
HAL Id: hal-02929738
https://hal.science/hal-02929738

Submitted on 22 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Arithmetic Operations With A Multistep Deep
Learning

Bastien Nollet, Mathieu Lefort, Frédéric Armetta

To cite this version:
Bastien Nollet, Mathieu Lefort, Frédéric Armetta. Learning Arithmetic Operations With A Multistep
Deep Learning. The International Joint Conference on Neural Networks (IJCNN), Jul 2020, Glasgow,
United Kingdom. �10.1109/IJCNN48605.2020.9206963�. �hal-02929738�

https://hal.science/hal-02929738
https://hal.archives-ouvertes.fr

Learning Arithmetic Operations With A Multistep
Deep Learning

Bastien Nollet, Mathieu Lefort, Frédéric Armetta
Université de Lyon, CNRS

Université Lyon 1, LIRIS, UMR5205, F-69622, France

Abstract—Deep neural networks are difficult to train when
applied to tasks that can be expressed as algorithmic procedures.
In this article, we propose to study how the explicit guidance
of a network through all steps of the algorithm, using external
memory and active choice of inputs, can improve its learning
capability. The idea is to take inspiration from a child’s learning
and running through a procedure via interaction with an external
support such as a paper. We show that this mechanism applied
to a simple multilayer perceptron can significantly improve
its performance when learning either a multi-digit addition or
multiplication, which are simple but yet challenging operations
to learn.

I. INTRODUCTION

Deep learning methods achieve state of the art performances
in multiple and various domains such as image classification,
automatic translation, games playing, ... However, they usually
failed to handle increasingly complex tasks [1], which is one of
the major challenges remaining in artificial intelligence. In this
paper, we focus on problems that humans solve by executing
an algorithm. While it is known that RNNs (Recurrent Neural
Network) are Turing-complete and have the potential to imitate
algorithms when correctly trained, their efficiency tend to
stagnate when tasks are complex [2]. In order to provide
new capacities to the system, one can develop dedicated
architectures which tend to alleviate the trainability problem.
This is the case for the Neural Turing Machine [3] for which a
neural network is complemented by a flow control mechanism
and memory capabilities. Although the enhanced network
is differentiable end-to-end, it remains somehow difficult to
parameterize and very sensitive to initialization values [4].
Complex neural networks have often proved difficult to train.

In this paper, we study another way to tackle the problem of
learning algorithmic problems. Instead of complementing the
architecture with dedicated modules, we propose to modify the
way the network learns by decomposing the task in successive
steps that will be fed into the model. Thus the network will
use the output/input loop as an interactive external medium,
which can be considered as a memory. This multistep learning
allows the global resolution of the algorithm and mimics the
way a human would unroll an algorithm on a piece of paper.
By doing so, we want to study if such a learning procedure
makes the network easier to train. We propose to compare
ourselves to a similar network that fails to solve the problem
end-to-end for sophisticated arithmetic operations [5].

Section II reviews the most common network architectures
with an emphasis on their suitability toward algorithmic learn-

ing. We introduce an alternative way to tackle algorithmic
resolution in section III. The network we use is presented
in section IV. Comparative results and the robustness of the
model to irrelevant data are presented in section V. Section VI
discusses the organization of the acquired knowledge induced
by the learning protocol we introduce. Conclusion is then
presented in section VII.

II. STATE OF THE ART

A. Various deep learning architectures

Extending the classical Multilayer Perceptron (MLP), var-
ious deep network architectures have been proposed to solve
complex tasks [6]. In the domain of computer vision, con-
volutional neural networks achieve good recognition perfor-
mance [7] that can be close or even better than human’s
ones in some specific tasks. For problems with temporal
dependencies between the inputs such as natural language
processing, recurrent neural networks or dedicated cells such
as Long Short Term Memory (LSTM) [8] or Gated Recurrent
Units (GRUs) [9] are particularly suited. These approaches
can be used in a supervised learning context but can also be
combined with the reinforcement learning framework, e.g. to
learn to play video games [10].

Even if all these models are universal approximators
(see [11] for the MLP), training them in practice can be
hard [2], especially when the teaching signal is sparse or when
the temporal dependence is at long term e.g. (LSTM have
initially been proposed to tackle these kinds of issues). To
overcome this trainability issue, more recent models, mainly
using an internal memory, were studied and will be described
in the next section.

B. Toward an algorithmic learning

Based on a ”simple” chain of continuous geometric transfor-
mations, deep learning models tend to increase their complex-
ity in order to manage more complex tasks. This can be done
thanks to attention mechanisms and recurrence or inclusion of
an additional memory.

1) Natural language processing models: Deep learning
models have been effective in dealing with problems such as
machine translation, text summarizing, speech recognition or
question-answering. Word2vec [12] and GloVe [13] are well-
established architectures used to generate relevant vector rep-
resentations of words. Based on these representations, End-To-
End Memory Networks [14] introduce an attention mechanism

allowing to select relevant parts of texts for question answer-
ing. The model proposes to stack layers in order to allow
complex multistep inferences and tackle spatial or temporal
dependencies between related topics. Seq2Seq models [15],
[16] manage complex relationships between words thanks to
recurrence in order to encode and decode textual data. They
can be complemented by an attention mechanism to focus
on different parts of the input sequence allowing to preserve
the context. The transformer model on its side introduces a
self-attention mechanism which makes possible to eliminate
recurrence [17] . Encoders and decoders blocks are stacked
on top of each other which has a big influence on the
performance.

2) Neural Turing Machine: The Neural Turing Machine
extends the capabilities of neural networks to address algo-
rithmic problems by coupling them to an internal memory
and an attentional process [3]. The proposal is differentiable
end-to-end and can be trained in a supervised way. It outper-
forms recurrent neural networks such as the Long Short-Term
Memory (LSTM) on tasks such as storing and retrieving the
i-th element of a list.

In a different way than what we propose, the gradient must
be propagated over the entire network expressing the different
stages of resolution, driven solely by the final output of the
algorithm. During the training, the supervised signal represents
the output of the total computation so that the network has to
learn by itself the ways to solve the problem. Although the
results are impressive, the selected algorithm for the training is
relatively simple and memory oriented (storing and retrieving
a list of items). It remains delicate to setup and very sensitive
to initialization values ([4]) so one can wonder about the
difficulties involved by increasing algorithm complexity.

3) Arithmetic processing: Learning arithmetic operations
is an emergent research field in deep learning. It can be
studied to extend the generalization capabilities of deep neural
networks [18], or as a first step toward learning more complex
algorithmic procedures, which is our concern in this article.

Our approach is intended to be general-purpose and does
not include any specificity for numerical calculation but some
approaches propose architectures dedicated to real numbers
(see [19]).

Among the works dealing with arithmetic processing, [20]
proposes a neural solver for arithmetic expression calculation.
The neural solver both parses expressions and execute manage-
able arithmetic operations. The network is trained thanks to a
hierarchical reinforcement algorithm. Tasks are hierarchically
decomposed in sub-tasks, and acquired thanks to a curriculum
learning. The approach does not appear to be designed to
manage well large arithmetic multiplications. Results show
an impressive ability to revolve medium size expressions, but
that accuracy drops to 0% for long expressions when ad-
dressing multiplication expressions. The drop in performance
is less drastic for expression composed by other operations
(additions, divisions and subtractions). As a matter of fact, in
these last cases the size of operands does not increase too
much during the resolution of sub-expressions which keep

the algorithmic complexity manageable. Indeed, increasing
the number of digits of operands significantly increases the
number of steps required for multiplications and the associated
research area for the reinforcement algorithm.

It has been shown that a simple 3 hidden layers supervised
network can infer with great accuracy the result of an addition
taking as input the two operands (see [5]). However the
same architecture and training procedure perform poorly on
the multiplication, whose computation requires more complex
and dependent relationship between digits. This illustrates the
limitation of classical deep learning architectures to learn long
algorithmic procedures.

Since our goal is to study the behavior of a simple network
to learn complex operations, we propose to compare our model
using comparable network settings used in [5] (the hidden
layers are identical although the input and output parts are
adapted to fit the needs of our approach to interact with the
external medium, see section IV).

C. Active learning

Beyond the structural choice made for the training, it has
been shown that an active learning strategy consisting of
choosing the right next example to learn can achieve a greater
performance [21], [22]. For instance, this can be done with
curriculum learning where tasks of increasing complexity are
successively presented to the network [23]. This dynamic
can also autonomously emerge from an artificial curiosity
mechanism, inspired by developmental psychology, where the
system tries to maximize its learning progress [24].

III. OUR MULTISTEP LEARNING FOR ARITHMETIC
OPERATIONS

A. General design

In the context of this article, we choose as a first step to
imitate algorithms whose contents are known, i.e. algorithms
that we can unfold step-by-step. Thus, intermediate resolution
states are made available thanks to the flow of the algorithm.
Future research should consider partially known algorithms for
which partial results could be exploited to guide the model
learning further.

The guiding idea is to provide an intermediate supervision
signal which allows to learn many elementary operations
depending on the input. The general principle relies on reading
and writing on a board or memory such as shown in figure 1
for an addition (the unfolding of additions is detailed in the
next section). We do not constrain access to this external
memory and keep the network as simple as possible for
reading and writing (see details in section III-C).

The succession of elementary operations has to lead to the
resolution of the global problem. The network then needs to
learn for each step:

• where the useful information takes place on the board
• what is the result of the inference
• where to report the outcome

Fig. 1: Overview of the processing flow. The output of the
network is combined with the current input to construct the
next input. Thus, the output can be viewed as an external
memory and its combination with the input as an external
recurrence for the system. This allows the algorithm to be
rolled out step by step on this external support.

B. Application to addition and multiplication operations

The network learns to mimic the algorithm unfolding lead-
ing to the problem solving. For the purpose of clarity, the
resolution steps are first presented sequentially. The sequential
nature of the problem does not prevent from learning the
steps in parallel and independently as implemented. Because
our training algorithm uses an external memory, at each step
the network has access to all necessary data to perform the
next operation. Thus, even if the dataset is constructed in
a sequential manner, two successive operations are no more
temporally dependent and can be learned in any order.

1) Addition: As presented in figure 2, the first two lines are
used for the operands. Each resolution step consists in adding
two digits, taking into consideration the previous possible
carry, and reporting the new value and carry. The set of carries
and the final result respectively appear on the penultimate and
last lines.

2) Multiplication: The multiplication stands for a more
complicated algorithm and has to be decomposed further
(figure 3). As before, we choose to unroll the algorithm digit-
by-digit, first having the partial multiplications and ending
with the final additions also unrolled . The specificity of
this algorithm is to mix both multiplications and additions
to compute partial results as presented in figure 4. When
considering 7-digit-numbers as in [5], this algorithm requires
35 steps which is a difficult task.

C. Problem formalization

In order to focus on the learning of arithmetic operations,
we chose to represent digits using 1-hot vectors in the same

Fig. 2: Step-by-step unfolding of an addition. Two digits are
written each step: a partial result digit, and a carry to consider
for the next step. The last line represents the final result but
is not used in the training dataset.

Fig. 3: Example of step-by-step unfolding of a multiplication
(the resulting full-resolution map is presented in figure 4).

way it has been done in [5] (see figure 5). For the purpose
of clarity, digits are represented numerically in most of the
figures.

Let D = {(xjstep , y
j
step)}step,j be the dataset with xjstep and

yjstep representing respectively the input and the desired output
of the network for the step-th (unfolding) step of the j-th
operation example. xjstep and yjstep ∈ {0, 1}s×l×10, l being
the number of lines used to unfold the operation, s being

Fig. 4: Full-resolution map for the multiplication.

the number of digits used for the operation. As presented in
figure 5, each digit is encoded with a 1-hot vector of size 10,
an additional null value (represented in black in the numerical
figures) is expressed by 0s in all the vector cells (see figure 5).

Fig. 5: 1-hot encodings for digits (for this illustration, 1-
hot encodings are concatenated by three (left part) and are
associated to three values (right part))

As presented in figure 1, while each resolution has to follow
the naturally ordered algorithmic flow up to xjend and yjend,
the training for such a system can be done independently for
each of the considered steps and pairs of operands. During
training, the system receives the input xji and tries to predict
yji . Each input is computed by mixing xji−1 and yji−1 : xji =

xji−1 + yji−1. During testing, the system has to sequentially
perform the arithmetic operation, beginning with the input xj0.
Then, the next input will be constructed with the following
formula: xji+1 = update(xji , ŷ

j
i), with i the current step and

ŷji the output of the network receiving xji .
The function Bin is used to transform an output vector

(one-hot-vector) the following way :

Bin : [0, 1]10 → {0, 1}10

o → p,∀i, pi =

 1 if oi = maxjoj
and oi > thr

0 else

The update function is then defined as follows :

update : {0, 1}s×l×10 ×[0, 1]s×l×10 → {0, 1}s×l×10

x , y → update(x, y)

update(x, y)a,b =

{
xa,b if Bin(ya,b) = 0
Bin(ya,b) else

One can note that when ground truth, update(xji , y
j
i) =

xji + yji which is consistent with the way the dataset is
constructed.

IV. MODEL

A. Network topology

The originality of our approach lies in the use of an
external memory (the output been fed back and combined
with the input) and the sequential learning of the algorithmic
procedure (see section III). To test our hypothesis, we used a
simple neural network architecture, more precisely we use the
architecture proposed in [5] for comparison purpose.

The network is a multilayer perceptron with an an input
layer of size s× l×10, with s the maximum number of digits
allowed per line, l the number of lines on the board, and 10 the
number of cells required to encode a digit with 1-hot encoding
(null value included, see section III-C). The network contains 3
hidden layers of 256 neurons with ReLU activation functions
(ReLU(x) = max(0, x)). These layers are fully connected.
The output has the same size as the input layer, needs to be the
same size as the input because of our learning procedure and
runs into a softmax activation function. For experiments, we
used the Adam optimizer [25], with a learning rate α = 0.001,
a variant of the stochastic gradient descent which uses the
first and the second moments of the gradients instead of just
the first moment, in order to obtain better performances. The
network is trained using a binary cross-entropy loss function.
This function evaluates the difference between the expected
result and the output of the network interpreted as probability
distributions, for a single step of an operation. Its expression
is H(p, q) = H(p) +DKL(p||q), where H(p) is the entropy
of the expected output, and DKL(p||q) is the Kullback-
Leibler divergence between the expected output and the given
output. By minimizing this value, the cross-entropy of these
distributions decreases, hence leading to an improvement of
the results.

B. Active learning

Each of the arithmetic operation relies on the same network
weights for its learning (yet we will see in section VI that when
correctly trained some parts of the network tend to specialize).
Our experiments showed that some learning steps are more
demanding and generate more failures than others if not accu-
rately managed. In order to compensate this phenomenon and
stress the network adequately, we introduced an active learning
strategy. We choose to dynamically balance the learning effort
and feed the network with steps whose accuracy is the lowest.

After each training epoch, the efficiency of the network is
evaluated for each step. Then a new epoch is generated, with

the different steps not equally represented. The higher the error
rate on a step is (when compared to the others), the more the
step is represented on the next dataset.

Let B be the function that transforms each subvector of a
map into a 1-hot vector:

B : [0, 1]s×l×10 → {0, 1}s×l×10

B(

σ1,1 · · · σ1,n
...

. . .
...

σn,1 · · · σn,n

) =
Bin(σ1,1) · · · Bin(σ1,n)

...
. . .

...
Bin(σn,1) · · · Bin(σn,n)


errorstep =

Ej [y
j
step! = B(ŷjstep)]∑

s errors
The probability to educate the network for a step step is

then defined by Pθ(step) = λ×errorstep+(1−λ)u, with λ the
rate of curiosity and u the uniform probability. The operands
are selected with a uniform distribution for each step.

V. EXPERIMENTS

A. Comparative results

We take as a basis for comparison the end-to-end network
presented in [5]. The neural network is equivalent in size in
both cases but the training is applied step-by-step for our
approach.

For each operation (addition and multiplication) we com-
pare 3 learning methods on the same network topology and
with the same loss function. The first training is a classical
supervised framework which corresponds to what was done
in [5]. The second is our proposition of supervised sequential
learning on the unfolded algorithm (see section III-B). The last
one is the same while also using the active learning mechanism
(see section IV-B). All the results are shown in I. The error
rate reported is the one corresponding to the whole operation,
meaning that for our models the test will be considered as
failed if any of the successive steps is wrong.

Our sequential learning procedure alone improves the result
for the addition, even if already good without, but completely
fails to train the network on the multiplication task. This drop
of performance may be due to the fact that our sequential
training forces the network to explicitly learn different single
digit operations (addition and multiplication) and that they are
not balanced in the dataset. Single digit additions take many
inputs (many lines to sum for large multiplications) and are
more demanding for their learning than single digit multipli-
cations to perform the global multi-digit multiplication.

Using the active learning mechanism helps to automatically
balance the number of single-digit addition and multiplication
given to the network. This helps the network to learn the
single digit addition which otherwise systematically fails (see
figure 6). This also improves the network performance of
the single digit multiplication. This leads globally to a high
enhancement of the performance for both tasks (see table I).
Thus, the network performs significantly better than when
trained with the classical supervision protocol, which validate
our hypothesis.

addition
(1 hidden layer)

multiplication
(3 hidden layers)

end-to-end
operation 1.7% 37.6%

step-by-step
(no active learning) 0.25% 95.5%

step-by-step
(with active learning) 0.01% 2%

TABLE I: The error rates for multiplications, with s = 7
maximum digits numbers, using 1-hot vectors encoding.

B. Active learning strategy

The active learning strategy greatly improves the training,
and is required for multiplications that is supported by addition
and multiplication elementary operations. Figure 6 stresses
the importance of rebalancing the learning. The addition
elementary operations are more demanding, indeed they apply
as a multi-line addition for 7-digit multiplications which
corresponds to a more complex task to learn.

C. Neural network robustness

In this section, we are interested in how the network makes
use of the input data for the multiplication task. While some
resolution steps could be inferred end to end directly from the
initial operands, we look at how the network is sensitive to
relevant digits which ones are protected from the random noise
applied to the input. We want to study if the trained network
inference is only based on the relevant digits to process the
current step or also takes information from other digits, as the
operands e.g. .

For that purpose, we measured the mean performance of the
network when randomly corrupting some percentage of the
irrelevant digits. In figure 7, 100% of the digits unnecessary
for the resolution of the current step are noisy.

Nevertheless, the network manages to produce the right
output associated with the current resolution step. In table II
we vary the amount of noise applied to irrelevant digits. In
table II we reported the mean performance over 500 000 trials
of the network with respect to the percentage of corrupted
digits for the 35 elementary operations. We can observe that
the network may rely on the relevant digits as most of the
obtained performance is conserved even when all the unnec-
essary digits are modified. However, the network yet takes
some information from the other digits as the performance
drops monotonously with the number of fake digits.

Fading rate 0% 25% 50% 75% 100%
Accuracy 99.97% 89.9% 82.4% 77.0% 72.7%

TABLE II: Evolution of the accuracy of the network trained
with our method including active learning depending on the
percentage of fake digits in the input (relevant digits for the
current step are maintained)

VI. DISCUSSION: SELF-ORGANIZED STRUCTURE

In this paper, we break the algorithmic learning down, step-
by-step, promoting the simplicity of the network. One can

(a) no active learning (b) with active learning

Fig. 6: Comparison of the evolution of the error rates on the multiplication operation over training epochs when using or
not the active learning mechanism. Respectively, the blue and green curves stand for the mean failure rate for single digit
multiplications and additions. The red curve represents the global efficiency of the step-by-step learning which globally follows
the worse performance curve (an error in a single step of the algorithm usually leads to a global false result).

(a) Multiplication step: the net-
work successfully outputs that
2x3 +2 is equal to 8.

(b) Final addition step of a
multiplication: the network
successfully outputs that
2+3+1 is equal to 6.

Fig. 7: Inferences with fake inputs. The meaningful digits are
maintained (highlighted in red). Other digits are deteriorated
(100% in this case). The accuracy is preserved on this instance

wonder about the ability of a simple MLP to organize its
knowledge when no topology is pre-defined. In this section, we
are particularly interested in the way the learning can gather
some knowledge on similar subparts of the network, when they
are useful at different stages of resolution. For the purpose of
comparison, a child would learn times tables once for all, and
would apply them whenever necessary. Similarly, we choose to
focus on times tables learning, with additional carry considered
(indeed we defined in the dataset the multiplication of two
digits and the addition with the relevant carry as an elementary
step of the global multiplication).

Figure 8 shows the mean activation of the neurons situated
on the last layer for a dedicated elementary operation. One can

see that some neurons are more involved in the processing of
these numbers. We chose 5× 3+1 as an illustrative example,
we simulate configurations dedicated to the combination what-
ever the place through a multiplication, which correspond to
different inputs for the network. We then measure the activity
of neurons in the last layer.

Fig. 8: Partial heat map to illustrate the activity on the
third layer of the network. Blue and red curves represent
respectively the average activation of neurons for dedicated
digits at various places (here 5× 3 + 1) and the regular case
(no constraints on considered digits).

We measure the drop of the network performance when
we deactivate some neurons among the most activated ones,
results are shown in table III. The table shows that when
neurons highly activated by this specific elementary operation
are removed, the specific operation is more damaged than
those not targeted. 5 neurons among 250 lead to a 48.8 points

drop in performance when it only decreases efficiency by 9
points for not targeted operations in average. These results give
a first glimpse of the network structuring, including a form
of information processing pooling for similar tasks, tending
to show that some neurons encode a specific single digit
operations of some operands, invariant to its location.

random
digits specific digits

mean mean standard
deviation min max

no neuron
dropped out 99.9% 99.9% 0.17% 99.5% 99.9%

1 neuron
dropped out 98.5% 85.6% 22.4% 43.9% 99.9%

3 neurons
dropped out 95.8% 67.5% 36.9% 11.8% 99.5%

5 neurons
dropped out 91.0% 51.2% 40.9% 2.8% 97.3%

10 neurons
dropped out 72.3% 24.8% 34.1% 0% 83.0%

15 neurons
dropped out 50.2% 10.3% 19.1% 0% 49.7%

20 neurons
dropped out 33.3% 3.3% 6.8% 0% 18.1%

TABLE III: Accuracy of the model trained on the global
multiplication operation with our sequential learning when
some neurons of the last layer are deactivated, depending on if
they are related to internal representation of the targeted single-
digit multiplication (specific digits column) or not (random
digits column). The reported results are averaged over different
targeted multiplications.

VII. CONCLUSION

Deep learning models draw their efficiency from continuous
transformations which make possible to learn a non-linear
mapping of the input space to the output space. One can
question their capability to extend their ability and learn
an algorithmic-like data manipulation end-to-end when the
number of elementary operations becomes significant, as is
the case for multiplications involving multi-digit numbers. In
the literature, people often propose to extend the network with
internal memories and reading/writing capabilities.

We propose an alternative approach to improve trainability
of models: to take advantage from intermediate algorithmic
results when available and to mimic the algorithm unfolding.
In order to make the resolution steps explicit, our model
operates reading and writing on an external support. We also
propose an active learning mechanism to balance the learning
effort over the algorithm steps which can be of different nature.

Our experiments on multi-digit addition and multiplication
operations show that with such a step-by-step learning and
active learning, the multiplication processing is much more
efficient when compared to a similar network trained with clas-
sical end-to-end supervised learning. Our experiments show
that the network is able to some extent to select relevant data
coming from the reading space in order to write the result
of the current operation to the appropriate location. While no
structure imposed, as the network used is a fully connected

MLP, some sub-parts of the network seem to be naturally
more active to encode some specific single-digit multiplication
independently of their location in the global operation.

There is still a long way to go to understand the dynamic of
the learning for the new introduced framework. If a form of
emergent pooling is confirmed, it would be very challenging
to guide it in order to transfer the knowledge for more
and more complex algorithm tasks, as a curriculum learning
would do. Another more hybrid way would rely on taking
benefit from the intermediate supervision signal when using
a more sophisticated model. It would also be very interesting
to deepen the suitability of models toward more and more
algorithmic oriented problems. More work is necessary to
fully understand the influence of our training procedure on the
structure learned by the network. It will be interesting to see
how this learned structure can be extrapolated to operations
with any number of digits as input. We also want to study if
and how our unfolding of algorithms can be applied to more
complex, e.g. hierarchical, tasks.

ACKNOWLEDGMENT

We gratefully acknowledge the support of @NVIDIA Cor-
poration with the donation of a GPU on which the experiments
of this paper where performed.

REFERENCES

[1] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman,
“Building machines that learn and think like people,” Behavioral and
Brain Sciences, vol. 40, p. e253, 2017.

[2] H. Siegelmann and E. Sontag, “On the computational power
of neural nets,” Journal of Computer and System Sciences,
vol. 50, no. 1, pp. 132 – 150, 1995. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022000085710136

[3] A. Graves, G. Wayne, and I. Danihelka, “Neural turing
machines,” CoRR, vol. abs/1410.5401, 2014. [Online]. Available:
http://arxiv.org/abs/1410.5401

[4] M. Collier and J. Beel, “Implementing neural turing machines,” in
Artificial Neural Networks and Machine Learning – ICANN 2018,
V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, and I. Maglogian-
nis, Eds. Cham: Springer International Publishing, 2018, pp. 94–104.

[5] Y. Hoshen and S. Peleg, “Visual learning of arithmetic operations,” in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
ser. AAAI’16. AAAI Press, 2016, pp. 3733–3739. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3016387.3016429

[6] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” 2014.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[11] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314,
1989.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” CoRR, vol. abs/1301.3781,
2013. [Online]. Available: http://arxiv.org/abs/1301.3781

[13] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

[14] S. Sukhbaatar, a. szlam, J. Weston, and R. Fergus, “End-to-end memory
networks,” in Advances in Neural Information Processing Systems 28,
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
Eds. Curran Associates, Inc., 2015, pp. 2440–2448. [Online]. Available:
http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf

[15] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in Neural Information
Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014,
pp. 3104–3112. [Online]. Available: http://papers.nips.cc/paper/5346-
sequence-to-sequence-learning-with-neural-networks.pdf

[16] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations
using RNN encoder–decoder for statistical machine translation,” in
Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, Oct. 2014, pp. 1724–1734. [Online].
Available: https://www.aclweb.org/anthology/D14-1179

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
Curran Associates, Inc., 2017, pp. 5998–6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

[18] A. Trask, F. Hill, S. E. Reed, J. Rae, C. Dyer, and P. Blunsom, “Neural
arithmetic logic units,” in Advances in Neural Information Processing
Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018,
pp. 8035–8044. [Online]. Available: http://papers.nips.cc/paper/8027-
neural-arithmetic-logic-units.pdf

[19] A. Madsen and A. R. Johansen, “Neural arithmetic units,” in
International Conference on Learning Representations, 2020. [Online].
Available: https://openreview.net/forum?id=H1gNOeHKPS

[20] K. Chen, Y. Dong, X. Qiu, and Z. Chen, “Neural arithmetic expression
calculator,” CoRR, vol. abs/1809.08590, 2018. [Online]. Available:
http://arxiv.org/abs/1809.08590

[21] B. Settles, “Active learning literature survey,” University
of Wisconsin–Madison, Computer Sciences Technical Report
1648, 2009. [Online]. Available: http://axon.cs.byu.edu/ mar-
tinez/classes/778/Papers/settles.activelearning.pdf

[22] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A.
Efros, “Large-scale study of curiosity-driven learning,” arXiv preprint
arXiv:1808.04355, 2018.

[23] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th annual international conference
on machine learning. ACM, 2009, pp. 41–48.

[24] J. Gottlieb, P.-Y. Oudeyer, M. Lopes, and A. Baranes, “Information-
seeking, curiosity, and attention: computational and neural mechanisms,”
Trends in Cognitive Sciences, vol. 17, pp. 585–593, 2013.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, cite arxiv:1412.6980Comment: Published as a conference paper
at the 3rd International Conference for Learning Representations, San
Diego, 2015. [Online]. Available: http://arxiv.org/abs/1412.6980

