

Let us first present some fundamental results coming of matrix recovery. Following [FCP08, Section
II], assume that we observe y ∈ Rq such that

y = L(Σ) + z, (12)

where Σ ∈ Rk×k is the matrix of interest, L : Rk×k → Rq is a linear map seen as a sampling
operator, and z ∈ Rq encodes noise and has small Euclidean norm ‖z‖ ≤ ξ.

In general, when q < k2, L has non-empty kernel, and hence one has no hope to recover Σ only
from y, even with no noise. However, if Σ is (close to being) low-rank and that L does not shrink
low-rank matrices too much, L(Σ) may not actually censor information on Σ, while compressing
the dimension from k2 to q. A way to formalize this idea states as follows.

Definition 40 (Restricted Isometry Property). Let L : Rk×k → Rq be a linear map, and d ≤ k.
We say that L satisfies the d-restricted isometry property with constant δ > 0 if for all matrix
X ∈ Rk×k of rank at most d,

(1− δ) ‖X‖F ≤ ‖L(X)‖ ≤ (1 + δ) ‖X‖F .

We let δd(L) denote the smallest such δ.

To recover Σ only from the knowledge of y, consider the convex optimization problem [FCP08]
over X ∈ Rk×k:

minimize ‖X‖∗
subject to ‖y − L(X)‖ ≤ ξ. (13)

Let Σopt denote the solution of Equation (13). To give insights, the nuclear norm is seen here as
a convex relaxation of the rank function [FCP08], so that Equation (13) is expected to capture a
low-rank matrix close to Σ. If L satisfies the restricted isometry property, the next result states
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that it is indeed the case. In what follows, we let Σ(d) ∈ Rk×k denote the matrix closest to Σ
among all the matrices of rank d, where closeness is indifferently measured in nuclear, Frobenius,
or operator norm. That is, Σ(d) is the truncated singular value decomposition of Σ.

Theorem 41 ([FCP08, Theorem 4]). Assume that δ5d < 1/10. Then the solution Σopt of Equa-
tion (13) satisfies

‖Σopt − Σ‖F ≤ C0

∥∥Σ− Σ(d)
∥∥
∗√

d
+ C1ξ,

where C0, C1 > 0 are universal constants.

D.3.2 Building a Good Matrix Sensing Operator

We now detail a standard way to build a sampling operator L that satisfies the restricted isometry
property (Definition 40), thereby allowing to recover low-rank matrices from a few measurements
(Theorem 41). For purely technical reasons, we shall present a construction over the complex
linear space Ck×k. This will eventually enable us to recover results over Rk×k via the isometry
Rk×k ↪→ Ck×k.

First, we note that given an orthonormal C-basis W = (W1, . . . ,Wk2) of Ck×k for the Hermitian
inner product 〈A,B〉 = tr(A∗B), we can build a sampling operator LS : Ck×k → Cq by projecting
orthogonally onto the space spanned by only q (randomly) pre-selected S ⊆ W elements of the
basis.

When k = 2`, an orthonormal basis of Ck×k of particular interest is the so-called Pauli ba-
sis [kL11]. Its construction goes as follows:

� For k = 2 (` = 1), it is defined by W
(1)
i = σi/

√
2, where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σ4 =

(
1 0
0 1

)
.

Note that the σi’s have two eigenvalues, both belonging to {−1, 1}, so that they are both Hermi-

tian and unitary. In particular,
∥∥∥W (1)

i

∥∥∥
op

= 1/
√

2 and
∥∥∥W (1)

i

∥∥∥
F

= 1 for all i ∈ {1, . . . , 4}. One

easily checks that
(
W

(1)
i

)
1≤i≤4

is an orthonormal basis of C2×2.

� For k = 2` (` ≥ 2), the Pauli basis
(
W

(`)
i

)
1≤i≤2`

is composed of matrices acting on the tensor

space
(
C2
)⊗` ' C2` , and defined as the family of all the possible `-fold tensor products of elements

of
(
W

(1)
i

)
1≤i≤4

. From elementary properties of tensor products, we get that
(
W

(`)
i

)
1≤i≤2`

is an

orthonormal basis of C2`×2` , such that for all i ∈
{

1, . . . , 2`
}

,

∥∥∥W (k)
i

∥∥∥
op

=

(
1√
2

)`
=

1√
k
. (14)

Since ‖W‖F ≤
√
k ‖W‖op, the value 1/

√
k actually is the smallest possible common operator

norm of an orthonormal basis of Ck×k. As will be clear in the proof of Lemma 42, this last
property — called incoherence in the matrix completion literature [kL11] — is key to design a
good sampling operator.
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Still considering the case k = 2`, we let LPauli : Ck×k → Cq denote the random sampling operator
defined by

LPauli(X) =

(
k
√
q

〈
W

(`)
Ii
, X
〉)

1≤i≤q
, (15)

where (Ii)1≤i≤q is an i.i.d. sequence with uniform distribution over
{

1, . . . , k2
}

. Up to the fac-

tor k/
√
q, LPauli is the orthogonal projector onto the space spanned by (W

(`)
I1
, . . . ,W

(`)
Iq

). This

normalisation k/
√
q is chosen so that for all X ∈ Ck×k,

E
[
‖LPauli(X)‖2

]
=
k2

q

k2∑
i=1

qPr (I1 = i)
∣∣∣〈W (`)

i , X
〉∣∣∣2

=
k2∑
i=1

∣∣∣〈W (`)
i , X

〉∣∣∣2 = ‖X‖2F .

That is, roughly speaking, LPauli satisfies the restricted isometry property (RIP, Definition 40) on
average. Actually, as soon as q is large enough compared to d, the result below states that LPauli

does fulfill RIP with high probability.

Lemma 42. Assume that k = 2`, and fix 0 < α ≤ 1. There exist universal constants c0, c1 > 0
such that if q ≥ c0kd log6(k) log(c1/α), then with probability at least 1− α, the following holds.

For all X ∈ Rk×k such that ‖X‖∗ ≤
√

5d ‖X‖F,

|‖LPauli(X)‖ − ‖X‖F| ≤
‖X‖F

20
.

In particular, on the same event of probability at least 1− α, δ5d (LPauli) < 1/10.

Proof of Lemma 42. The Pauli basis is an orthonormal basis of Ck×k, and from Equation (14), its
elements all have operator norm smaller than 1/

√
k. Hence, applying [kL11, Theorem 2.1] with K =√

kmax1≤i≤k

∥∥∥W (`)
i

∥∥∥
op

= 1, r = 5d, C = c0 log(c1/α), and δ = 1/20 yields the first bound. The

second one follows by recalling that any rank-r matrix X ∈ Rk×k satisfies ‖X‖∗ ≤
√
r ‖X‖F.

D.3.3 Mean Matrix Completion with Statistical Queries

The low-rank matrix recovery of Appendices D.3.1 and D.3.2 combined with mean vector estimation
in STAT(τ) for the Euclidean norm (see Lemma 5) lead to the following result.

Lemma 43. For all α ∈ (0, 1], there exists a family of statistical query algorithms indexed by maps
F : Rn → Rk×k such that the following holds on an event of probability at least 1 − α (uniformly
over F ).

Let D be a Borel probability distribution over Rn, and F : Rn → Rk×k be a map such that for
all x ∈ Rn, ‖F (x)‖F ≤ 1 and ‖F (x)‖∗ ≤

√
5d ‖F (x)‖F. Write Σ = Ex∼D [F (x)], and Σ(d) for the

matrix closest to Σ among all the matrices of rank d ≤ k. Assume that Σ ∈ Ξ, where Ξ ⊆ Rk×k is
a known linear subspace of Rk×k.

Then, there exists a statistical query algorithm making at most c0dk log6(k) log(c1/α) queries to
STAT(τ), and that outputs a matrix Σ̂ ∈ Ξ that satisfies∥∥∥Σ̂− Σ

∥∥∥
F
≤ C0

∥∥Σ− Σ(d)
∥∥
∗√

d
+ C1τ

on the event of probability at least 1−α described above, where C0, C1 > 0 are universal constants.
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Proof of Lemma 43. Without loss of generality, we can assume that k = 2`. Indeed, one can always
embed Rk×k isometrically into R2`×2` , with 2` = 2dlog2(k)e ≤ 2k, via the linear map

Rk×k 3 A 7−→ Ã =

(
A 0

0 0

)
∈ R2`×2` ,

which preserves both the rank, the Frobenius and nuclear norms.
Let q ≥ 1 be a fixed integer to be specified later, and (Ii)1≤i≤q be and i.i.d. sequence with

uniform distribution over
{

1, . . . , k2
}

, and for X ∈ Rk×k, write

LPauli(X) =

(
k
√
q

〈
W

(`)
Ii
, X
〉)

1≤i≤q
∈ Cq = R2q, (16)

as in Equation (15). For x ∈ Rn, write G(x) = LPauli(F (x))/2 ∈ R2q. From Lemma 42, with
probability at least 1− α (over the randomness of (Ii)1≤i≤q),

‖G(x)‖ = ‖LPauli(F (x))‖ /2 ≤ (1 + 1/20) ‖F (x)‖F /2 ≤ ‖F (x)‖F ≤ 1

holds simultaneously for all the described F : Rk×k → R2q. Hence, on this event of probability at
least 1−α, Lemma 5 applies to G and provides a deterministic statistical query algorithm making
4q queries to STAT(τ), and that outputs a vector y ∈ R2q such that∥∥∥∥y − E

D
[G(x)]

∥∥∥∥ ≤ Cτ,
where C > 0 is a universal constant. But on the other hand, by linearity,

E
x∼D

[2G(x)] = E
x∼D

[LPauli(F (x))] = LPauli

(
E

x∼D
[F (x)]

)
= LPauli(Σ),

where all the expected values are taken with respect D, conditionally on (Ii)1≤i≤q. As a result, from
Theorem 41 and Lemma 42, the solution Σopt to the convex optimization problem over X ∈ Rk×k
given by

minimize ‖X‖∗
subject to ‖2y − LPauli(X)‖ ≤ 2Cτ,

satisfies, on the same event of probability at least 1− α as before,

‖Σopt − Σ‖F ≤ C0

∥∥Σ− Σ(d)
∥∥
∗√

d
+ C1(2Cτ),

as soon as q ≥ c0dk log6(k) log(c1/α). Hence, the projected solution Σ̂ = πΞ(Σopt) onto Ξ ⊆ Rk×k
belongs to Ξ and satisfies∥∥∥Σ̂− Σ

∥∥∥
F

= ‖πΞ(Σopt − Σ)‖F ≤ ‖Σopt − Σ‖F

≤ C0

∥∥Σ− Σ(d)
∥∥
∗√

d
+ C ′1τ,

which concludes the proof.
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D.4 Tangent Space Estimation with Statistical Queries

We finally prove the main announced statement of Appendix D.

Proof of Theorem 20. Let h > 0 be a bandwidth to be specified later, such that η ≤ h/
√

2 and
h ≤ rchmin/(8

√
d). First note that ΣD(x0, h) = Ex∼D [F (x)], where the function F (x) = (x −

x0)(x− x0)>/h2
1‖x−x0‖≤h is defined for all x ∈ Rn, and is such that ‖F (x)‖F ≤ 1 and rank(F (x)) ≤

1. In particular, ‖F (x)‖∗ = ‖F (x)‖F ≤
√

5d ‖F (x)‖F for all x ∈ Rn. Furthermore, ΣD(x0, h)
belongs to the linear space Ξ of symmetric matrices. Working on the event on which Lemma 43
holds (with α = 1/2, say), yields the existence of a deterministic SQ algorithm making at most
c0dn log6(n) log(2c1) queries to STAT(τ), and that outputs a symmetric matrix Σ̂ that satisfies

∥∥∥Σ̂− ΣD(x0, h)
∥∥∥

F
≤ C0

∥∥∥ΣD(x0, h)− Σ
(d)
D (x0, h)

∥∥∥
∗√

d
+ C1τ,

with probability at least 1 − α. On the other hand, from Lemma 38, provided that
√

2η ≤ h ≤
rchmin/(8

√
d), one can write

ΣD(x0, h) = Σ0 +R,

where the symmetric matrix Σ0 satisfies Im (Σ0) = TπM (x0)M , µd(Σ0) ≥ ωdfmin(ch)d and ‖R‖F ≤
‖R‖∗ ≤ ωdfmax(Ch)d

(
η
h + h

rchmin

)
As rank(Σ0) = d, we have in particular that,∥∥∥ΣD(x0, h)− Σ

(d)
D (x0, h)

∥∥∥
∗
≤ ‖ΣD(x0, h)− Σ0‖∗ = ‖R‖∗ .

Therefore, taking T̂ (x0) as the linear space spanned by the first d eigenvectors of Σ̂, Lemma 39
yields

∠
(
TπM (x0)M, T̂ (x0)

)
=
∥∥∥πT̂ (x0) − πTπM (x0)M

∥∥∥
op

≤
2
∥∥∥Σ̂− Σ0

∥∥∥
F

µd(Σ0)

≤ 2

∥∥∥Σ̂− ΣD(x0, h)
∥∥∥

F
+ ‖ΣD(x0, h)− Σ0‖F

µd(Σ0)

≤ 2

ωdfmin(ch)d

(
C0
‖R‖∗√
d

+ C1τ + ‖R‖F
)

≤ C ′d

ωdfmin

(
ωdfmax

{
η

h
+

h

rchmin

}
+

τ

hd

)
.

Setting h = rchmin

{√
η

rchmin
∨
(

τ
ωdfmaxrchdmin

)1/(d+1)
}

in this last bound, value which does satisfy

√
2η ≤ h ≤ rchmin/(8

√
d) since η ≤ rchmin/(64d) and τ

ωdfmaxrchdmin

≤
(

1
8
√
d

)d+1
, then yields the

announced result.

E Seed Point Detection

We now build the SQ point detection algorithm x̂0 ∈ Rn (Theorem 21), which is used to initialize
in the SQ emulation of Manifold Propagation yielding the SQ reconstruction algorithm in the
model B(0, R) u Dn,drchmin

(fmin, fmax, L) where no seed point is available (Definition 12).
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Recall that given a ball of radius R > 0 guaranteed to encompass M = Supp(D) ⊆ B(0, R),
and a target precision η > 0, we aim at finding a point that is η-close to M with statistical queries
to STAT(τ). We follow the strategy of proof described in Section 4.3.

E.1 Detecting a Raw Initial Point

Starting from the whole ball B(0, R), the following result allows to find a point nearby M using a
binary search, with best precision of order Ω(τ1/d). Let us note that it does not explicitly rely on
any differential property of M , but only the behavior of the mass of balls for D (Lemma 30).

Theorem 44. Let D ∈ Dn,drchmin
(fmin, fmax, L) have support M = Supp(D) ⊆ B(0, R). Let Λ0 ≤

rchmin/8 be fixed, and assume that Λ0√
log(6R/Λ0)

≥ 21rchmin
√
n
(

τ
ωdfminrchdmin

)1/d
.

Then there exists a deterministic statistical query algorithm making at most 3n log(6R/Λ0)
queries to STAT(τ), and that outputs a point x̂raw0 ∈ B(0, R) such that

d(x̂raw0 ,M) ≤ Λ0.

Proof of Theorem 44. The idea is to use a divide and conquer strategy over a covering {xi}1≤i≤N
of B(0, R). The algorithm recurses over a subset of indices I ⊆ {1, . . . , N} that is maintained to
fulfill ∪i∈IB(xi, h) ∩M 6= ∅ for some known h > 0. This property can be checked with the single
query r = 1∪i∈IB(xi,h) to STAT(τ), provided that D(∪i∈IB(xi, h)) > τ . To ensure the later, the
radius h > 0 is dynamically increased at each iteration. The algorithm stops when I is reduced to
a singleton. More formally, we consider SQ Ambient Binary Search.

Algorithm 2 SQ Ambient Binary Search

Require:
Model parameters d, rchmin, fmin

Precision Λ0 > 0

1: Initialize value h← Λ0/2, and set ∆ = 6rchmin

(
τ

ωdfminrchdmin

)1/d

2: Consider a minimal (Λ0/2)-covering {xi}1≤i≤N of B(0, R), where N = cvB(0,R)(Λ0/2)
3: Initialize sets I ← {1, . . . , N}, L ← ∅ and R ← ∅
4: while |I| > 1 do
5: Split I = L ∪R into two disjoint sets L ∩R = ∅ such that ||L| − |R|| ≤ 1
6: Query r = 1∪i∈LB(xi,

√
h2+∆2) to the STAT(τ) oracle

7: a ← Value answered by the oracle
8: if a > τ then
9: I ← L

10: else
11: I ← R
12: end if

h←
√
h2 + ∆2

13: end while
14: return The only element of x̂raw0 of {xi}i∈I

Because |I| is a decreasing sequence of integers, it is clear that SQ Ambient Binary Search

terminates, and that |Ifinal| = 1 so that the output x̂raw0 is well defined. As each while loop does
only one query to STAT(τ), and that N = cvB(0,R)(Λ0/2) ≤ (6R/Λ0)n from Proposition 34 and
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Λ0 ≤ R, it makes at most blog2(N) + 1c ≤ bn log(6R/Λ0)/ log(2) + 1c ≤ 3n log(6R/Λ0) queries in
total.

Let us now prove that the output x̂raw0 satisfies d(x̂raw0 ,M) ≤ Λ0. For this, we show that when
running SQ Ambient Binary Search, the inequality mini∈I d(xi,M) ≤ h is maintained (recall that
both I and h are dynamic), or equivalently that ∪i∈IB (xi, h) ∩M 6= ∅. At initialization, this is
clear because I = {1, . . . , N}, h = Λ0/2, and {xi}1≤i≤N is a (Λ0/2)-covering of B(0, R) ⊇M . Then,
proceeding by induction, assume that ∪i∈IB (xi, h)∩M 6= ∅ when entering an iteration of the while
loop. Let i0 ∈ I be such that d(xi0 ,M) ≤ h. From Lemma 30, provided that

√
h2 + ∆2 ≤ rchmin/8,

we have

D
(
∪i∈IB

(
xi,
√
h2 + ∆2

))
≥ D

(
B
(
xi0 ,

√
h2 + ∆2

))
≥
√

7/24
d
ωdfmin

(
(h2 + ∆2)− d(xi0 ,M)2

)d/2
≥
√

7/24
d
ωdfmin∆d

=
√

7/24
d
6dτ

> 2τ. (17)

Hence, if we let a denote the answer of the oracle to the query r = 1∪i∈LB(xi,
√
h2+∆2), we have:

� If a > τ , then

D
(
∪i∈LB

(
xi,
√
h2 + ∆2

))
≥ a− τ > 0,

so that after the updates I ← L and h←
√
h2 + ∆2, we still have ∪i∈IB (xi, h) ∩M 6= ∅.

� Otherwise a ≤ τ , so that from Equation (17),

D
(
∪i∈RB

(
xi,
√
h2 + ∆2

))
≥ D

(
∪i∈IB

(
xi,
√
h2 + ∆2

))
−D

(
∪i∈LB

(
xi,
√
h2 + ∆2

))
> 2τ − (a + τ)

≥ 0.

So as above, after the updates I ← R and h←
√
h2 + ∆2, we still have ∪i∈IB (xi, h) ∩M 6= ∅.

Consequently, when the algorithm terminates, we have

d(x̂raw0 ,M) ≤ hfinal

≤

√(
Λ0

2

)2

+ 3n log(6R/Λ0)∆2

≤ Λ0

2
+
√

3n log(6R/Λ0)6rchmin

(
τ

ωdfminrchdmin

)1/d

≤ Λ0,

since Λ0√
log(6R/Λ0)

≥ 21rchmin
√
n
(

τ
ωdfminrchdmin

)1/d
. The above also shows that when running the

algorithm we have
√
h2 + ∆2 ≤ hfinal ≤ Λ0 ≤ rchmin/8, which ensures that Equation (17) is valid

throughout and concludes the proof.
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E.2 Refined Point Detection

We finally prove the main announced statement of Appendix E.

Proof of Theorem 21. The idea is to first detect a possibly coarse base point x̂raw0 using a divide
and conquer strategy in the ambient space (Theorem 44), and then refine it by considering iterated
projections of x̂raw0 given by the local conditional mean (Theorem 19). More precisely, let x̂raw0 be
the output of the point detection SQ algorithm of Theorem 44 applied with parameter

Λ0 = max

{
η,

(
1

8
∧ Γ

2Cd

)
rchmin

}
,

where Cd,Γ > 0 are the constants of Theorem 19. From the assumptions on the parameters, we
have Λ0 ≤ rchmin/8 and

Λ0√
log(6R/Λ0)

≥ 21rchmin

√
n

(
τ

ωdfminrchdmin

)1/d

,

so that Theorem 44 applies and guarantees that x̂raw0 can be obtained with at most 3n log(6R/Λ0)
queries to STAT(τ) and satisfies d(x̂raw0 ,M) ≤ Λ0.

If Λ = η — condition which can be checked by the learner since the parameters are assumed
to be known —, then x̂0 := x̂raw0 clearly satisfies d(x̂0,M) = d(x̂raw0 ,M) ≤ η, and has required
at most 3n log(6R/Λ0) = 3n log(6R/η) queries to STAT(τ). Otherwise, η ≤ Λ0, and we iterate
the SQ approximate projections π̂(·) given by Theorem 19. Namely, we let ŷ0 = x̂raw0 and for
all integer k ≥ 1, ŷk = π̂(ŷk−1). In total, note that the computation of ŷk requires at most
3n log(6R/η) + k(2n + 1) ≤ 3n

(
log(6R/η) + k

)
queries to STAT(τ). Similarly as above, from the

assumptions on the parameters, one easily shows by induction that since d(ŷ0,M) ≤ Λ0 ≤ rchmin
8 ,

Theorem 19 applies to each ŷk and guarantees that

d(ŷk,M) = d(π̂(ŷk−1),M)

≤ ‖π̂(ŷk−1)− πM (ŷk−1))‖

≤ max

{
Cdd(ŷk−1,M)2

Γrchmin
, CdΓ

2
d+1
−1rchmin

(
τ

ωdfminrchdmin

) 2
d+1

}

≤ max

{
d(ŷk−1,M)

2
, CdΓ

2
d+1
−1rchmin

(
τ

ωdfminrchdmin

) 2
d+1

}

≤ max

{
Λ0

2k
, CdΓ

2
d+1
−1rchmin

(
τ

ωdfminrchdmin

) 2
d+1

}
.

As a result, after k0 = dlog2 (Λ0/η)e ≤ log (6Λ0/η) such iterations, if we let x̂0 := ŷk0 , we have

d(x̂0,M) ≤ max

{
η, CdΓ

2
d+1
−1rchmin

(
τ

ωdfminrchdmin

) 2
d+1

}
,

with x̂0 requiring at most 3n
(
log(6R/η) + log (6Λ0/η)

)
= 3n log(6R/η) queries to STAT(τ) to be

computed, which concludes the proof.
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F Proof for the Main Statistical Query Manifold Estimators

This section is devoted to the proof of the two SQ manifold estimation upper bounds: the first
one in the fixed point model {0} tDn,drchmin

(fmin, fmax, L) (Theorem 22), and the second one for the

bounding ball model B(0, R) u Dn,drchmin
(fmin, fmax, L) (Theorem 25).

Proof of Theorem 22. Let us write ∆ := rchmin max
{√

ε/(rchminC̄d),C
3
2

(
τ/(ωdfminrchdmin)

) 1
d+1

}
,

for some large enough C̄d > 0 depending on d and C to be chosen later, and δ = ∆/2. We will run
Manifold Propagation with scale parameters ∆, δ, angle sinα = 1/64, and initialization point
x̂0 = 0 ∈ M , the SQ projection routine π̂(·) of Theorem 19 and the SQ tangent space routine
T̂ (·) of Theorem 19. If we prove that these routines are precise enough, then Theorem 15 will
assert that the output point cloud O and associated tangent space estimates TO of Manifold

Propagation fulfill the assumptions of Theorem 14. This will hence allow to reconstruct M with
a good triangulation, as claimed.

Note by now that at each iteration Manifold Propagation, exactly one call to each SQ routine
π̂(·) and T̂ (·) are made, yielding at most (2n+ 1) +Cdn log6(n) ≤ C ′dn log6(n) statistical queries.
But if Theorem 15 applies, we get that the number of iteration Nloop of Manifold Propagation

satisfies

Nloop ≤
Hd(M)

ωd(δ/32)d

≤
C̄ ′d

fmin(
√

rchminε)d

=
C̄ ′d

fminrchdmin

(
rchmin

ε

)d/2
,

where the second inequality comes from the fact that 1 =
∫
M fdHd ≥ fminHd(M). In total, the

resulting SQ algorithm hence makes at most

q ≤
(
C ′dn log6(n)

) C̄ ′d
fminrchdmin

(
rchmin

ε

)d/2
= n log6 n

Cd

fminrchdmin

(
rchmin

ε

)d/2
queries to STAT(τ), which is the announced complexity. It only remains to verify that the SQ
routines π̂(·) and T̂ (·) are indeed precise enough so that Theorem 15 applies, and to bound the
final precision given by the triangulation of Theorem 14.

To this aim, we notice that the assumption made on τ puts it in the regime of validity of
Theorem 19 and Theorem 20. Let us write

C := max

{
CdΓ

2
d+1
−1, C̃d

fmax
fmin

}
≤ (C ∨ C̃)d

Γ
,

where C > 0 is the constant of Theorem 19 and C̃ > 0 that of Theorem 20. For short, we also let
τ̃ := τ/(ωdfminrchdmin). At initialization, and since D ∈ {0} tDn,drchmin

(fmin, fmax, L), the seed point
x̂0 = 0 belongs to M , meaning that

d(x̂0,M) = 0 ≤ η := rchmin max

{
1

C2

(
∆

rchmin

)2

,Cτ̃
2
d+1

}
.
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Note that from the assumptions on the parameters, η ≤ rchmin/(64d). Hence, on the η-offset Mη

of M , Theorem 20 asserts that T̂ (·) has precision

sin θ ≤ max

{
C̃d

fmax
fmin

1

C

∆

rchmin
, C̃d

fmax
fmin

√
Cτ̃

1
d+1

}
≤ max

{
∆

rchmin
,C

3
2 τ̃

1
d+1

}
for estimating tangent spaces. As a result, we have

5∆2

8rchmin
+ η + ∆ sin θ ≤ 3rchmin max

{(
∆

rchmin

)2

,
η

rchmin
,

∆

rchmin
sin θ

}

≤ 3rchmin max

{(
∆

rchmin

)2

,
η

rchmin
, sin2 θ

}

≤ 3rchmin max

{(
∆

rchmin

)2

,C3τ̃
2
d+1

}
:= Λ.

Using again the assumptions on the parameters, we have Λ ≤ rchmin/8. Hence, applying Theo-
rem 19 and elementary simplifications given by the assumptions on the parameters yield that, over
the Λ-offset MΛ of M , the projection π̂(·) has precision at most

η′ ≤ rchmin max

{(
9Cd

Γ

(
∆

rchmin

)2
)(

∆

rchmin

)2

,max

{
9CdC6

Γ
τ̃2/(d+1), CdΓ

2
d+1
−1

}
τ̃2/(d+1)

}

= rchmin max

{(
9Cd

Γ

(
∆

rchmin

)2
)(

∆

rchmin

)2

, CdΓ
2
d+1
−1τ̃2/(d+1)

}

≤ rchmin max

{
1

C2

(
∆

rchmin

)2

,Cτ̃2/(d+1)

}
= η.

Additionally, one easily checks that ∆ ≤ rchmin/24, η ≤ ∆/24 and max {sinα, sin θ} ≤ 1/64, so
that Theorem 15 applies: Manifold Propagation terminates and outputs a finite point cloud O
such that maxx∈O d(x,M) ≤ η and maxp∈M d(p,O) ≤ ∆ + η ≤ 2∆, together with tangent space
estimates TO with error at most sin θ. Hence, applying Theorem 14 with parameters ∆′ = 2∆, η
and sin θ, for which one easily checks that they fulfill its assumptions, we get that the triangulation
M̂ of Theorem 14 computed over O and TO achieves precision

dH(M,M̂) ≤ Cd∆
′2

rchmin
≤ max

{
ε,C3rchminτ̃

2
d+1

}
,

which yields the announced result since C ≤ (C ∨ C̃)d/Γ.

Proof of Theorem 25. The proof follows the same lines as that of Theorem 22, except for the seed
point x̂0 which is not trivially available, and requires extra statistical queries. More precisely, we let
x̂0 be the output point given by the SQ detection algorithm of Theorem 21 applied with precision
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parameter ε/2. This point requires no more than 3n log(6R/ε) statistical queries to STAT(τ).
Furthermore, adopting the same notation as in the proof of Theorem 22 we have

d(x̂0,M) ≤ max

{
ε

2
, CdΓ

2
d+1
−1rchmin

(
τ

ωdfminrchdmin

) 2
d+1

}

≤ rchmin max

{
1

C2

(
∆

rchmin

)2

,Cτ̃
2
d+1

}
,

so that the rest of the proof runs exactly as that of Theorem 22, and yields the result.

G Statistical Query Lower Bounds in Metric Spaces

In spirit, the lower bound techniques developed below are similar to the statistical dimension
of [Fel17], developed for general search problems. However, when working with manifold models,
this tool appears difficult to handle, due to the singular nature of low-dimensional distributions,
yielding non-dominated models. Indeed, if D0 and D1 are distributions that have supports being d-
dimensional submanifolds M0,M1 ⊆ Rn, and that M0 6= M1, then D0 and D1 cannot be absolutely
continuous with respect to one another. As a result, any lower bound technique involving Kullback-
Leibler or chi-squared divergences becomes non-informative (see for instance [Fel17, DKS17]).

Instead, we present proof techniques that are well-suited for non-dominated model. They apply
for SQ estimation in metric spaces (Θ, ρ) (see Section 2.1), as opposed to the (more general) setting
of search problems of [Fel17]. We decompose these results into two different types of lower bounds:

� (Appendix G.1) The information-theoretic ones, yielding a maximal estimation precision ε = ε(τ)
given a tolerance τ ;

� (Appendix G.2) The computational ones, yielding a minimal number of queries q = q(ε) to
achieve a given precision ε.

G.1 Information-Theoretic Lower Bound for Randomized SQ Algorithms

The proofs of the informational lower bounds Theorems 23 and 26 are based on the following
Theorem 46, which is similar to so-called Le Cam’s Lemma [Yu97]. To introduce this result we
define the total variation distance between probability distributions.

Definition 45 (Total Variation Distance). Given two probability distributions D0 and D1 over
(Rn,B(Rn)), the total variation distance between them is defined by

TV(D0, D1) = sup
B∈B(Rn)

∣∣D0(B)−D1(B)
∣∣

= sup
r:Rn→[−1,1]
measurable

1

2

∣∣E
D0

[r]− E
D1

[r]
∣∣.

The second formula above for the total variation suggests how it can measure an impossibility
of estimation with STAT(τ) oracles: two distributions that are close in total variation distance
provide a malicious oracle to make them — and their parameter of interest — indistinguishable
using SQ’s, . This lower bound insight is what underlies Le Cam’s Lemma [Yu97] in the sample
model, and it adapts easily to (randomized) SQ’s in the following way.
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Theorem 46 (Le Cam’s Lemma for Statistical Queries). Consider a model D and a parameter of
interest θ : D → Θ in the metric space (Θ, ρ). Assume that there exist hypotheses D0, D1 ∈ D,
such that

TV(D0, D1) ≤ τ/2 and δ < ρ
(
θ(D0), θ(D1)

)
/2.

If α < 1/2, then no STAT(τ) randomized SQ algorithm can estimate θ with precision ε ≤ δ and
probability of success 1− α over D (no matter how many queries it does).

Proof of Theorem 46. We prove the contrapositive. For this purpose, assume that a randomized
SQ algorithm A ∼ A estimates θ with precision ε ≤ δ and probability at least 1 − α over D. We
will show that α ≥ 1/2.

Consider the oracle which, given a query r : Rn → [−1, 1] to the distribution D ∈ D, returns
the answer:

� a = ED0 [r] if D = D1;

� a = ED[r] if D ∈ D \ {D1}.

As for all query r : Rn → [−1, 1], |ED0 [r]−ED1 [r]| ≤ 2 TV(D0, D1) ≤ τ , it is a valid STAT(τ) oracle.
Furthermore, notice that the answers of this oracle are the same for D = D0 and D = D1. Writing
A = (r1, . . . , rq, θ̂) ∼ A, we denote these answers by a1, . . . , aq. The ai’s are random variables,
driven by the randomness of A ∼ A. For i ∈ {0, 1}, let us consider the event

Bi =
{
ρ
(
θ(Di), θ̂(a1, . . . , aq)

)
≤ ε
}
.

The fact that A estimates θ with precision ε and probability at least 1− α over D translates into
PrA∼A(Bi) ≥ 1− α, for i ∈ {0, 1}. But since ε ≤ δ < ρ(θ(D0), θ(D1))/2, the events B0 and B1 are
disjoint. As a result,

1 ≥ Pr
A∼A

(B0 ∪B1) = Pr
A∼A

(B0) + Pr
A∼A

(B1) ≥ 2(1− α),

which yields α ≥ 1/2 and concludes the proof.

G.2 Computational Lower Bound

This section is dedicated to prove the following Theorem 47, that provides a computational lower
bound for support estimation in Hausdorff distance. It involves the generalized notion of metric
packing, which is defined right below.

Theorem 47. Given a model D over Rn, any randomized SQ algorithm estimating M = Supp(D) ⊆
Rn with precision ε for the Hausdorff distance, and with probability of success at least 1− α, must
make at least

q ≥
log
(
(1− α)pk(M,dH)(ε)

)
log(1 + b1/τc)

queries to STAT(τ), where M = {SuppD,D ∈ D}.

Similarly to Appendix G.1, we put Theorem 47 in the broader context of SQ estimation in
metric spaces (see Section 2.1), and state the more general Theorem 48 below. To this aims, and
similarly to the Euclidean case (Definition 31), let us recall the definitions of metric packings and
coverings. We let (Θ, ρ) be a metric space, M⊆ Θ a subset of Θ, and a radius ε > 0.
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� An ε-covering ofM⊆ Rn is a subset {θ1, . . . , θk} ⊆ M such that for all θ ∈M, min1≤i≤k ρ(θ, θi) ≤
ε. The covering number cv(M,ρ)(ε) of M at scale ε is the smallest cardinality k of such an ε-
covering.

� An ε-packing of M is a subset {θ1, . . . , θk} ⊆ M such that for all 1 ≤ i < j ≤ k, B(Θ,ρ)(θi, ε) ∩
B(Θ,ρ)(θj , ε) = ∅ (or equivalently ρ(θi, θj) > 2ε), where B(Θ,ρ)(θ, ε) = {θ′ ∈ Θ, ρ(θ, θ′) ≤ ε} is the
closed ball in (Θ, ρ). The covering number pk(M,ρ)(ε) of M at scale ε is the largest cardinality
k of such an ε-packing.

Theorem 48. Given a model D and a parameter of interest θ : D → Θ in the metric space (Θ, ρ),
any randomized SQ algorithm estimating θ(D) over D with precision ε and probability of success
at least 1− α, must make at least

q ≥
log
(
(1− α)pk(θ(D),ρ)(ε)

)
log(1 + b1/τc)

queries to STAT(τ), where θ(D) = {θ(D), D ∈ D}.

Proof of Theorem 47. Apply Theorem 48 with parameter of interest θ(D) = Supp(D) and distance
ρ = dH.

G.2.1 Probabilistic Covering and Packing Number

To prove Theorem 48, we will use the following notion of probabilistic covering. Given a set S and
an integer k ≥ 0, we denote by

(
S
≤k
)

the set of all subsets of S of cardinality at most k.

Definition 49. Let (Θ, ρ) be a metric space. We say that a probabilistic measure µ over
(

Θ
≤d
)

is a
probabilistic (ε, α)-covering of (Θ, ρ) by d points if for all θ ∈ Θ,

Pr
p∼µ

[
θ ∈

⋃
q∈p

B(Θ,ρ)(q, ε)

]
≥ 1− α.

We denote by cv(Θ,ρ)(ε, α) the minimal d such that there is a probabilistic (ε, α)-covering of (Θ, ρ)
with d points.

This clearly generalizes (deterministic) coverings, since cv(Θ,ρ)(ε, α = 0) coincides with the
standard covering number cv(Θ,ρ)(ε). However, this quantity might be involved to compute since
it involves randomness. Before proving Theorem 48, let us show how to lower bound cv(Θ,ρ)(ε, α)
in practice.

Theorem 50. Let (Θ, ρ) be a metric space. Assume that there is a probability measure ν on Θ
such that for all q1, . . . , q` ∈ Θ,

ν

(⋃̀
i=1

B(Θ,ρ)(qi, ε)

)
< 1− α.

Then cv(Θ,ρ)(ε, α) > `.

Proof of Theorem 50. Take any probability measure µ over
(

Θ
≤`
)
, and consider the map f(p, θ) =

1∪q∈pB(Θ,ρ)(q,ε)(θ) for all p ∈
(

Θ
≤`
)

and θ ∈ Θ. By assumption, for all fixed p ∈
(

Θ
≤`
)
,

1− α > ν

(⋃
q∈p

B(Θ,ρ)(q, ε)

)
=

∫
Θ
f(p, θ)ν(dθ);
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hence, by integration with respect to µ(dp) and Fubini–Tonelli,

1− α >
∫
( Θ
≤`)

(∫
Θ
f(p, θ)ν(dθ)

)
µ(dp) =

∫
Θ

(∫
( Θ
≤`)

f(p, θ)µ(dp)

)
ν(dθ).

As ν is a probability distribution, this yields the existence of a fixed θ = θµ ∈ Θ such that

1− α >
∫

( Θ
≤`)

f(p, θ)µ(dp) = Pr
p∼µ

[
θ ∈

⋃
q∈p

B(Θ,ρ)(q, ε)

]
.

In other words, we have shown that no probability distribution µ over
(

Θ
≤`
)

can be an (ε, α)-covering
of (Θ, ρ) (Definition 49). Hence, cv(Θ,ρ)(ε, α) > `.

As a byproduct of Theorem 50, we can now show that probabilistic coverings are closely related
to the usual notions of metric covering and packing numbers.

Theorem 51. Let (Θ, ρ) be a metric space, and α < 1. Then,

cv(Θ,ρ)(ε) ≥ cv(Θ,ρ)(ε, α) ≥ (1− α)pk(Θ,ρ)(ε).

Proof of Theorem 51. If (Θ, ρ) is unbounded, then all the terms involved clearly are infinite, so
that the announced bounds hold. Otherwise, if (Θ, ρ) is totally bounded, the any ε-covering
of (Θ, ρ) is also a (ε, α)-covering, which gives the left-hand bound. For the right-hand bound,
write k = pk(Θ,ρ)(ε) < ∞, and let {θ1, . . . , θk} be an ε-packing of (Θ, ρ). That is, for all i 6= j,
ρ(θi, θj) > 2ε.

Take ν to be the uniform probability distribution over this packing, i.e. ν(S) = |{θ1, . . . , θk} ∩
S|/k for all S ⊆ Θ. Note that since {θ1, . . . , θk} is an ε-packing, ν(Bε,Θ,ρ(p)) ≤ 1/k for all θ ∈ Θ,
and as a result,

ν

(⋃̀
i=1

Bε,Θ,ρ(θi)

)
≤ `

k

for all θ1, . . . , θ` ∈ Θ.
Taking ` = d(1− α)ke − 1, Theorem 50 implies that cv(Θ,ρ)(ε, α) > d(1− α)ke − 1, and hence

cv(Θ,ρ)(ε, α) ≥ d(1− α)ke ≥ (1− α)k = (1− α)pk(Θ,ρ)(ε).

G.2.2 Proof of the Computational Lower Bounds for Randomized SQ Algorithms

We are now in position to prove the lower bounds on (randomized) SQ algorithms in general metric
spaces.

Proof of Theorem 48. For all i ∈ {0, . . . , d1/τe}, write Li = min {−1 + (2i+ 1)τ, 1}. The Li’s form
a τ -cover of [−1, 1], meaning that for all t ∈ [−1, 1], there is a least one 0 ≤ i ≤ b1/τc with
|Li − t| ≤ τ . Hence we can define f : [−1, 1]→ [−1, 1] by f(t) = Li0 , where Li0 is smallest Li such
that |Li − t| ≤ τ . Note that f takes only b1/τc+ 1 different values, and that |f(t)− t| ≤ τ for all
t ∈ [−1, 1].

Let us now consider the oracle O which, given a query r : Rn → [−1, 1] to the distribution
D, returns the answer aD(r) = f(ED[r]). Roughly speaking, the oracle discretizes the segment
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[−1, 1] into b1/τc + 1 points and returns the projection of the correct mean value ED[r] onto this
discretization. Clearly, O is a valid STAT(τ) oracle since |f(t)− t| ≤ τ for all t ∈ [−1, 1].

Let A be a randomized SQ algorithm estimating θ over D, and A = (r1, . . . , rq, θ̂) ∼ A. Let us
write d = (b1/τc+ 1)q, and consider the random subset of Θ given by

C(A) =

{
θ̂

(
aD(r1), . . . , aD(r1)

)}
D∈D

.

Note that by construction of the oracle O, C(A) ⊆
( D
≤d
)
. Let us consider the probability distribution

µ over ∪`≤dΘ` such that the measure of a set S is equal to PrA∼A[C(A) ∈ S].
It is clear that if a deterministic algorithm A0 estimates θ(D) with precision ε using the oracle

O, then θ(D) ∈ ∪t∈C(A0)B(Θ,ρ)(t, ε). As A estimates θ with precision ε and probability at least 1−α
over D, this means that µ is a probabilistic (ε, α)-covering of θ(D) = Θ with (b1/τc + 1)q points
(Definition 49). As a result, by definition of cv(Θ,ρ)(ε, α), we have (b1/τc + 1)q ≥ cv(Θ,ρ)(ε, α).
Finally, from Theorem 51 we have cv(Θ,ρ)(ε, α) ≥ (1 − α)pk(Θ,ρ)(ε), which gives the announced
result.

H Lower Bounds for Manifold Models

H.1 Diffeomorphisms and Geometric Model Stability

The following result will allow us to build different elements ofMn,d
rchmin

in a simple way, by consid-
ering diffeomorphic smooth perturbations of a base manifold M0. Here and below, In is the identity
map of Rn. Given a regular map Φ : Rn → Rn, dxΦ and d2

xΦ stand for its first and second order
differentials at x ∈ Rn.

Proposition 52. Let M0 ∈Mn,d
2rchmin

and Φ : Rn → Rn be a C2 map such that lim‖x‖→∞ ‖Φ(x)‖ =

∞. If supx∈Rn ‖In − dxΦ‖op ≤ 1/(10d) and supx∈Rn
∥∥d2

xΦ
∥∥

op
≤ 1/ (4rchmin), then Φ is a global

diffeomorphism, and Φ(M0) ∈Mn,d
rchmin

. Furthermore, 1/2 ≤ Hd(Φ(M0))/Hd(M0) ≤ 2.

Proof of Proposition 52. As supx ‖dxΦ− ID‖op < 1, dxΦ is invertible for all x ∈ Rn. Hence, the in-
verse function theorem yields that Φ is everywhere a local diffeomorphism. As, lim‖x‖→∞ ‖Φ(x)‖ =
∞ this diffeomorphism is global from the Hadamard-Cacciopoli theorem [DMGZ94]. In particular,
Φ(M0) is a compact connected d-dimensional submanifold of Rn without boundary. In addition, by
Taylor’s theorem, Φ is Lipschitz with constant supx ‖dxΦ‖op ≤ (1 + supx ‖In − dxΦ‖op) ≤ 11/10,

Φ−1 is Lipschitz with constant supx
∥∥dxΦ−1

∥∥
op
≤ (1− supx ‖In − dxΦ‖op)−1 ≤ 10/9, and dΦ is

Lipschitz with constant supx
∥∥d2

xΦ
∥∥

op
≤ 1/(4rchmin) ≤ 1/(2rchM0). Hence, [Fed59, Theorem 4.19]

yields

rchΦ(M) ≥
(2rchM0)(1− supx ‖In − dxΦ‖op)2

supx ‖d2
xΦ‖op (2rchM ) + (1 + supx ‖In − dΦ‖op)

≥ (2rchM0)/2 ≥ rchmin.

As a result, we have Φ(M0) ∈ Mn,d
rchmin

. For the last claim, we use the properties of the Hausdorff

measure Hd under Lipschitz maps [ACLZ17, Lemma 6] to get

Hd(Φ(M)) ≤ sup
x
‖dxΦ‖dopH

d(M)

≤ (1 + 1/(10d))dHd(M)

≤ 2Hd(M),
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and symmetrically,

Hd(M) ≤ sup
x

∥∥dxΦ−1
∥∥d

op
Hd(Φ(M))

≤ 1

(1− 1/(10d))d
Hd(Φ(M))

= 2Hd(Φ(M)),

which concludes the proof.

Among the smooth perturbations Φ : Rn → Rn nearly preserving Mn,d
rchmin

, the following local-
ized bump-like functions will be of particular interest for deriving lower bounds.

Lemma 53. Let δ, η > 0 be positive reals. Fix p1, . . . , pN ∈ Rn be such that ‖pi − pj‖ > 2δ for

all i 6= j ∈ {1, . . . , N}. Given a family of unit vectors w = (wi)1≤i≤N ∈ (Rn)N , we let Φw be the
function that maps any x ∈ Rn to

Φw(x) = x+ η

(
N∑
i=1

φ

(
x− pi
δ

)
wi

)
,

where φ : Rn → R the real-valued bump function defined by

φ : Rn −→ R

y 7−→ exp
(
−‖y‖2/(1− ‖y‖2)

)
1B(0,1)(y).

Then Φw is C∞ smooth, lim‖x‖→∞ ‖Φw(x)‖ =∞, and Φw satisfies supx∈Rn ‖x− Φw(x)‖ ≤ η,

sup
x∈Rn

‖In − dxΦw‖op ≤
5η

2δ
and sup

x∈Rn

∥∥d2
xΦw

∥∥
op
≤ 23η

δ
.

Proof of Lemma 53. Straightforward calculations show that the real map φ : Rn −→ R is C∞
smooth over Rn, equals to 0 outside B(0, 1), and satisfies 0 ≤ φ ≤ 1, φ(0) = 1,

sup
y∈B(0,1)

‖dyφ‖ ≤ 5/2 and sup
y∈B(0,1)

∥∥d2
yφ
∥∥

op
≤ 23.

By composition and linear combination of C∞ smooth functions, Φw is therefore C∞ smooth.
Also, Φw coincides with the identity map outside the compact set ∪Ni=1B(pi, δ), so that Φw is C∞.
Furthermore, for i 6= j ∈ {1, . . . , N}, B(pi, δ) ∩ B(pj , δ) = ∅, since ‖pi − pj‖ > 2δ. Therefore, if
x ∈ B(pi, δ), we have Φw(x) = x+ ηφ

(x−pi
δ

)
wi. This directly gives supx∈Rn ‖x− Φw(x)‖ ≤ η, and

by chain rule,

sup
x∈Rn

‖In − dxΦw‖op = max
1≤i≤N

sup
x∈B(pi,δ)

η

∥∥∥∥dx(φ( · − piδ

)
wi

)∥∥∥∥
op

= max
1≤i≤N

sup
y∈B(0,1)

∥∥∥wi(dyφ)>
∥∥∥

op

η

δ

= sup
y∈B(0,1)

‖dyφ‖
η

δ

≤ 5η

2δ
,
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and

sup
x∈Rn

∥∥d2
xΦw

∥∥
op

= max
1≤i≤N

sup
y∈B(0,1)

∥∥wid2
yφ
∥∥

op

η

δ2

≤ 23η

δ2
,

which concludes the proof.

H.2 Building a Large-Volume Submanifold with Small Euclidean Diameter

The proofs of Theorems 26 and 27 will involve the construction of submanifolds M ⊆ Rn with
prescribed, and possible large volume Hd(M). Informally, this will enable us to build hypotheses
and packings with large cardinality by local variations of it (see Propositions 59 and 63) under nearly
minimal assumptions on fmin (which can be seen as an inverse volume, for uniform distributions) For

the reasons mentioned in Section 2.2.3, one easily checks that the volume of M ∈ B(0, R)uMn,d
rchmin

can neither be too small nor too large, when rchmin and R are fixed (Proposition 35). Conversely,

this section is devoted to prove the existence of submanifolds M ∈ B(0, R) uMn,d
rchmin

that nearly
achieve the minimum and maximum possible such volumes of Proposition 35.

H.2.1 The Statement

Namely, the goal of Appendix H.2 is to prove the following result.

Proposition 54. Assume that rchmin ≤ R/12. Writing Cd = 9(2dσd−1), let V > 0 be such that

1 ≤ V
Cdrch

d
min

≤ max
1≤k≤n

(
R

24rchmin

√
k

)k
.

Then there exists M0 ∈Mn,d
rchmin

such that M0 ⊆ B(0, R) and

V/6 ≤ Hd(M0) ≤ V.

Proof of Proposition 54. Consider the discrete grid G0 in Rn with vertices (12rchminZn)∩B(0, R/2),
centered at 0 ∈ Rn and composed of hypercubes of side-length 12rchmin. By considering a k0-
dimensional sub-grid parallel to the axes, we see that the grid G0 contains a square grid G with

side cardinality κ =
⌈

R/2

12rchmin

√
k0

⌉
, where k0 = argmax1≤k≤n

(
R

24rchmin

√
k

)k
. Let us write ` =⌊

V/(Cdrchdmin)
⌋
. By assumption on V, rchmin and R, we have

1 ≤ ` ≤ V
Cdrch

d
min

≤ max
1≤k≤n

(
R

24rchmin

√
k

)k
≤ κk0 .

Hence, Lemma 58 asserts that there exists a connected open simple path Ln(`) in G ⊆ G0 with

length |Ln(`)| = `. Furthermore, Lemma 56 provides us with a submanifold M0 ∈ Mn,d
rchmin

such

that M0 = M(Ln(`)) ⊆ G6rchmin ⊆ B(0, R/2)6rchmin ⊆ B(0, R) since rchmin ≤ R/12, and

Hd(M0) ≤ (Cdrch
d
min)|Ln(`)|

≤ (Cdrch
d
min)

V
Cdrch

d
min

= V,
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and

Hd(M0) ≥ (Cdrch
d
min/3)|Ln(`)|

≥ (Cdrch
d
min/3)

V
2Cdrch

d
min

= V/6,

where we used that btc ≥ t/2 for all t ≥ 1, which concludes the proof.

H.2.2 Widget Gluing: From Paths on the Discrete Grid to Manifolds

Lemma 55. Given rchmin > 0 and d ≥ 1, there exist four d-dimensional C2-submanifolds with
boundary ME ,MS ,MTB ⊆ [−6rchmin, 6rchmin]d+1 and MNB ⊆ [−6rchmin, 6rchmin]d+2, called re-
spectively end, straight, tangent bend and normal bend widgets (see Figure 3), that:

� are smooth: rchME
, rchMS

, rchMTB
, rchMNB

≥ rchmin;

� have the following topologies:

– ME is isotopic to a d-ball Bd(0, 1),

– MS, MTB and MNB are isotopic to a d-cylinder Sd−1 × [0, 1];

� are linkable: writing s = 6rchmin, we have

– For the tip widget ME:

* ME ∩
(
[−s/2, s/2]d+1

)c
= ME ∩

(
[s/2, s]× Rd

)
= [s/2, s]× Sd−1(0, s/3).

– For the straight widget MS:

* MS ∩
(
[−s/2, s/2]d+1

)c
= MS ∩

((
[−s,−s/2]× Rd

)
∪
(
[s/2, s]× Rd

))
,

* MS ∩
(
[−s,−s/2]× Rd

)
= [−s,−s/2]× Sd−1(0, s/3),

* MS ∩
(
[s/2, s]× Rd

)
= [s/2, s]× Sd−1(0, s/3).

– For the tangent bend widget MTB:

* MTB ∩
(
[−s/2, s/2]d+1

)c
= MTB ∩

((
[−s,−s/2]× Rd

)
∪
(
Rd × [−s,−s/2]

))
,

* MTB ∩
(
[−s,−s/2]× Rd

)
= [−s,−s/2]× Sd−1(0, s/3),

* MTB ∩
(
Rd × [−s,−s/2]

)
= Sd−1(0, s/3)× [−s,−s/2].

– For the normal bend widget MNB:

* MNB ∩
(
[−s/2, s/2]d+2

)c
= MNB ∩

((
[−s,−s/2]× Rd × {0}

)
∪
(
{0} × Rd × [−s,−s/2]

))
,

* MNB ∩
(
[−s,−s/2]× Rd × {0}

)
= [−s,−s/2]× Sd−1(0, s/3)× {0},

* MNB ∩
(
{0} × Rd × [−s,−s/2]

)
= {0} × Sd−1(0, s/3)× [−s,−s/2].

Furthermore,

(Cd/3)rchdmin ≤ Hd(ME),Hd(MS),Hd(MTB),Hd(MNB) ≤ Cdrchdmin,

where Cd = 9(2dσd−1) depends only on d.

Proof of Lemma 55. First notice that by homogeneity, we can carry out the construction in the
unit hypercubes [−1, 1]d+1 (respectively [−1, 1]d+2) and conclude by applying an homothetic trans-
formation. Indeed, for all closed set K ⊆ Rn and λ ≥ 0, rchλK = λrchK and Hd(λK) = λdHd(K).
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s

s/3
s/2

Rd+1

0

(a) End widget ME .

Rd+1

0

(b) Straight widget MS .

Rd+1

0

(c) Tangent Bend widget MTB .

s

s/3s/2

s/2

s

s/2

s/3

s/2

Rd+1 × {−s}{−
s}
× R

d+
1

(0Rd+1 ,−s)

MNB

(−s, 0Rd+1)

(d) Normal Bend widget MNB .

Figure 3: The widgets built in Lemma 55 and used in the proof of Lemma 56.

� End widget: the idea is to glue in a C2 way a half d-sphere with a d-cylinder. Namely, let us
consider

M
(0)
E =

(
Sd(0, 1/3) ∩

(
[−1, 0]× [−1, 1]d

))
∪
(

[0, 1]× Sd−1(0, 1/3)
)
.

Elementary calculations yield the intersectionsM
(0)
E ∩

(
[−1/2, 1/2]d+1

)c
= M

(0)
E ∩

(
[1/2, 1]× Rd

)
=

[1/2, 1]×Sd−1(0, 1/3). In addition, its medial axis is Med(M
(0)
E ) = [0, 1]×{0}d, so that rch

M
(0)
E

=

inf
z∈Med(M

(0)
E )

d(z,M
(0)
E ) = 1/3. Finally, M

(0)
E is isotopic to the half d-sphere Sd(0, 1/3) ∩(

[−1, 0]× [−1, 1]d
)
, or equivalently to a d-ball.

� Straight widget: a simple d-cylinder satisfies our requirements. Similarly as above, the set

M
(0)
S = [−1, 1]× Sd−1(0, 1/3)
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clearly is (isotopic to) a d-cylinder, has reach rch
M

(0)
S

= 1/3, and all the announced intersection

properties with s = 1.

� Tangent Bend widget: we will glue two orthogonal straight d-cylinders via a smoothly rotating
(d − 1)-sphere. More precisely, consider the d-cylinders C1 = Sd−1(0, 1/3) × [−1,−1/2] and
C2 = [−1,−1/2] × Sd−1(0, 1/3). We will connect smoothly their tips, which are the (d − 1)-
spheres S1 = Sd−1(0, 1/3)×{−1/2} ⊆ C1 and S2 = {−1/2}× Sd−1(0, 1/3) ⊆ C2 of same radius.
To this aim, take the trajectory of S1 via the affine rotations of center xc = (−1/2, 0Rd−1 ,−1/2)
and linear parts

Rθ =


cos θ 0 · · · 0 − sin θ

0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0
sin θ 0 · · · 0 cos θ

 ∈ R(d+1)×(d+1),

when θ varies in [0, π/2]. Hence, letting fθ(x) = xc+Rθ(x−xc), we have f0(S1) = S1, fπ/2(S1) =

S2. In addition, for all θ ∈ [0, π/2] and x ∈ [−1/2, 1/2]d×{−1/2}, we have fθ(x) ∈ [−1/2, 1/2]d+1.
Hence, letting

M
(0)
TB = C1 ∪

( ⋃
0≤θ≤π/2

fθ(S1)

)
∪ C2,

we directly get that M
(0)
TB is isotopic to a d-cylinder, and that it satisfies all the announced

intersection properties with s = 1. To conclude, by symmetry, the medial axis of this widget
writes as

Med(M
(0)
TB) = {0}d × [−1,−1/2] ∪

(
xc +

⋃
t≥0

(−t, 0Rd−1 ,−t)
)
∪ [−1,−1/2]× {0}d ,

so that straightforward calculations yield rch
M

(0)
TB

= min
{

1/3, d(xc,M
(0)
TB)

}
= 1/6.

� Normal Bend widget: same as for the tangent bend widget, we glue the two orthogonal straight d-
cylinders C1 = {0}×Sd−1(0, 1/3)×[−1,−1/2] and C2 = [−1,−1/2]×Sd−1(0, 1/3)×{0}. via their
respective tips, S1 = {0}×Sd−1(0, 1/3)×{−1/2} ⊆ C1 and S2 = {−1/2}×Sd−1(0, 1/3) {0} ⊆ C2.
To this aim, take trajectory of S1 via the affine rotation of center xc = (−1/2, 0Rd ,−1/2) and
linear parts Rθ ∈ R(d+2)×(d+2) for θ ∈ [0, π/2]. As before, letting fθ(x) = xc + Rθ(x − xc), we
have f0(S1) = S1, fπ/2(S1) = S2. Also, for all θ ∈ [0, π/2] and x ∈ {0} × [−1/2, 1/2]d × {−1/2},
we have fθ(x) ∈ [−1/2, 1/2]d+1. Hence, letting

M
(0)
NB = C1 ∪

( ⋃
0≤θ≤π/2

fθ(S1)

)
∪ C2,

we get the announced results with s = 1, and similarly as above, rch
M

(0)
NB

= min {1/3, 1/2} = 1/3.

Also one easily checks in all the four above cases that

σd−1/3
d−2

3
≤ Hd(M (0)

E ),Hd(M (0)
S ),Hd(M (0)

TB),Hd(M (0)
NB) ≤ σd−1/3

d−2.
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Finally, letting

C−1 = min
{

rch
M

(0)
E

, rch
M

(0)
S

, rch
M

(0)
TB

, rch
M

(0)
NB

}
= 1/6

and considering the dilations ME = (Crchmin)M
(0)
E , MS = (Crchmin)M

(0)
S , MTB = (Crchmin)M

(0)
TB

and MNB = (Crchmin)M
(0)
NB yields the result by homogeneity, with Cd = Cdσd−1/3

d−2 = 9(2dσd−1).

Lemma 56. Let G be a discrete grid in Rn composed of hypercubes of side-length 12rchmin. Then
any connected open simple path L in G (see Lemma 58) defines a submanifold, denoted by M(L),
such that:

� M(L) ⊆ G6rchmin;

� M(L) ∈Mn,d
rchmin

;

� Cd/3 ≤
Hd(M(L))

|L|rchdmin

≤ Cd, where Cd is the constant of Lemma 55;

� If L and L′ are two different such paths in G,

dH(M(L),M(L′)) > 2rchmin.

Remark 57. The construction of Lemma 56 shows that, given one discrete path L, one could
actually define several different manifolds M(L) with the same properties. We will not exploit this
fact as the construction is enough for our purpose.

Proof of Lemma 56. For short, we let s = 6rchmin. Let L be a fixed connected open simple path
on G. If |L| = 1, take M(L) to be a d-sphere of radius 2rchmin centered at the only vertex of
L. Assuming now that |L| ≥ 2, we will build M(L) iteratively by adding appropriate widgets of
Lemma 55 along the consecutive vertices that L goes through. We pick one of the two degree 1
vertices (endpoints) of L arbitrarily, and denote the consecutive vertices of L as x1, . . . , x[L|−1.

(i) The path L has exactly one edge at x0, called v+
0 , which is parallel to the axes of Rn since

G is the square grid. In the cube x0 + [−6rchmin, 6rchmin]n, we define M(L) to coincide

with the End widget ME × {0}n−(d+1), rotated in the (e1, v
+
0 ) plane so that −e1 is sent

on v+
0 . In this first cube, M(L) hence presents a d-cylinder, obtained by a rotation of

[−s,−s/2]× Sd−1(0, s/3)× {0}n−(d+1) around x0, and pointing towards v+
0 . Let us call this

cylinder C+
0 .

(ii) Assume now that we have visited the consecutive vertices x0, . . . , xk−1 of L, for some k ≥ 1,
and that in the cube around xk−1, M(L) presents a cylinder C+

k−1 in the direction v+
k−1. If

xk is not the other endpoint of L, there are exactly two edges at xk, represented by the axis-
parallel vectors v−k = (xk−1 − xk) = −v+

k−1 and v+
k = (xk+1 − xk). There are three possible

cases depending on the turn that L takes at xk:

(a) If v−k and v+
k are aligned, take M(L) ∩ (xk + [−s, s]n) to coincide with the Straight

widget MS × {0}n−(d+1), rotated in the
{
e1, v

+
k

}
-plane so that e1 is sent on v+

0 .

(b) If v+
k belongs to the (d+1)-plane spanned by C+

k−1 but v−k and v+
k are not aligned, proceed

similarly by rotating the Tangent Bend widget MTB × {0}n−(d+1) so that (e1, ed+1) is
sent on (−v−k−1, v

+
k ).
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(c) Otherwise, if v+
k does not belong to the (d+1)-plane spanned by C+

k−1, then
{
v+
k , C

+
k−1

}
defines a (d+2)-plane. Hence, we proceed similarly by rotating the Normal Bend widget

MNB×{0}n−(d+2) so that (e1, ed+2) is sent on (−v−k−1, v
+
k ). Note that this case can only

occur if n ≥ d+ 2.

(iii) If we reached the other endpoint of L (k = |L| − 1), add a rotated End widget oriented in
the direction of C+

k−1.

Now that the construction of M(L) has been carried out, let us move to its claimed properties.

� By construction of the widgets and the fact that all of them are centered at points of the grid
G, M(L) is included in the offset of G of radius 6rchmin.

� By induction on the length of the path, it is clear that the union of the straight and bend widgets
(without the ends) is isotopic to a cylinder Sd−1(0, 1) × [0, 1]. As a result, adding the two end
widgets at the endpoints of the path yields that M(L) is isotopic to a d-dimensional sphere
Sd(0, 1). It is also clear that M(L) connected, by connectedness of L. In particular, M(L) is a
compact connected d-dimensional submanifold of Rn without boundary.

What remains to be proved is that rchM(L) ≥ rchmin. To see this, notice that by construction,

the widgets connect smoothly through sections of facing straight cylinders C± = Sd−1(0, s/3)×
[0,±s/2] × {0}n−(d+1) (rotated), which are included in the boxes [−s/2, s/2]n centered a the
midpoints of the grid. Apart from these connected ingoing and outgoing cylinders, the widgets
are included in boxes [−s/2, s/2]n, which are separated by a distance s. Hence, if two points
x, y ∈ M(L) are such that ‖y − x‖ ≤ s/2, then they must belong to either the same widget or
the same connecting cylinder C− ∪ C+. As a result, from [Fed59, Theorem 4.18] and the fact
that d(y − x, TxM(L)) ≤ ‖y − x‖ for all x ∈M(L), we get

rchM(L) = inf
x 6=y∈M(L)

‖y − x‖2

2d(y − x, TxM(L))

= min

 inf
x,y∈M(L)
‖y−x‖≥s/2

‖y − x‖2

2d(y − x, TxM(L))
, inf
x 6=y∈M(L)
‖y−x‖≤s/2

‖y − x‖2

2d(y − x, TxM(L))


≥ min {s/4,min {rchME

, rchMS
, rchMTB

, rchMNB
}}

≥ min {6rchmin/4, rchmin}
= rchmin,

which ends proving that M(L) ∈Mn,d
rchmin

.

� As M(L) is the union of |L| of the widgets defined in Lemma 55, it follows

Hd(M(L)) ≤ |L|max
{
Hd(ME),Hd(MS),Hd(MTB),Hd(MNB)

}
≤ |L|Cdrchdmin,

and similarly, as the intersection of the consecutive widgets (i.e. (d−1)-spheres) is Hd-negligible,
we have

Hd(M(L)) ≥ |L|min
{
Hd(ME),Hd(MS),Hd(MTB),Hd(MNB)

}
≥ |L|(Cd/3)rchdmin.
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� Let us now fix two different connected open simple paths L and L′ in G. Since L 6= L′, L passes
through a vertex, say x0 ∈ Rn, where L′ doesn’t. Regardless of the widget used at x0 to build
M(L), this widget contains, up to rotation centered at x0, the set x0 + {−s/2} × Sd−1(0, s/3)×
{0}n−(d+1). As a result, d(x0,M(L)) ≤

√
(s/2)2 + (s/3)2. On the other hand, M(L′) does not

intersect the cube x0 + [−s, s]n, so d(x0,M(L′)) ≥ s. Finally, we get

dH(M(L),M(L′)) = sup
x∈Rn

∣∣d(x,M(L′))− d(x,M(L))
∣∣

≥
∣∣d(x0,M(L′))− d(x0,M(L))

∣∣
≥ s−

√
(s/2)2 + (s/3)2

= 6(1−
√

13/6)rchmin

> 2rchmin,

which concludes the proof.

H.2.3 Existence of Long paths on the Grid

In order to complete the construction of Proposition 54, we need the existence of paths of prescribed
length over the n-dimensional discrete grid. Although standard, we include this construction for
sake of completeness.

Lemma 58. Let κ ≥ 1 be an integer and consider the square grid graph Gn on {1, . . . , κ}n. Then
for all ` ∈ {1, . . . , κn}, there exists a connected open simple path Ln(`) of length ` in Gn. That is,
Ln(`) is a subgraph of Gn such that:

� Ln(`) is connected;

� Ln(`) has vertex cardinality `;

� if ` ≥ 2, Ln(`) has maximum degree 2, and exactly two vertices with degree 1.

Proof of Lemma 58. For κ = 1, Gn consists of a single point, so that the result is trivial. We hence
assume that κ ≥ 2. Let us first build the paths Ln = Ln(κn) by induction on n. For n = 1, simply
take L1 to be the full graph Gn. We orientate L1 by enumerating its adjacent vertices in order:
L→1 [i] = i for all 1 ≤ i ≤ κ. Given an orientation L→ of some L in Gn, we also L←[i] = L→[|L| − i]
denote its backwards orientation. Now, assume that we have built Ln for some n ≥ 1, together
with an orientation L→n . To describe Ln+1, we list an orientation L→n+1 of it: an edge of Gn hence
belongs to Ln if an only if it joins two consecutive vertices in L→n+1. Namely, for 1 ≤ i ≤ κn, we let

L→n+1[i] = (L→n [i], 1)

L→n+1[κn + i] = (L←n [i], 2)

...

L→n+1[(κ− 1)κn + i] = (L↔n [i], κ) ,

where for the last line,↔ stands for→ if κ is odd, and← otherwise. Ln+1 clearly is connected and
visits all the vertices {1, . . . , κ}n. Its edges all have degree two, except (L→n [1], 1) and (L↔n [κn], κ)
which have degree 1, which concludes the construction of Ln = Ln(κn). To conclude the proof,
take Ln(`) (1 ≤ ` ≤ κn) to be the first ` consecutive vertices of L→n (κn).
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H.3 Informational Lower Bounds: Hypotheses for the Le Cam’s Lemma

This section is devoted to prove the two informational lower bounds Theorems 23 and 26. We will
use the general informational lower bound Theorem 46 with models {0}tDn,drchmin

(fmin, fmax, L) and

B(0, R)uDn,drchmin
(fmin, fmax, L) respectively, and parameter of interest θ(D) = Supp(D) that lies in

the metric space formed by the non-empty compact sets of Rn equipped with the metric ρ = dH.

H.3.1 Construction of the Hypotheses

First, we show how to build hypotheses, i.e probability distributions for Le Cam’s Lemma (Theo-
rem 46). We present a generic construction in the manifold setting by perturbing a base submanifold
M0. Note that the larger the volume Hd(M0), the stronger the result. See also Proposition 63 for
a result similar in spirit, and used to derive computational lower bounds instead of informational
ones.

Proposition 59. For all M0 ∈Mn,d
2rchmin

, x0 ∈M0 and τ ≤ 1, there exists a manifold M1 ∈Mn,d
rchmin

such that x0 ∈M1, Hd(M0)/2 ≤ Hd(M1) ≤ 2Hd(M0),

rchmin

218
min

{
1

222d2
,

(
Hd(M0)τ

ωdrch
d
min

)2/d
}
≤ dH(M0,M1) ≤ rchmin/10,

and so that the uniform distributions D0, D1 over M0,M1 satisfy TV(D0, D1) ≤ τ/2.

Proof of Proposition 59. Let p0 ∈ M0 be an arbitrary point such that ‖p0 − x0‖ ≥ rchmin. For
instance, by taking the geodesic variation p0 = γx0,v0(2rchmin), where v0 ∈ Tx0M0 is a unit tangent
vector, a Taylor expansion of γx0,v0 and Lemma 8 yields

‖p0 − x0‖ ≥ ‖2rchminv0‖ − ‖γx0,v0(rchmin)− (x0 + 2rchminv0)‖
≥ 2rchmin − (2rchmin)2/(2rchmin)

= rchmin,

since rchM0 ≥ 2rchmin. Let us denote by w0 ∈ (Tp0M0)⊥ a unit normal vector of M0 at p0. For
δ, η > 0 to be chosen later, let Φw0 be the function that maps any x ∈ Rn to

Φw0(x) = x+ ηφ

(
x− p0

δ

)
w0,

where φ : Rn → R is the real bump function φ(y) = exp
(
−‖y‖2/(1− ‖y‖2)

)
1B(0,1)(y) of Lemma 53.

We let M1 = Φw0(M0) be the image of M0 by Φw0 . Roughly speaking, M0 and M1 only differ by
a bump of width δ and height η in the neighborhood of p0. Note by now that Φw0 coincides with
the identity map outside B(p0, δ) and in particular, p0 = Φw0(p0) ∈M1 as soon as δ ≤ rchmin.

Combining Proposition 52 and Lemma 53, we get that M1 ∈ Mn,d
rchmin

and Hd(M0)/2 ≤
Hd(M1) ≤ 2Hd(M0) as soon as

5η

2δ
≤ 1

10d
and

23η

δ2
≤ 1

4rchmin
.

Under these assumptions, we have in particular that dH(M0,M1) ≤ ‖Φw0 − In‖∞ ≤ η ≤ rchmin/10.
Also, by construction, Φw0(p0) = p0 + ηw0 belongs to M1, so that

dH(M0,M1) ≥ d(p0 + ηw0,M0) = η,
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since w0 ∈ (Tp0M0)⊥ [Fed59, Theorem 4.8 (12)]. Let us now consider the uniform probability
distributions D0 and D1 over M0 and M1 respectively. These distributions have respective densities
fi = Hd(Mi)

−1
1Mi (i ∈ {0, 1}) with respect to the d-dimensional Hausdorff measure Hd on Rn.

Furthermore, Φw0 is a global diffeomorphism that coincides with the identity map on B(p0, δ)
c. As

a result, since 5η
2δ ≤

1
10d ≤ (21/d − 1), [AKC+19, Lemma D.2] yields for δ ≤ rchmin/2

TV(D0, D1) ≤ 12D0 (B(0, δ))

= 12Hd(M0 ∩ B(0, δ))/Hd(M0)

≤ 12(2dωdδ
d)/Hd(M0),

where we applied the upper bound of Lemma 30 to get the last inequality, using that rchM0 ≥
2rchmin.

Finally, setting η = δ2/(92rchmin) yields a valid choice of parameters for all δ ≤ rchmin/(2300d).
Consequently, we have shown that for all δ ≤ rchmin/(2

12d) ≤ rchmin/(2300d),

dH(M0,M1) ≥ δ2

92rchmin
and TV(D0, D1) ≤ 12(2dωdδ

d)/Hd(M0).

Equivalently, by setting τ/2 = 12(2dωdδ
d)/Hd(M0) and τ(0) := 24ωd(rchmin/(2

11d))d/Hd(M0), we

have shown that for all τ ≤ τ(0), there exists M1 ∈Mn,d
rchmin

such that

dH(M0,M1) ≥ 1

92rchmin

(
Hd(M0)τ

24(2dωd)

)2/d

and TV(D0, D1) ≤ τ/2.

We conclude the proof for τ ≤ τ(0) by further bounding the term

dH(M0,M1) ≥ 1

92rchmin

(
Hd(M0)τ

24(2dωd)

)2/d

=
rchmin

368× 242/d

(
Hd(M0)τ

ωdrch
d
min

)2/d

≥ rchmin

218

(
Hd(M0)τ

ωdrch
d
min

)2/d

.

Otherwise, if τ > τ(0), then the above construction applied with τ(0) yields the existence of some

M1 ∈Mn,d
rchmin

with the same properties, and

dH(M0,M1) ≥ rchmin

218

(
Hd(M0)τ(0)

ωdrch
d
min

)2/d

and TV(D0, D1) ≤ τ(0)/2 ≤ τ/2.

Summing up the two cases above, for all τ ≤ 1 we have exhibited M1 ∈ Mn,d
rchmin

with properties
above, TV(D0, D1) ≤ τ/2 and

dH(M0,M1) ≥ rchmin

218

(
Hd(M0) min

{
τ, τ(0)

}
ωdrch

d
min

)2/d

≥ rchmin

218
min

{
1

222d2
,

(
Hd(M0)τ

ωdrch
d
min

)2/d
}
,

which concludes the proof.
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Applying the technique of Proposition 59 with manifoldsM0 having largest possible volume (typ-

ically of order 1/fmin) in the models {0}tDn,drchmin
(fmin, fmax, L) and B(0, R)uDn,drchmin

(fmin, fmax, L)
yields the following result. The proof follows the ideas of [AL19, Lemma 5]. To our knowledge, the
first result of this type dates back to [GPPVW12a, Theorem 6].

Lemma 60. � Assume that fmin ≤ fmax/4 and that

2d+1σdfminrchdmin ≤ 1.

Then for all τ ≤ 1, there exist D0, D1 ∈ {0} t Dn,drchmin
(fmin, fmax, L) with respective supports M0

and M1 such that

dH(M0,M1) ≥ rchmin

220
min

{
1

222d2
,

(
τ

ωdfminrchdmin

)2/d
}

and TV(D0, D1) ≤ τ/2.

� Assume that rchmin ≤ R/48 and fmin ≤ fmax/24. Writing Cd = 9(2dσd−1), assume that

min
1≤k≤n

(
96rchmin

√
k

R

)k
≤ 2d+1Cdfminrchdmin ≤ 1.

Then for all τ ≤ 1, there exist D0, D1 ∈ B(0, R) u Dn,drchmin
(fmin, fmax, L) with respective supports

M0 and M1 such that

dH(M0,M1) ≥ rchmin

226
min

{
1

222d2
,

(
τ

ωdfminrchdmin

)2/d
}

and TV(D0, D1) ≤ τ/2.

Proof of Lemma 60. For both models, the idea is to first build a manifold M0 ∈ Mn,d
2rchmin

with
prescribed volume close to 1/fmin, and then consider the variations of it given by Proposition 59.

� Let M0 be a d-dimensional sphere of radius r0 =
(

1
2σdfmin

)1/d
in Rd+1 × {0}n−(d+1) ⊆ Rn

containing x0 = 0 ∈ Rn. By construction, rchM0 = r0 ≥ 2rchmin, so that M0 ∈ Mn,d
2rchmin

, and

one easily checks that Hd(M0) = 1/(2fmin). From Proposition 59, for all τ ≤ 1, there exists a

manifold M1 ∈Mn,d
rchmin

such that x0 ∈M1, with volume

1/fmax ≤ 1/(4fmin) ≤ Hd(M0) ≤ Hd(M1) ≤ 2Hd(M0) ≤ 1/fmin,

such that

dH(M0,M1) ≥ rchmin

218
min

{
1

222d2
,

(
τ

2ωdfminrchdmin

)2/d
}

≥ rchmin

220
min

{
1

222d2
,

(
τ

ωdfminrchdmin

)2/d
}
,

and such that the respective uniform distributions D0, D1 over M0,M1 satisfy TV(D0, D1) ≤
τ/2. Since the densities of D0, D1 are constant and equal to Hd(M0)−1,Hd(M1)−1, the bounds

on the volumes of M0 and M1 show that D0, D1 ∈ {0} t Dn,drchmin
(fmin, fmax, L = 0) ⊆ {0} t

Dn,drchmin
(fmin, fmax, L), which concludes the proof.
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� LetM0 ⊆ Rn be a submanifold given by Proposition 54 applied with parameters rch′min = 2rchmin,
V = 1/(2fmin) and R′ = R/2. That is, M0 ∈ Mn,d

2rchmin
is such that 1/(12fmin) ≤ Hd(M0) ≤

1/(2fmin) and M0 ⊆ B(0, R/2). From Proposition 59, for all τ ≤ 1, there exists a manifold

M1 ∈Mn,d
rchmin

such that dH(M0,M1) ≤ rchmin/10, with volume

1/fmax ≤ 1/(24fmin) ≤ Hd(M0)/2 ≤ Hd(M1) ≤ 2Hd(M0) ≤ 1/fmin,

such that

dH(M0,M1) ≥ rchmin

218
min

{
1

222d2
,

(
τ

12ωdfminrchdmin

)2/d
}

≥ rchmin

226
min

{
1

222d2
,

(
τ

ωdfminrchdmin

)2/d
}
,

and such that the respective uniform distributions D0, D1 over M0,M1 satisfy TV(D0, D1) ≤
τ/2. Because M0 ⊆ B(0, R/2) and dH(M0,M1) ≤ rchmin/10 ≤ R/2, we immediately get that
M1 ⊆ B(0, R/2 + R/2) = B(0, R). As a result, this family clearly provides the existence of the

announced ε-packing of
(
B(0, R)uMn,d

rchmin
,dH

)
. As above, the bounds on the volumes of M0 and

M1 show that D0, D1 ∈ B(0, R) u Dn,drchmin
(fmin, fmax, L = 0) ⊆ B(0, R) u Dn,drchmin

(fmin, fmax, L),
which concludes the proof.

H.3.2 Proof of the Informational Lower Bounds for Manifold Estimation

With all the intermediate results above, the proofs of Theorem 23 and Theorem 26 follow straight-
forwardly.

Proof of Theorem 23 and Theorem 26. These are direct applications of Theorem 46 for parameter
of interest θ(D) = Supp(D) and distance ρ = dH, with the hypotheses D0, D1 of the models

{0} t Dn,drchmin
(fmin, fmax, L) and B(0, R) u Dn,drchmin

(fmin, fmax, L) given by Lemma 60.

H.4 Computational Lower Bounds: Packing Number of Manifold Classes

We now prove the computational lower bounds Theorems 24 and 27. For this, and in order to
apply Theorem 47, we build explicit packings of the manifold classes. To study the two models
and the different regimes of parameters, we exhibit two types of such packings. The first ones
that we describe (Proposition 62) use translations of a fixed manifold M0 in the ambient space,
and are called ambient packings (see Appendix H.4.1). The second ones (Proposition 63) use a
local smooth bumping strategy based on a fixed manifold M0, and are called intrinsic packings
(see Appendix H.4.2). Finally, the proof of the computational lower bounds are presented in
Appendix H.4.3.

H.4.1 Global Ambient Packings

To derive the first manifold packing lower bound, we will use translations in Rn and the following
lemma.

Lemma 61. La K be a compact subset of Rn. Given a vector v ∈ Rn, let Kv = {p+ v, p ∈ K} be
the translation of K by the vector v. Then dH(K,Kv) = ‖v‖.
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Proof of Lemma 61. If v = 0, the result is straightforward, so let us assume that v 6= 0. Since K is
compact, the map g defined for p ∈ K by g(p) = 〈v/ ‖v‖, p〉 attains its maximum at some p0 ∈ K.
But by definition of Kv, p0 + v ∈ Kv, so

dH(K,Kv) ≥ d(p0 + v,K)

= min
p∈K
‖(p0 + v)− p‖

≥ min
p∈K

〈
v

‖v‖
, (p0 + v)− p

〉
= ‖v‖+ min

p∈K

〈
v

‖v‖
, p0 − p

〉
= ‖v‖ .

On the other hand, for all p ∈ K we have p+ v ∈ Kv, yielding d(p,Kv) ≤ ‖v‖, and symmetrically
d(p+ v,K) ≤ ‖v‖. Therefore dH(K,Kv) ≤ ‖v‖, which concludes the proof.

As a result, packings of sets in Rn naturally yields packings in the manifold space, by translating
a fixed manifold M0 ⊂ Rn. With this remark in mind, we get the following ambient packing lower
bound.

Proposition 62. Assume that rchmin ≤ R/24. Writing Cd = 9(2dσd−1), let V > 0 be such that

1 ≤ V
Cdrch

d
min

≤ max
1≤k≤n

(
R

48rchmin

√
k

)k
.

Then for all ε ≤ R/2,

log pk(
B(0,R)uMn,d

rchmin
,dH

)(ε) ≥ n log

(
R

4ε

)
,

and such a packing can be chosen so that all its elements M have volume V/6 ≤ Hd(M) ≤ V.

Proof of Proposition 62. Let z1, . . . , zN ∈ B(0, R/2) be a r-packing of B(0, R/2). From Proposi-
tion 34, such a packing can be taken so that N ≥ (R/(4r))n. Applying Proposition 54 with parame-

ters rchmin, V and R′ = R/2, we get the existence of some M0 ∈Mn,d
rchmin

such that V/6 ≤ Hd(M0) ≤
V and M0 ⊆ B(0, R/2). Note that for all z ∈ B(0, R/2), the translation Mz = {p+ z, p ∈M0} be-

longs to Mn,d
rchmin

, has the same volume as M0, and satisfies Mz ⊆ B(0, R/2 + ‖z‖) ⊆ B(0, R).
In addition, from Lemma 61 asserts that for all z, z′ ∈ B(0, R/2), dH(Mz,Mz′) = ‖z − z′‖. In
particular, for all i 6= j ∈ {1, . . . , N}, dH(Mzi ,Mzj ) = ‖zi − zj‖ > 2r. As a result, the family

{Mzi}1≤i≤N provides us with an r-packing of
(
B(0, R)uMn,d

rchmin
, dH

)
with cardinality N ≥ (R/r)n,

and composed of submanifold with volume V/6 ≤ Hd(M) ≤ V, which concludes the proof.

H.4.2 Local Intrinsic Packings

In the same spirit as Proposition 59 for informational lower bounds, the following result allows to
build packings of manifold classes by small perturbations of a base submanifold M0. Note, again,
that the larger the volume Hd(M0), the stronger the result.
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Proposition 63. For all M0 ∈Mn,d
2rchmin

and r ≤ rchmin/(2
34d2), there exists a family of subman-

ifolds {Ms}1≤s≤N ⊆M
n,d
rchmin

with cardinality N such that

logN ≥ H
d(M0)

ωdrch
d
min

(
rchmin

219r

)d/2
,

and that satisfies:

� M0 and {Ms}1≤s≤N have a point in common altogether: M0 ∩
(
∩1≤s≤NMs

)
6= ∅.

� For all s ∈ {1, . . . ,N},

dH(M0,Ms) ≤ 23r and Hd(M0)/2 ≤ Hd(Ms) ≤ 2Hd(M0).

� For all s 6= s′ ∈ {1, . . . ,N} dH(Ms,Ms′) > 2r.

Proof of Proposition 63. For δ ≤ rchmin/4 to be chosen later, let {pi}1≤i≤N be a maximal δ-packing

of M0. From Proposition 33, this maximal packing has cardinality N ≥ H
d(M0)

ωd(4δ)d
.

Let η > 0 be a parameter to be chosen later. Given a family of unit vectors w = (wi)1≤i≤N ∈
(Rn)N normal at the pi’s, i.e. wi ∈ (TpiM)⊥ and ‖wi‖ = 1, we let Φw be the function defined in
Lemma 53, that maps any x ∈ Rn to

Φw(x) = x+ η

(
N∑
i=1

φ

(
x− pi
δ

)
wi

)
,

where φ : Rn → R is the real bump function φ(y) = exp
(
−‖y‖2/(1− ‖y‖2)

)
1B(0,1)(y) of Lemma 53.

We let Mw = Φw(M0) be the image of M0 by Φw. The set Mw ⊆ Rn hence coincides with M0,
except in the δ-neighborhoods of the pi’s, where it has a bump of size η towards direction wi. Note
by now that up to rotations of its coordinates, the w ∈ Sn−d(0, 1)N . Combining Proposition 52

and Lemma 53, we see that Mw ∈Mn,d
rchmin

and Hd(M0)/2 ≤ Hd(Mw) ≤ 2Hd(M0) as soon as

5η

2δ
≤ 1

10d
and

23η

δ2
≤ 1

4rchmin
.

In the rest of the proof, we will work with these two inequalities holding true. In particular,
because ‖Φw − In‖∞ ≤ η, we immediately get that dH(M0,Mw) ≤ η. We note also that all the
Φw’s coincide with the identity map on (say) M0 ∩ ∂B(p1, δ), so that M0 ∩

(
∩wMw

)
contains

M0 ∩ ∂B(x1, δ) and is hence non-empty.
We now take two different families of unit normal vectors w and w′ (i.e. wi, w

′
i ∈ (TpiM0)⊥

and ‖wi‖ = ‖w′i‖ = 1 for 1 ≤ i ≤ N), and we will show that their associated submanifolds Mw and
Mw′ are far away in Hausdorff distance as soon as max1≤i≤N ‖wi − w′i‖ is large enough. To this
aim, we first see that by construction, Φw(pi) = pi + ηwi ∈ Φw(M0) = Mw for all i ∈ {1, . . . , N}.
In particular,

dH(Mw,Mw′) ≥ max
1≤i≤N

d(pi + ηwi,Mw′).

Let us fix a free parameter λi ∈ [0, 1] to be chosen later. As ‖Φw′ − In‖∞ ≤ η, we can write for all
i ∈ {1, . . . , N} that

d(pi + ηwi,Mw′) = d (pi + ηwi,Φw′(M0))

= d (pi + ηwi,Φw′(M0 \ B(pi, λiδ))) ∧ d
(
pi + ηwi,Φw′(M0 ∩ B(pi, λiδ))

)
≥ (λiδ − η) ∧ d

(
pi + ηwi,Φw′(M0 ∩ B(pi, λiδ))

)
.
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Further investigating the term d (pi + ηwi,Φw′(M0 ∩ B(pi, λiδ))), we see that for all x ∈ M0 ∩
B(pi, λiδ) ⊆ B(pi, δ), Φw′(x) = x+ ηφ

(x−pi
δ

)
wi But from [Fed59, Theorem 4.18], rchM0 ≥ 2rchmin

ensures that any x ∈ M0 ∩ B(pi, λiδ) can be written as x = pi + v + u, where v ∈ TpiM0 with

‖v‖ ≤ λiδ, and u ∈
(
TpiM0

)⊥
with ‖u‖ ≤ (λiδ)

2/(4rchmin). As a result, we have

d (pi + ηwi,Φw′(M0 ∩ B(pi, λiδ)))

≥ min
v∈TpiM0,‖v‖≤λiδ

u∈(TpiM0)⊥,‖u‖≤(λiδ)
2/(4rchmin)

∥∥∥∥v + u+ η

(
φ

(
v + u

δ

)
w′i − wi

)∥∥∥∥ .
But in the above minimum, v is orthogonal to u,wi and w′i, so∥∥∥∥v + u+ η

(
φ

(
v + u

δ

)
w′i − wi

)∥∥∥∥ ≥ ∥∥∥∥u+ η

(
φ

(
v + u

δ

)
w′i − wi

)∥∥∥∥ .
Also, in the above bounds, φ

(
v+u
δ

)
ranges in a subset of [0, 1] since 0 ≤ φ ≤ 1. In particular,

d (pi + ηwi,Φw′(M0 ∩ B(pi, λiδ))) ≥ min
u∈(TpiM0)⊥,‖u‖≤(λiδ)

2/(4rchmin)
0≤t≤1

∥∥u+ η
(
tw′i − wi

)∥∥
≥ min

0≤t≤1
η
∥∥tw′i − wi∥∥− (λiδ)

2

4rchmin

= η
∥∥(0 ∨ 〈wi, w′i〉)w′i − wi∥∥− (λiδ)

2

4rchmin

≥ η‖w
′
i − wi‖√

2
− (λiδ)

2

4rchmin
,

where the second line follows from triangle inequality, and the last two from elementary calculations.
Putting everything together, we have shown that for all λ1, . . . , λN ∈ [0, 1],

dH(Mw,Mw′) ≥ max
1≤i≤N

{
(λiδ − η) ∧

(
η
‖w′i − wi‖√

2
− (λiδ)

2

4rchmin

)}
.

One easily checks that under the above assumptions on the parameters,

λi :=

√√
2rchmin ‖w′i − wi‖ η

δ

provides valid choices of λi ∈ [0, 1]. Plugging these values in the previous bound yields

dH(Mw,Mw′) ≥ max
1≤i≤N

{(√√
2rchmin ‖w′i − wi‖ η − η

)
∧
(
η
‖w′i − wi‖

2
√

2

)}
,

so that if we further assume that ‖w′i − wi‖ ≥ 4
√

2η/rchmin, we obtain

dH(Mw,Mw′) ≥ max
1≤i≤N

{
η ∧

(
η
‖w′i − wi‖

2
√

2

)}
=

η

2
√

2
max

1≤i≤N

∥∥w′i − wi∥∥ ,
where the last line follows from ‖wi − w′i‖ ≤ ‖wi‖+ ‖w′i‖ ≤ 2.
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Setting η = δ2/(92rchmin), which is a value that satisfies all the requirements above as soon

as δ ≤ rchmin/(2300d), we have built a family of submanifolds {Mw}w of Mn,d
rchmin

indexed by

w ∈ Sn−d(0, 1)N , such that Hd(M0)/2 ≤ Hd(Mw) ≤ 2Hd(M0), and which are guaranteed to
satisfy

dH(Mw,Mw′) >
δ2

2
√

2(92rchmin)
× 1

4
≥ 2

(
δ2

2082rchmin

)
,

provided that max1≤i≤N ‖w′i − wi‖ > 1/4 = 2/8. As a result, if we consider (1/8)-packings of the
unit spheres S(TpiM0)⊥(0, 1) = Sn−d(0, 1) for i ∈ {1, . . . , N}, then for all δ ≤ rchmin/(2300d), it

naturally defines a
(

δ2

2082rchmin

)
-packing of Mn,d

rchmin
with cardinality N a least

N ≥ pkSn−d(0,1)(1/8)N ≥ pkSn−d(0,1)(1/8)
Hd(M0)

ωd(4δ)d ,

and composed of elements Mw such that Hd(M0)/2 ≤ Hd(Mw) ≤ 2Hd(M0) and dH(M0,Mw) ≤
η = δ2/(92rchmin). In particular, by setting r = δ2

2082rchmin
, then for all 0 < r ≤ rchmin/(2

34d2), we

have exhibited a r-packing of Mn,d
rchmin

of cardinality N with

logN ≥ Hd(M0)

ωd(4
√

2082rchminr)d
log pkSn−d(0,1)(1/8),

composed of submanifolds having volume as above, and dH(M0,Mw) ≤ 2082r/92 ≤ 23r. From
Proposition 34, log pkSn−d(0,1)(1/8) ≥ (n − d) log 2. Finally, by considering the cases d ≤ n/2 and
d ≥ n/2, one easily checks that (n− d) ≥ n/(2d). In all, we obtain the announced bound

logN ≥ Hd(M0)

ωd(4
√

2082rchminr)d
n log 2

2d

≥ n H
d(M0)

ωdrch
d
min

(
rchmin

219r

)d/2
,

which yields the announced result.

Applying the technique of Proposition 63 with manifolds M0 having a large prescribed volume
{0} tMn,d

rchmin
and B(0, R) uMn,d

rchmin
respectively yields the following result.

Proposition 64. Let V > 0 and ε ≤ rchmin/(2
34d2).

� Assume that

1 ≤ V
2d+1σdrch

d
min

.

Then,

log pk(
{0}tMn,d

rchmin
,dH

)(ε) ≥ n V
ωdrch

d
min

(
rchmin

221ε

)d/2
.

Furthermore, this packing can be chosen so that all its elements M satisfy

V/4 ≤ Hd(M) ≤ V.
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� Assume that rchmin ≤ R/48. Writing Cd = 9(2dσd−1), assume that

1 ≤ V
2d+1Cdrch

d
min

≤ max
1≤k≤n

(
R

96rchmin

√
k

)k
.

Then,

log pk(
B(0,R)uMn,d

rchmin
,dH

)(ε) ≥ n V
ωdrch

d
min

(
rchmin

227ε

)d/2
.

Furthermore, this packing can be chosen so that all its elements M satisfy

V/24 ≤ Hd(M) ≤ V.

Proof of Proposition 64. For both models, the idea is to first build a manifold M0 ∈Mn,d
2rchmin

with
prescribed volume close to V, and then consider the variations of it given by Proposition 63.

� Let M0 be the centered d-dimensional sphere of radius r0 =
(
V/2
σd

)1/d
in Rd+1×{0}n−(d+1) ⊆ Rn.

By construction, rchM0 = r0 ≥ 2rchmin, so that M0 ∈ Mn,d
2rchmin

. Furthermore, one easily checks

that Hd(M0) = V/2. From Proposition 63, there exists a family of submanifolds {Ms}1≤s≤N ⊆
Mn,d

rchmin
with cardinality N such that

logN ≥ V/2
ωdrch

d
min

(
rchmin

219ε

)d/2
≥ V
ωdrch

d
min

(
rchmin

221ε

)d/2
,

that all share a point x0 ∈ ∩1≤s≤NMs, and such that dH(Ms,Ms′) > 2ε for all s 6= s′ ∈
{1, . . . ,N}, with volumes V/4 = Hd(M0)/2 ≤ Hd(Ms) ≤ 2Hd(M0) = V. As a result, the family
given by the translations M ′s = Ms−x0 clearly provides the existence of the announced ε-packing
of
(
{0} tMn,d

rchmin
, dH

)
.

� LetM0 ⊆ Rn be a submanifold given by Proposition 54 applied with parameters rch′min = 2rchmin,
V ′ = V/2 and R′ = R/2. That is, M0 ∈Mn,d

2rchmin
is such that V/12 ≤ Hd(M0) ≤ V/2 and M0 ⊆

B(0, R/2). From Proposition 63, there exists a family of submanifolds {Ms}1≤s≤N ⊆ M
n,d
rchmin

with cardinality N such that

logN ≥ V/12

ωdrch
d
min

(
rchmin

219ε

)d/2
≥ V
ωdrch

d
min

(
rchmin

227ε

)d/2
,

such that dH(M0,Ms) ≤ 23ε and dH(Ms,Ms′) > 2ε for all s 6= s′ ∈ {1, . . . ,N}, with volumes
V/24 ≤ Hd(M0)/2 ≤ Hd(Ms) ≤ 2Hd(M0) ≤ V. Because M0 ⊆ B(0, R/2) and dH(M0,Ms) ≤ 23ε
for all s ∈ {1, . . . ,N}, we immediately get that Ms ⊆ B(0, R/2+23ε) ⊆ B(0, R). As a result, this

family clearly provides the existence of the announced ε-packing of
(
B(0, R) uMn,d

rchmin
, dH

)
.

75



H.4.3 Proof of the Computational Lower Bounds for Manifold Estimation

We are now in position to prove the computational lower bounds presented in this work. First,
we turn to the infeasibiliy result of manifold estimation using statistical queries in the unbounded
model Dn,drchmin

(fmin, fmax, L) (Proposition 11).

Proof of Proposition 11. Since σdfminrchdmin ≤ 1, the uniform probability distribution D0 over the

centered unit d-sphere M0 ⊆ Rd+1 × {0}n−(d+1) of radius rchmin belongs to Dn,drchmin
(fmin, fmax, L).

Given a unit vector v ∈ Rn, the invariance of the model by translation yield that the uniform
distributions Dk over Mk = {p+ (3kε)v, p ∈M0}, for k ∈ Z, also belong to Dn,drchmin

(fmin, fmax, L).
But for all k 6= k′ ∈ Z, dH(Mk,Mk′) = 3|k − k′|ε > 2ε. Hence, writing

M =
{

Supp(D), D ∈ Dn,drchmin
(fmin, fmax, L)

}
,

we see that the family {Mk}k∈Z forms an infinite ε-packing of (M,dH). From Theorem 47, we

get that the statistical query complexity of manifold estimation over Dn,drchmin
(fmin, fmax, L) with

precision ε is infinite, which concludes the proof.

We finally come to the proofs of the computational lower bounds over the fixed point model {0}t
Dn,drchmin

(fmin, fmax, L) (Theorem 24) and the bounding ball model B(0, R) u Dn,drchmin
(fmin, fmax, L)

(Theorem 27).

Proof of Theorem 24 and Theorem 27. For both results, the idea is to exhibit large enough ε-
packings ofM = {Supp(D), D ∈ D}, and apply Theorem 47. In each case, the assumptions on the
parameters of the models ensure that the uniform distributions over the manifolds given by the
packings of Proposition 64 (and Proposition 62 for Theorem 27) applied with V = 1/fmin belong
to the model, and hence that M contain these packings.

� To prove Theorem 24, let us write

M0 :=
{

Supp(D), D ∈ {0} t Dn,drchmin
(fmin, fmax, L)

}
⊆ {0} tMn,d

rchmin
.

From Theorem 47, any randomized SQ algorithm estimating M = Supp(D) over the model

{0} t Dn,drchmin
(fmin, fmax, L) with precision ε and with probability of success at least 1− α must

make at least

q ≥
log
(
(1− α)pk(M0,dH)(ε)

)
log(1 + b1/τc)

queries to STAT(τ). Furthermore, let {Mi}1≤i≤N be an ε-packing of {0} t Mn,d
rchmin

given by
Proposition 64, that we apply with volume V = 1/fmin. Recall that these manifolds are guaran-
teed to have volumes 1/(4fmin) ≤ Hd(Mi) ≤ 1/fmin. From the assumptions on the parameters of
the model, we get that the uniform distributions

{
Di := 1MiHd/Hd(Mi)

}
1≤i≤N over the Mi’s all

belong to {0} t Dn,drchmin
(fmin, fmax, L). In particular, the family {Mi}1≤i≤N is also an ε-packing

of M0, and therefore

log
(
pk(M0,dH)(ε)

)
≥ logN ≥ n 1

ωdfminrchdmin

(
rchmin

221ε

)d/2
,

which yields the announced result.
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� Similarly, to prove Theorem 24, write

MR :=
{

Supp(D), D ∈ B(0, R) u Dn,drchmin
(fmin, fmax, L)

}
⊆ B(0, R) uMn,d

rchmin
,

and apply Theorem 47 to get

q ≥
log
(
(1− α)pk(MR,dH)(ε)

)
log(1 + b1/τc)

.

The assumptions on the parameters ensure that the packings exhibited in Proposition 62 and
Proposition 64 applied with volume V = 1/fmin are included in MR, so that

log
(
pk(MR,dH)(ε)

)
≥ nmax

{
log

(
R

4ε

)
,

1

ωdfminrchdmin

(
rchmin

227ε

)d/2}
,

which concludes the proof.
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