Learning Arithmetic Operations With A Multistep Deep Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Learning Arithmetic Operations With A Multistep Deep Learning

Bastien Nollet
  • Fonction : Auteur
  • PersonId : 1076500

Résumé

Deep neural networks are difficult to train when applied to tasks that can be expressed as algorithmic procedures. In this article, we propose to study how the explicit guidance of a network through all steps of the algorithm, using external memory and active choice of inputs, can improve its learning capability. The idea is to take inspiration from a child's learning and running through a procedure via interaction with an external support such as a paper. We show that this mechanism applied to a simple multilayer perceptron can significantly improve its performance when learning either a multi-digit addition or multiplication, which are simple but yet challenging operations to learn.
Fichier principal
Vignette du fichier
PID6463747.pdf (466.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02929738 , version 1 (22-10-2020)

Identifiants

Citer

Bastien Nollet, Mathieu Lefort, Frédéric Armetta. Learning Arithmetic Operations With A Multistep Deep Learning. The International Joint Conference on Neural Networks (IJCNN), Jul 2020, Glasgow, United Kingdom. ⟨10.1109/IJCNN48605.2020.9206963⟩. ⟨hal-02929738⟩
154 Consultations
1335 Téléchargements

Altmetric

Partager

More