On p-Laplacian reaction-diffusion problems with dynamical boundary conditions in perforated media - Archive ouverte HAL
Preprints, Working Papers, ... Year : 2020

On p-Laplacian reaction-diffusion problems with dynamical boundary conditions in perforated media

Abstract

This paper deals with the homogenization of the p-Laplacian reaction-diffusion problems in a domain containing periodically distributed holes of size ε, with a dynamical boundary condition of pure-reactive type. We generalize our previous results (see [2]) established in the case where the diffusion is modeled by the Laplacian operator, i.e., with p = 2. We prove the convergence of the homogenization process to a nonlinear p-Laplacian reaction-diffusion equation defined on a unified domain without holes with zero Dirichlet boundary condition and with extra terms coming from the influence of the nonlinear dynamical boundary conditions.
Fichier principal
Vignette du fichier
Anguiano_Hal.pdf (340.95 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02881568 , version 1 (25-06-2020)
hal-02881568 , version 2 (20-01-2023)
hal-02881568 , version 3 (13-08-2023)

Identifiers

  • HAL Id : hal-02881568 , version 1

Cite

María Anguiano. On p-Laplacian reaction-diffusion problems with dynamical boundary conditions in perforated media. 2020. ⟨hal-02881568v1⟩
489 View
323 Download

Share

More